Properties

Label 400.9.h
Level $400$
Weight $9$
Character orbit 400.h
Rep. character $\chi_{400}(399,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $6$
Sturm bound $540$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 400.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(540\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(400, [\chi])\).

Total New Old
Modular forms 498 72 426
Cusp forms 462 72 390
Eisenstein series 36 0 36

Trace form

\( 72 q + 157464 q^{9} - 1025088 q^{21} + 4001904 q^{29} + 6910128 q^{41} + 53045112 q^{49} - 45922800 q^{61} - 46335744 q^{69} + 710296776 q^{81} + 136561680 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
400.9.h.a 400.h 20.d $4$ $162.951$ \(\Q(\zeta_{12})\) None 16.9.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{3}-238\beta_{2} q^{7}-6369 q^{9}+\cdots\)
400.9.h.b 400.h 20.d $4$ $162.951$ \(\Q(i, \sqrt{35})\) None 16.9.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}-18\beta _{2}q^{7}+13599q^{9}-3^{3}\beta _{3}q^{11}+\cdots\)
400.9.h.c 400.h 20.d $8$ $162.951$ 8.0.12960000.1 None 80.9.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}+(28\beta _{1}-7\beta _{4})q^{7}+(-3111+\cdots)q^{9}+\cdots\)
400.9.h.d 400.h 20.d $12$ $162.951$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 400.9.b.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{3}+(7\beta _{6}-\beta _{7})q^{7}+(1794+\beta _{1}+\cdots)q^{9}+\cdots\)
400.9.h.e 400.h 20.d $20$ $162.951$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 400.9.b.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}-\beta _{4}q^{7}+(2994+\beta _{5})q^{9}+\cdots\)
400.9.h.f 400.h 20.d $24$ $162.951$ None 80.9.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{9}^{\mathrm{old}}(400, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)