Properties

Label 400.9
Level 400
Weight 9
Dimension 19816
Nonzero newspaces 14
Sturm bound 86400
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(86400\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(400))\).

Total New Old
Modular forms 38792 20000 18792
Cusp forms 38008 19816 18192
Eisenstein series 784 184 600

Trace form

\( 19816 q - 26 q^{2} - 20 q^{3} + 160 q^{4} - 40 q^{5} + 3192 q^{6} - 22 q^{7} - 8756 q^{8} - 14470 q^{9} - 32 q^{10} - 19808 q^{11} + 14044 q^{12} + 97064 q^{13} - 58924 q^{14} - 170712 q^{15} + 245296 q^{16}+ \cdots - 503909290 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(400))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
400.9.b \(\chi_{400}(351, \cdot)\) 400.9.b.a 1 1
400.9.b.b 1
400.9.b.c 2
400.9.b.d 2
400.9.b.e 2
400.9.b.f 4
400.9.b.g 4
400.9.b.h 6
400.9.b.i 6
400.9.b.j 10
400.9.b.k 10
400.9.b.l 12
400.9.b.m 16
400.9.e \(\chi_{400}(199, \cdot)\) None 0 1
400.9.g \(\chi_{400}(151, \cdot)\) None 0 1
400.9.h \(\chi_{400}(399, \cdot)\) 400.9.h.a 4 1
400.9.h.b 4
400.9.h.c 8
400.9.h.d 12
400.9.h.e 20
400.9.h.f 24
400.9.i \(\chi_{400}(93, \cdot)\) n/a 572 2
400.9.k \(\chi_{400}(99, \cdot)\) n/a 572 2
400.9.m \(\chi_{400}(57, \cdot)\) None 0 2
400.9.p \(\chi_{400}(193, \cdot)\) n/a 142 2
400.9.r \(\chi_{400}(51, \cdot)\) n/a 602 2
400.9.t \(\chi_{400}(157, \cdot)\) n/a 572 2
400.9.v \(\chi_{400}(71, \cdot)\) None 0 4
400.9.x \(\chi_{400}(79, \cdot)\) n/a 480 4
400.9.z \(\chi_{400}(31, \cdot)\) n/a 480 4
400.9.ba \(\chi_{400}(39, \cdot)\) None 0 4
400.9.bc \(\chi_{400}(53, \cdot)\) n/a 3824 8
400.9.bf \(\chi_{400}(19, \cdot)\) n/a 3824 8
400.9.bg \(\chi_{400}(17, \cdot)\) n/a 952 8
400.9.bj \(\chi_{400}(73, \cdot)\) None 0 8
400.9.bk \(\chi_{400}(11, \cdot)\) n/a 3824 8
400.9.bn \(\chi_{400}(13, \cdot)\) n/a 3824 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(400))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(400)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 2}\)