Properties

Label 400.8.c.u.49.2
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-4292] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 69x^{4} + 1164x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-5.41512i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.u.49.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.9866i q^{3} +1068.54i q^{7} +1703.59 q^{9} +671.263 q^{11} +1410.86i q^{13} -24141.5i q^{17} -6799.10 q^{19} +23493.7 q^{21} -41092.9i q^{23} -85540.9i q^{27} -174244. q^{29} +176924. q^{31} -14758.8i q^{33} -69922.1i q^{37} +31020.0 q^{39} -36103.9 q^{41} -4631.67i q^{43} +944966. i q^{47} -318245. q^{49} -530790. q^{51} +188685. i q^{53} +149489. i q^{57} +1.18358e6 q^{59} +1.80080e6 q^{61} +1.82036e6i q^{63} +1.24107e6i q^{67} -903493. q^{69} +1.07553e6 q^{71} -3.54474e6i q^{73} +717274. i q^{77} +7.07853e6 q^{79} +1.84500e6 q^{81} +7.53745e6i q^{83} +3.83103e6i q^{87} -6.14628e6 q^{89} -1.50756e6 q^{91} -3.88995e6i q^{93} -1.43256e7i q^{97} +1.14356e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4292 q^{9} + 5318 q^{11} + 111498 q^{19} - 123124 q^{21} - 131056 q^{29} + 289196 q^{31} + 1600008 q^{39} + 599486 q^{41} - 4720974 q^{49} + 3724630 q^{51} + 1966736 q^{59} + 11420236 q^{61} - 10781396 q^{69}+ \cdots + 106633020 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 21.9866i − 0.470147i −0.971978 0.235074i \(-0.924467\pi\)
0.971978 0.235074i \(-0.0755331\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1068.54i 1.17747i 0.808326 + 0.588735i \(0.200374\pi\)
−0.808326 + 0.588735i \(0.799626\pi\)
\(8\) 0 0
\(9\) 1703.59 0.778962
\(10\) 0 0
\(11\) 671.263 0.152061 0.0760306 0.997105i \(-0.475775\pi\)
0.0760306 + 0.997105i \(0.475775\pi\)
\(12\) 0 0
\(13\) 1410.86i 0.178107i 0.996027 + 0.0890536i \(0.0283842\pi\)
−0.996027 + 0.0890536i \(0.971616\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 24141.5i − 1.19177i −0.803069 0.595886i \(-0.796801\pi\)
0.803069 0.595886i \(-0.203199\pi\)
\(18\) 0 0
\(19\) −6799.10 −0.227412 −0.113706 0.993514i \(-0.536272\pi\)
−0.113706 + 0.993514i \(0.536272\pi\)
\(20\) 0 0
\(21\) 23493.7 0.553584
\(22\) 0 0
\(23\) − 41092.9i − 0.704238i −0.935955 0.352119i \(-0.885461\pi\)
0.935955 0.352119i \(-0.114539\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 85540.9i − 0.836374i
\(28\) 0 0
\(29\) −174244. −1.32668 −0.663338 0.748320i \(-0.730861\pi\)
−0.663338 + 0.748320i \(0.730861\pi\)
\(30\) 0 0
\(31\) 176924. 1.06664 0.533322 0.845912i \(-0.320943\pi\)
0.533322 + 0.845912i \(0.320943\pi\)
\(32\) 0 0
\(33\) − 14758.8i − 0.0714911i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 69922.1i − 0.226939i −0.993542 0.113469i \(-0.963804\pi\)
0.993542 0.113469i \(-0.0361963\pi\)
\(38\) 0 0
\(39\) 31020.0 0.0837366
\(40\) 0 0
\(41\) −36103.9 −0.0818107 −0.0409054 0.999163i \(-0.513024\pi\)
−0.0409054 + 0.999163i \(0.513024\pi\)
\(42\) 0 0
\(43\) − 4631.67i − 0.00888378i −0.999990 0.00444189i \(-0.998586\pi\)
0.999990 0.00444189i \(-0.00141390\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 944966.i 1.32762i 0.747901 + 0.663810i \(0.231062\pi\)
−0.747901 + 0.663810i \(0.768938\pi\)
\(48\) 0 0
\(49\) −318245. −0.386433
\(50\) 0 0
\(51\) −530790. −0.560308
\(52\) 0 0
\(53\) 188685.i 0.174090i 0.996204 + 0.0870448i \(0.0277423\pi\)
−0.996204 + 0.0870448i \(0.972258\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 149489.i 0.106917i
\(58\) 0 0
\(59\) 1.18358e6 0.750267 0.375133 0.926971i \(-0.377597\pi\)
0.375133 + 0.926971i \(0.377597\pi\)
\(60\) 0 0
\(61\) 1.80080e6 1.01580 0.507902 0.861415i \(-0.330421\pi\)
0.507902 + 0.861415i \(0.330421\pi\)
\(62\) 0 0
\(63\) 1.82036e6i 0.917203i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.24107e6i 0.504119i 0.967712 + 0.252060i \(0.0811079\pi\)
−0.967712 + 0.252060i \(0.918892\pi\)
\(68\) 0 0
\(69\) −903493. −0.331095
\(70\) 0 0
\(71\) 1.07553e6 0.356632 0.178316 0.983973i \(-0.442935\pi\)
0.178316 + 0.983973i \(0.442935\pi\)
\(72\) 0 0
\(73\) − 3.54474e6i − 1.06649i −0.845962 0.533243i \(-0.820973\pi\)
0.845962 0.533243i \(-0.179027\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 717274.i 0.179047i
\(78\) 0 0
\(79\) 7.07853e6 1.61528 0.807641 0.589674i \(-0.200744\pi\)
0.807641 + 0.589674i \(0.200744\pi\)
\(80\) 0 0
\(81\) 1.84500e6 0.385743
\(82\) 0 0
\(83\) 7.53745e6i 1.44694i 0.690355 + 0.723471i \(0.257454\pi\)
−0.690355 + 0.723471i \(0.742546\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.83103e6i 0.623733i
\(88\) 0 0
\(89\) −6.14628e6 −0.924160 −0.462080 0.886838i \(-0.652897\pi\)
−0.462080 + 0.886838i \(0.652897\pi\)
\(90\) 0 0
\(91\) −1.50756e6 −0.209716
\(92\) 0 0
\(93\) − 3.88995e6i − 0.501480i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.43256e7i − 1.59371i −0.604167 0.796857i \(-0.706494\pi\)
0.604167 0.796857i \(-0.293506\pi\)
\(98\) 0 0
\(99\) 1.14356e6 0.118450
\(100\) 0 0
\(101\) 1.87022e7 1.80620 0.903102 0.429426i \(-0.141284\pi\)
0.903102 + 0.429426i \(0.141284\pi\)
\(102\) 0 0
\(103\) − 1.26676e7i − 1.14226i −0.820861 0.571128i \(-0.806506\pi\)
0.820861 0.571128i \(-0.193494\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.14177e7i 0.901025i 0.892770 + 0.450513i \(0.148759\pi\)
−0.892770 + 0.450513i \(0.851241\pi\)
\(108\) 0 0
\(109\) −2.30961e7 −1.70823 −0.854115 0.520085i \(-0.825900\pi\)
−0.854115 + 0.520085i \(0.825900\pi\)
\(110\) 0 0
\(111\) −1.53735e6 −0.106695
\(112\) 0 0
\(113\) − 2.70703e7i − 1.76490i −0.470410 0.882448i \(-0.655894\pi\)
0.470410 0.882448i \(-0.344106\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.40352e6i 0.138739i
\(118\) 0 0
\(119\) 2.57963e7 1.40328
\(120\) 0 0
\(121\) −1.90366e7 −0.976877
\(122\) 0 0
\(123\) 793802.i 0.0384631i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.57965e7i 0.684301i 0.939645 + 0.342151i \(0.111155\pi\)
−0.939645 + 0.342151i \(0.888845\pi\)
\(128\) 0 0
\(129\) −101835. −0.00417668
\(130\) 0 0
\(131\) 5.51632e6 0.214388 0.107194 0.994238i \(-0.465813\pi\)
0.107194 + 0.994238i \(0.465813\pi\)
\(132\) 0 0
\(133\) − 7.26514e6i − 0.267771i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2.55243e6i − 0.0848070i −0.999101 0.0424035i \(-0.986498\pi\)
0.999101 0.0424035i \(-0.0135015\pi\)
\(138\) 0 0
\(139\) 6.02032e7 1.90138 0.950688 0.310150i \(-0.100379\pi\)
0.950688 + 0.310150i \(0.100379\pi\)
\(140\) 0 0
\(141\) 2.07766e7 0.624177
\(142\) 0 0
\(143\) 947056.i 0.0270832i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.99712e6i 0.181681i
\(148\) 0 0
\(149\) 4.27550e7 1.05885 0.529425 0.848356i \(-0.322408\pi\)
0.529425 + 0.848356i \(0.322408\pi\)
\(150\) 0 0
\(151\) −1.50072e6 −0.0354717 −0.0177358 0.999843i \(-0.505646\pi\)
−0.0177358 + 0.999843i \(0.505646\pi\)
\(152\) 0 0
\(153\) − 4.11272e7i − 0.928345i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.41082e7i 0.290954i 0.989362 + 0.145477i \(0.0464716\pi\)
−0.989362 + 0.145477i \(0.953528\pi\)
\(158\) 0 0
\(159\) 4.14855e6 0.0818478
\(160\) 0 0
\(161\) 4.39096e7 0.829218
\(162\) 0 0
\(163\) − 7.39232e7i − 1.33698i −0.743722 0.668489i \(-0.766942\pi\)
0.743722 0.668489i \(-0.233058\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.65021e6i 0.0772617i 0.999254 + 0.0386309i \(0.0122996\pi\)
−0.999254 + 0.0386309i \(0.987700\pi\)
\(168\) 0 0
\(169\) 6.07580e7 0.968278
\(170\) 0 0
\(171\) −1.15829e7 −0.177145
\(172\) 0 0
\(173\) − 4.25336e7i − 0.624556i −0.949991 0.312278i \(-0.898908\pi\)
0.949991 0.312278i \(-0.101092\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2.60229e7i − 0.352736i
\(178\) 0 0
\(179\) −2.68052e7 −0.349329 −0.174664 0.984628i \(-0.555884\pi\)
−0.174664 + 0.984628i \(0.555884\pi\)
\(180\) 0 0
\(181\) −7.80758e6 −0.0978682 −0.0489341 0.998802i \(-0.515582\pi\)
−0.0489341 + 0.998802i \(0.515582\pi\)
\(182\) 0 0
\(183\) − 3.95934e7i − 0.477578i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.62053e7i − 0.181222i
\(188\) 0 0
\(189\) 9.14042e7 0.984804
\(190\) 0 0
\(191\) 1.26812e8 1.31687 0.658437 0.752636i \(-0.271218\pi\)
0.658437 + 0.752636i \(0.271218\pi\)
\(192\) 0 0
\(193\) − 1.03526e8i − 1.03657i −0.855207 0.518287i \(-0.826570\pi\)
0.855207 0.518287i \(-0.173430\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.83506e8i 1.71009i 0.518552 + 0.855046i \(0.326471\pi\)
−0.518552 + 0.855046i \(0.673529\pi\)
\(198\) 0 0
\(199\) −5.17541e7 −0.465542 −0.232771 0.972532i \(-0.574779\pi\)
−0.232771 + 0.972532i \(0.574779\pi\)
\(200\) 0 0
\(201\) 2.72868e7 0.237010
\(202\) 0 0
\(203\) − 1.86187e8i − 1.56212i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 7.00054e7i − 0.548574i
\(208\) 0 0
\(209\) −4.56399e6 −0.0345806
\(210\) 0 0
\(211\) 1.77935e8 1.30398 0.651991 0.758227i \(-0.273934\pi\)
0.651991 + 0.758227i \(0.273934\pi\)
\(212\) 0 0
\(213\) − 2.36474e7i − 0.167669i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.89051e8i 1.25594i
\(218\) 0 0
\(219\) −7.79369e7 −0.501405
\(220\) 0 0
\(221\) 3.40602e7 0.212263
\(222\) 0 0
\(223\) − 2.49149e8i − 1.50450i −0.658876 0.752251i \(-0.728968\pi\)
0.658876 0.752251i \(-0.271032\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.45411e7i 0.479708i 0.970809 + 0.239854i \(0.0770996\pi\)
−0.970809 + 0.239854i \(0.922900\pi\)
\(228\) 0 0
\(229\) 3.00270e8 1.65230 0.826148 0.563453i \(-0.190528\pi\)
0.826148 + 0.563453i \(0.190528\pi\)
\(230\) 0 0
\(231\) 1.57704e7 0.0841786
\(232\) 0 0
\(233\) 1.30550e8i 0.676133i 0.941122 + 0.338067i \(0.109773\pi\)
−0.941122 + 0.338067i \(0.890227\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.55633e8i − 0.759421i
\(238\) 0 0
\(239\) −3.15757e7 −0.149610 −0.0748050 0.997198i \(-0.523833\pi\)
−0.0748050 + 0.997198i \(0.523833\pi\)
\(240\) 0 0
\(241\) 2.48149e8 1.14197 0.570984 0.820962i \(-0.306562\pi\)
0.570984 + 0.820962i \(0.306562\pi\)
\(242\) 0 0
\(243\) − 2.27643e8i − 1.01773i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 9.59256e6i − 0.0405038i
\(248\) 0 0
\(249\) 1.65723e8 0.680275
\(250\) 0 0
\(251\) 3.52963e8 1.40887 0.704436 0.709767i \(-0.251200\pi\)
0.704436 + 0.709767i \(0.251200\pi\)
\(252\) 0 0
\(253\) − 2.75841e7i − 0.107087i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.27654e8i 0.836582i 0.908313 + 0.418291i \(0.137371\pi\)
−0.908313 + 0.418291i \(0.862629\pi\)
\(258\) 0 0
\(259\) 7.47148e7 0.267213
\(260\) 0 0
\(261\) −2.96840e8 −1.03343
\(262\) 0 0
\(263\) 6.29841e7i 0.213494i 0.994286 + 0.106747i \(0.0340435\pi\)
−0.994286 + 0.106747i \(0.965956\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.35136e8i 0.434491i
\(268\) 0 0
\(269\) 4.21072e8 1.31894 0.659468 0.751733i \(-0.270782\pi\)
0.659468 + 0.751733i \(0.270782\pi\)
\(270\) 0 0
\(271\) 6.75064e7 0.206040 0.103020 0.994679i \(-0.467149\pi\)
0.103020 + 0.994679i \(0.467149\pi\)
\(272\) 0 0
\(273\) 3.31462e7i 0.0985972i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.43096e8i 0.969920i 0.874536 + 0.484960i \(0.161166\pi\)
−0.874536 + 0.484960i \(0.838834\pi\)
\(278\) 0 0
\(279\) 3.01405e8 0.830875
\(280\) 0 0
\(281\) 2.96200e8 0.796365 0.398183 0.917306i \(-0.369641\pi\)
0.398183 + 0.917306i \(0.369641\pi\)
\(282\) 0 0
\(283\) 2.09353e8i 0.549068i 0.961577 + 0.274534i \(0.0885236\pi\)
−0.961577 + 0.274534i \(0.911476\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 3.85786e7i − 0.0963296i
\(288\) 0 0
\(289\) −1.72474e8 −0.420321
\(290\) 0 0
\(291\) −3.14971e8 −0.749281
\(292\) 0 0
\(293\) − 2.23696e8i − 0.519542i −0.965670 0.259771i \(-0.916353\pi\)
0.965670 0.259771i \(-0.0836471\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 5.74204e7i − 0.127180i
\(298\) 0 0
\(299\) 5.79762e7 0.125430
\(300\) 0 0
\(301\) 4.94914e6 0.0104604
\(302\) 0 0
\(303\) − 4.11197e8i − 0.849182i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2.79876e8i − 0.552054i −0.961150 0.276027i \(-0.910982\pi\)
0.961150 0.276027i \(-0.0890180\pi\)
\(308\) 0 0
\(309\) −2.78517e8 −0.537029
\(310\) 0 0
\(311\) 3.50620e8 0.660959 0.330480 0.943813i \(-0.392789\pi\)
0.330480 + 0.943813i \(0.392789\pi\)
\(312\) 0 0
\(313\) − 8.36678e8i − 1.54224i −0.636688 0.771122i \(-0.719696\pi\)
0.636688 0.771122i \(-0.280304\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.09028e8i − 0.368550i −0.982875 0.184275i \(-0.941006\pi\)
0.982875 0.184275i \(-0.0589938\pi\)
\(318\) 0 0
\(319\) −1.16964e8 −0.201736
\(320\) 0 0
\(321\) 2.51037e8 0.423615
\(322\) 0 0
\(323\) 1.64141e8i 0.271024i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.07805e8i 0.803119i
\(328\) 0 0
\(329\) −1.00974e9 −1.56323
\(330\) 0 0
\(331\) −1.16334e9 −1.76322 −0.881611 0.471976i \(-0.843541\pi\)
−0.881611 + 0.471976i \(0.843541\pi\)
\(332\) 0 0
\(333\) − 1.19118e8i − 0.176776i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.10570e9i − 1.57374i −0.617119 0.786870i \(-0.711700\pi\)
0.617119 0.786870i \(-0.288300\pi\)
\(338\) 0 0
\(339\) −5.95185e8 −0.829761
\(340\) 0 0
\(341\) 1.18762e8 0.162195
\(342\) 0 0
\(343\) 5.39934e8i 0.722456i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.36343e8i 0.946077i 0.881042 + 0.473039i \(0.156843\pi\)
−0.881042 + 0.473039i \(0.843157\pi\)
\(348\) 0 0
\(349\) −2.15112e8 −0.270880 −0.135440 0.990786i \(-0.543245\pi\)
−0.135440 + 0.990786i \(0.543245\pi\)
\(350\) 0 0
\(351\) 1.20686e8 0.148964
\(352\) 0 0
\(353\) 5.45673e7i 0.0660269i 0.999455 + 0.0330134i \(0.0105104\pi\)
−0.999455 + 0.0330134i \(0.989490\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 5.67173e8i − 0.659746i
\(358\) 0 0
\(359\) 1.36708e9 1.55942 0.779710 0.626141i \(-0.215367\pi\)
0.779710 + 0.626141i \(0.215367\pi\)
\(360\) 0 0
\(361\) −8.47644e8 −0.948284
\(362\) 0 0
\(363\) 4.18550e8i 0.459276i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 9.97846e8i − 1.05374i −0.849947 0.526869i \(-0.823366\pi\)
0.849947 0.526869i \(-0.176634\pi\)
\(368\) 0 0
\(369\) −6.15061e7 −0.0637274
\(370\) 0 0
\(371\) −2.01619e8 −0.204985
\(372\) 0 0
\(373\) 7.42437e8i 0.740762i 0.928880 + 0.370381i \(0.120773\pi\)
−0.928880 + 0.370381i \(0.879227\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.45833e8i − 0.236290i
\(378\) 0 0
\(379\) 1.95656e9 1.84611 0.923053 0.384672i \(-0.125685\pi\)
0.923053 + 0.384672i \(0.125685\pi\)
\(380\) 0 0
\(381\) 3.47311e8 0.321722
\(382\) 0 0
\(383\) 1.19607e9i 1.08783i 0.839140 + 0.543916i \(0.183059\pi\)
−0.839140 + 0.543916i \(0.816941\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 7.89046e6i − 0.00692012i
\(388\) 0 0
\(389\) −1.54299e9 −1.32905 −0.664523 0.747267i \(-0.731365\pi\)
−0.664523 + 0.747267i \(0.731365\pi\)
\(390\) 0 0
\(391\) −9.92045e8 −0.839291
\(392\) 0 0
\(393\) − 1.21285e8i − 0.100794i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.18680e8i 0.335827i 0.985802 + 0.167913i \(0.0537029\pi\)
−0.985802 + 0.167913i \(0.946297\pi\)
\(398\) 0 0
\(399\) −1.59736e8 −0.125892
\(400\) 0 0
\(401\) −1.09037e9 −0.844442 −0.422221 0.906493i \(-0.638749\pi\)
−0.422221 + 0.906493i \(0.638749\pi\)
\(402\) 0 0
\(403\) 2.49614e8i 0.189977i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4.69361e7i − 0.0345085i
\(408\) 0 0
\(409\) −9.97868e8 −0.721177 −0.360588 0.932725i \(-0.617424\pi\)
−0.360588 + 0.932725i \(0.617424\pi\)
\(410\) 0 0
\(411\) −5.61193e7 −0.0398718
\(412\) 0 0
\(413\) 1.26471e9i 0.883416i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1.32366e9i − 0.893926i
\(418\) 0 0
\(419\) −2.10530e9 −1.39819 −0.699095 0.715029i \(-0.746413\pi\)
−0.699095 + 0.715029i \(0.746413\pi\)
\(420\) 0 0
\(421\) 1.81656e8 0.118648 0.0593242 0.998239i \(-0.481105\pi\)
0.0593242 + 0.998239i \(0.481105\pi\)
\(422\) 0 0
\(423\) 1.60983e9i 1.03417i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.92423e9i 1.19608i
\(428\) 0 0
\(429\) 2.08226e7 0.0127331
\(430\) 0 0
\(431\) −1.02927e9 −0.619241 −0.309620 0.950860i \(-0.600202\pi\)
−0.309620 + 0.950860i \(0.600202\pi\)
\(432\) 0 0
\(433\) 1.92403e9i 1.13895i 0.822009 + 0.569474i \(0.192853\pi\)
−0.822009 + 0.569474i \(0.807147\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.79395e8i 0.160152i
\(438\) 0 0
\(439\) −1.53719e8 −0.0867166 −0.0433583 0.999060i \(-0.513806\pi\)
−0.0433583 + 0.999060i \(0.513806\pi\)
\(440\) 0 0
\(441\) −5.42158e8 −0.301017
\(442\) 0 0
\(443\) 1.48910e9i 0.813786i 0.913476 + 0.406893i \(0.133388\pi\)
−0.913476 + 0.406893i \(0.866612\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 9.40037e8i − 0.497816i
\(448\) 0 0
\(449\) 1.75334e9 0.914120 0.457060 0.889436i \(-0.348902\pi\)
0.457060 + 0.889436i \(0.348902\pi\)
\(450\) 0 0
\(451\) −2.42352e7 −0.0124402
\(452\) 0 0
\(453\) 3.29958e7i 0.0166769i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.94898e8i 0.291565i 0.989317 + 0.145783i \(0.0465700\pi\)
−0.989317 + 0.145783i \(0.953430\pi\)
\(458\) 0 0
\(459\) −2.06509e9 −0.996767
\(460\) 0 0
\(461\) −6.49366e8 −0.308700 −0.154350 0.988016i \(-0.549328\pi\)
−0.154350 + 0.988016i \(0.549328\pi\)
\(462\) 0 0
\(463\) − 1.41796e8i − 0.0663942i −0.999449 0.0331971i \(-0.989431\pi\)
0.999449 0.0331971i \(-0.0105689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 6.60598e8i − 0.300143i −0.988675 0.150072i \(-0.952050\pi\)
0.988675 0.150072i \(-0.0479504\pi\)
\(468\) 0 0
\(469\) −1.32613e9 −0.593585
\(470\) 0 0
\(471\) 3.10192e8 0.136791
\(472\) 0 0
\(473\) − 3.10907e6i − 0.00135088i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.21442e8i 0.135609i
\(478\) 0 0
\(479\) −2.90926e9 −1.20951 −0.604754 0.796413i \(-0.706728\pi\)
−0.604754 + 0.796413i \(0.706728\pi\)
\(480\) 0 0
\(481\) 9.86501e7 0.0404194
\(482\) 0 0
\(483\) − 9.65423e8i − 0.389855i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 4.09182e9i − 1.60533i −0.596428 0.802667i \(-0.703414\pi\)
0.596428 0.802667i \(-0.296586\pi\)
\(488\) 0 0
\(489\) −1.62532e9 −0.628576
\(490\) 0 0
\(491\) −1.97082e9 −0.751386 −0.375693 0.926744i \(-0.622595\pi\)
−0.375693 + 0.926744i \(0.622595\pi\)
\(492\) 0 0
\(493\) 4.20651e9i 1.58110i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.14926e9i 0.419923i
\(498\) 0 0
\(499\) −3.95387e9 −1.42453 −0.712263 0.701913i \(-0.752330\pi\)
−0.712263 + 0.701913i \(0.752330\pi\)
\(500\) 0 0
\(501\) 1.02242e8 0.0363244
\(502\) 0 0
\(503\) 3.13374e9i 1.09793i 0.835845 + 0.548965i \(0.184978\pi\)
−0.835845 + 0.548965i \(0.815022\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.33586e9i − 0.455233i
\(508\) 0 0
\(509\) 1.26250e9 0.424345 0.212172 0.977232i \(-0.431946\pi\)
0.212172 + 0.977232i \(0.431946\pi\)
\(510\) 0 0
\(511\) 3.78772e9 1.25575
\(512\) 0 0
\(513\) 5.81601e8i 0.190202i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.34321e8i 0.201879i
\(518\) 0 0
\(519\) −9.35171e8 −0.293633
\(520\) 0 0
\(521\) −3.03852e9 −0.941305 −0.470653 0.882319i \(-0.655981\pi\)
−0.470653 + 0.882319i \(0.655981\pi\)
\(522\) 0 0
\(523\) − 2.00306e9i − 0.612264i −0.951989 0.306132i \(-0.900965\pi\)
0.951989 0.306132i \(-0.0990349\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.27120e9i − 1.27120i
\(528\) 0 0
\(529\) 1.71620e9 0.504049
\(530\) 0 0
\(531\) 2.01633e9 0.584429
\(532\) 0 0
\(533\) − 5.09374e7i − 0.0145711i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.89357e8i 0.164236i
\(538\) 0 0
\(539\) −2.13626e8 −0.0587615
\(540\) 0 0
\(541\) 4.41041e8 0.119754 0.0598768 0.998206i \(-0.480929\pi\)
0.0598768 + 0.998206i \(0.480929\pi\)
\(542\) 0 0
\(543\) 1.71662e8i 0.0460125i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.66599e9i 0.957715i 0.877893 + 0.478857i \(0.158949\pi\)
−0.877893 + 0.478857i \(0.841051\pi\)
\(548\) 0 0
\(549\) 3.06782e9 0.791273
\(550\) 0 0
\(551\) 1.18470e9 0.301702
\(552\) 0 0
\(553\) 7.56373e9i 1.90195i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 4.67236e9i − 1.14563i −0.819686 0.572813i \(-0.805852\pi\)
0.819686 0.572813i \(-0.194148\pi\)
\(558\) 0 0
\(559\) 6.53462e6 0.00158227
\(560\) 0 0
\(561\) −3.56300e8 −0.0852012
\(562\) 0 0
\(563\) − 5.21175e9i − 1.23085i −0.788196 0.615424i \(-0.788985\pi\)
0.788196 0.615424i \(-0.211015\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.97146e9i 0.454200i
\(568\) 0 0
\(569\) 6.91998e9 1.57475 0.787375 0.616474i \(-0.211439\pi\)
0.787375 + 0.616474i \(0.211439\pi\)
\(570\) 0 0
\(571\) −8.71208e9 −1.95837 −0.979186 0.202963i \(-0.934943\pi\)
−0.979186 + 0.202963i \(0.934943\pi\)
\(572\) 0 0
\(573\) − 2.78817e9i − 0.619125i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6.53729e9i 1.41671i 0.705854 + 0.708357i \(0.250563\pi\)
−0.705854 + 0.708357i \(0.749437\pi\)
\(578\) 0 0
\(579\) −2.27619e9 −0.487342
\(580\) 0 0
\(581\) −8.05410e9 −1.70373
\(582\) 0 0
\(583\) 1.26658e8i 0.0264723i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.75278e9i 0.969871i 0.874550 + 0.484936i \(0.161157\pi\)
−0.874550 + 0.484936i \(0.838843\pi\)
\(588\) 0 0
\(589\) −1.20292e9 −0.242568
\(590\) 0 0
\(591\) 4.03469e9 0.803995
\(592\) 0 0
\(593\) 1.81306e9i 0.357043i 0.983936 + 0.178521i \(0.0571314\pi\)
−0.983936 + 0.178521i \(0.942869\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.13790e9i 0.218874i
\(598\) 0 0
\(599\) 8.63786e9 1.64215 0.821074 0.570822i \(-0.193376\pi\)
0.821074 + 0.570822i \(0.193376\pi\)
\(600\) 0 0
\(601\) 7.95803e9 1.49536 0.747678 0.664061i \(-0.231168\pi\)
0.747678 + 0.664061i \(0.231168\pi\)
\(602\) 0 0
\(603\) 2.11427e9i 0.392689i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 7.64426e9i − 1.38731i −0.720305 0.693657i \(-0.755998\pi\)
0.720305 0.693657i \(-0.244002\pi\)
\(608\) 0 0
\(609\) −4.09363e9 −0.734426
\(610\) 0 0
\(611\) −1.33321e9 −0.236459
\(612\) 0 0
\(613\) − 5.36969e9i − 0.941537i −0.882257 0.470768i \(-0.843977\pi\)
0.882257 0.470768i \(-0.156023\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.22651e9i 0.210220i 0.994461 + 0.105110i \(0.0335194\pi\)
−0.994461 + 0.105110i \(0.966481\pi\)
\(618\) 0 0
\(619\) 1.85402e8 0.0314194 0.0157097 0.999877i \(-0.494999\pi\)
0.0157097 + 0.999877i \(0.494999\pi\)
\(620\) 0 0
\(621\) −3.51512e9 −0.589006
\(622\) 0 0
\(623\) − 6.56757e9i − 1.08817i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.00347e8i 0.0162580i
\(628\) 0 0
\(629\) −1.68802e9 −0.270459
\(630\) 0 0
\(631\) 1.00745e9 0.159633 0.0798165 0.996810i \(-0.474567\pi\)
0.0798165 + 0.996810i \(0.474567\pi\)
\(632\) 0 0
\(633\) − 3.91218e9i − 0.613063i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 4.48998e8i − 0.0688266i
\(638\) 0 0
\(639\) 1.83227e9 0.277802
\(640\) 0 0
\(641\) −1.57139e9 −0.235657 −0.117829 0.993034i \(-0.537593\pi\)
−0.117829 + 0.993034i \(0.537593\pi\)
\(642\) 0 0
\(643\) 1.49835e9i 0.222267i 0.993805 + 0.111133i \(0.0354481\pi\)
−0.993805 + 0.111133i \(0.964552\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.34865e9i 0.195764i 0.995198 + 0.0978820i \(0.0312068\pi\)
−0.995198 + 0.0978820i \(0.968793\pi\)
\(648\) 0 0
\(649\) 7.94494e8 0.114086
\(650\) 0 0
\(651\) 4.15658e9 0.590477
\(652\) 0 0
\(653\) − 1.26763e10i − 1.78154i −0.454457 0.890769i \(-0.650167\pi\)
0.454457 0.890769i \(-0.349833\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 6.03879e9i − 0.830751i
\(658\) 0 0
\(659\) −6.26664e9 −0.852974 −0.426487 0.904494i \(-0.640249\pi\)
−0.426487 + 0.904494i \(0.640249\pi\)
\(660\) 0 0
\(661\) 1.21865e10 1.64124 0.820621 0.571473i \(-0.193628\pi\)
0.820621 + 0.571473i \(0.193628\pi\)
\(662\) 0 0
\(663\) − 7.48869e8i − 0.0997950i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.16019e9i 0.934295i
\(668\) 0 0
\(669\) −5.47795e9 −0.707338
\(670\) 0 0
\(671\) 1.20881e9 0.154464
\(672\) 0 0
\(673\) − 1.05615e10i − 1.33559i −0.744343 0.667797i \(-0.767237\pi\)
0.744343 0.667797i \(-0.232763\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 7.77045e9i − 0.962466i −0.876593 0.481233i \(-0.840189\pi\)
0.876593 0.481233i \(-0.159811\pi\)
\(678\) 0 0
\(679\) 1.53075e10 1.87655
\(680\) 0 0
\(681\) 1.85877e9 0.225534
\(682\) 0 0
\(683\) − 8.52102e8i − 0.102334i −0.998690 0.0511669i \(-0.983706\pi\)
0.998690 0.0511669i \(-0.0162940\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 6.60192e9i − 0.776822i
\(688\) 0 0
\(689\) −2.66208e8 −0.0310066
\(690\) 0 0
\(691\) −9.21838e9 −1.06287 −0.531437 0.847098i \(-0.678348\pi\)
−0.531437 + 0.847098i \(0.678348\pi\)
\(692\) 0 0
\(693\) 1.22194e9i 0.139471i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8.71602e8i 0.0974997i
\(698\) 0 0
\(699\) 2.87036e9 0.317882
\(700\) 0 0
\(701\) 1.02862e10 1.12783 0.563915 0.825833i \(-0.309295\pi\)
0.563915 + 0.825833i \(0.309295\pi\)
\(702\) 0 0
\(703\) 4.75407e8i 0.0516086i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.99841e10i 2.12675i
\(708\) 0 0
\(709\) 7.03343e9 0.741149 0.370575 0.928803i \(-0.379161\pi\)
0.370575 + 0.928803i \(0.379161\pi\)
\(710\) 0 0
\(711\) 1.20589e10 1.25824
\(712\) 0 0
\(713\) − 7.27030e9i − 0.751171i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.94243e8i 0.0703387i
\(718\) 0 0
\(719\) 1.35138e10 1.35590 0.677948 0.735110i \(-0.262870\pi\)
0.677948 + 0.735110i \(0.262870\pi\)
\(720\) 0 0
\(721\) 1.35359e10 1.34497
\(722\) 0 0
\(723\) − 5.45596e9i − 0.536893i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 4.93058e9i − 0.475913i −0.971276 0.237956i \(-0.923522\pi\)
0.971276 0.237956i \(-0.0764775\pi\)
\(728\) 0 0
\(729\) −9.70094e8 −0.0927401
\(730\) 0 0
\(731\) −1.11815e8 −0.0105874
\(732\) 0 0
\(733\) − 1.26842e8i − 0.0118959i −0.999982 0.00594796i \(-0.998107\pi\)
0.999982 0.00594796i \(-0.00189330\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.33082e8i 0.0766569i
\(738\) 0 0
\(739\) 8.65558e9 0.788934 0.394467 0.918910i \(-0.370929\pi\)
0.394467 + 0.918910i \(0.370929\pi\)
\(740\) 0 0
\(741\) −2.10908e8 −0.0190427
\(742\) 0 0
\(743\) 1.09881e10i 0.982790i 0.870937 + 0.491395i \(0.163513\pi\)
−0.870937 + 0.491395i \(0.836487\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.28407e10i 1.12711i
\(748\) 0 0
\(749\) −1.22004e10 −1.06093
\(750\) 0 0
\(751\) −4.76292e9 −0.410330 −0.205165 0.978727i \(-0.565773\pi\)
−0.205165 + 0.978727i \(0.565773\pi\)
\(752\) 0 0
\(753\) − 7.76047e9i − 0.662377i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.97900e9i 0.752302i 0.926558 + 0.376151i \(0.122753\pi\)
−0.926558 + 0.376151i \(0.877247\pi\)
\(758\) 0 0
\(759\) −6.06482e8 −0.0503467
\(760\) 0 0
\(761\) −9.14472e9 −0.752184 −0.376092 0.926582i \(-0.622732\pi\)
−0.376092 + 0.926582i \(0.622732\pi\)
\(762\) 0 0
\(763\) − 2.46792e10i − 2.01139i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.66986e9i 0.133628i
\(768\) 0 0
\(769\) −5.80655e9 −0.460443 −0.230222 0.973138i \(-0.573945\pi\)
−0.230222 + 0.973138i \(0.573945\pi\)
\(770\) 0 0
\(771\) 5.00533e9 0.393317
\(772\) 0 0
\(773\) − 7.33269e9i − 0.570999i −0.958379 0.285499i \(-0.907841\pi\)
0.958379 0.285499i \(-0.0921594\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.64273e9i − 0.125629i
\(778\) 0 0
\(779\) 2.45474e8 0.0186048
\(780\) 0 0
\(781\) 7.21967e8 0.0542299
\(782\) 0 0
\(783\) 1.49050e10i 1.10960i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 8.71352e9i 0.637209i 0.947888 + 0.318604i \(0.103214\pi\)
−0.947888 + 0.318604i \(0.896786\pi\)
\(788\) 0 0
\(789\) 1.38481e9 0.100374
\(790\) 0 0
\(791\) 2.89259e10 2.07811
\(792\) 0 0
\(793\) 2.54067e9i 0.180922i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.78489e10i 1.24884i 0.781088 + 0.624421i \(0.214665\pi\)
−0.781088 + 0.624421i \(0.785335\pi\)
\(798\) 0 0
\(799\) 2.28129e10 1.58222
\(800\) 0 0
\(801\) −1.04707e10 −0.719885
\(802\) 0 0
\(803\) − 2.37946e9i − 0.162171i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 9.25795e9i − 0.620094i
\(808\) 0 0
\(809\) 2.08455e10 1.38418 0.692089 0.721812i \(-0.256690\pi\)
0.692089 + 0.721812i \(0.256690\pi\)
\(810\) 0 0
\(811\) −2.05986e10 −1.35602 −0.678009 0.735054i \(-0.737157\pi\)
−0.678009 + 0.735054i \(0.737157\pi\)
\(812\) 0 0
\(813\) − 1.48424e9i − 0.0968693i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.14912e7i 0.00202028i
\(818\) 0 0
\(819\) −2.56827e9 −0.163360
\(820\) 0 0
\(821\) 1.81452e10 1.14435 0.572177 0.820130i \(-0.306099\pi\)
0.572177 + 0.820130i \(0.306099\pi\)
\(822\) 0 0
\(823\) − 9.49973e9i − 0.594035i −0.954872 0.297017i \(-0.904008\pi\)
0.954872 0.297017i \(-0.0959919\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.21862e10i 1.36400i 0.731353 + 0.681999i \(0.238889\pi\)
−0.731353 + 0.681999i \(0.761111\pi\)
\(828\) 0 0
\(829\) 6.80171e9 0.414646 0.207323 0.978273i \(-0.433525\pi\)
0.207323 + 0.978273i \(0.433525\pi\)
\(830\) 0 0
\(831\) 7.54351e9 0.456005
\(832\) 0 0
\(833\) 7.68290e9i 0.460541i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.51342e10i − 0.892114i
\(838\) 0 0
\(839\) −1.73352e10 −1.01335 −0.506677 0.862136i \(-0.669126\pi\)
−0.506677 + 0.862136i \(0.669126\pi\)
\(840\) 0 0
\(841\) 1.31111e10 0.760068
\(842\) 0 0
\(843\) − 6.51242e9i − 0.374409i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.03414e10i − 1.15024i
\(848\) 0 0
\(849\) 4.60296e9 0.258143
\(850\) 0 0
\(851\) −2.87330e9 −0.159819
\(852\) 0 0
\(853\) 3.10458e10i 1.71270i 0.516398 + 0.856349i \(0.327273\pi\)
−0.516398 + 0.856349i \(0.672727\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 4.49340e9i − 0.243861i −0.992539 0.121931i \(-0.961091\pi\)
0.992539 0.121931i \(-0.0389085\pi\)
\(858\) 0 0
\(859\) −2.55028e10 −1.37281 −0.686407 0.727218i \(-0.740813\pi\)
−0.686407 + 0.727218i \(0.740813\pi\)
\(860\) 0 0
\(861\) −8.48212e8 −0.0452891
\(862\) 0 0
\(863\) − 2.40822e8i − 0.0127544i −0.999980 0.00637718i \(-0.997970\pi\)
0.999980 0.00637718i \(-0.00202993\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.79212e9i 0.197613i
\(868\) 0 0
\(869\) 4.75156e9 0.245622
\(870\) 0 0
\(871\) −1.75097e9 −0.0897872
\(872\) 0 0
\(873\) − 2.44049e10i − 1.24144i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.36881e10i 0.685244i 0.939473 + 0.342622i \(0.111315\pi\)
−0.939473 + 0.342622i \(0.888685\pi\)
\(878\) 0 0
\(879\) −4.91831e9 −0.244261
\(880\) 0 0
\(881\) −2.35657e10 −1.16109 −0.580543 0.814230i \(-0.697160\pi\)
−0.580543 + 0.814230i \(0.697160\pi\)
\(882\) 0 0
\(883\) − 1.48379e10i − 0.725287i −0.931928 0.362644i \(-0.881874\pi\)
0.931928 0.362644i \(-0.118126\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 3.42165e10i − 1.64628i −0.567840 0.823139i \(-0.692221\pi\)
0.567840 0.823139i \(-0.307779\pi\)
\(888\) 0 0
\(889\) −1.68792e10 −0.805744
\(890\) 0 0
\(891\) 1.23848e9 0.0586565
\(892\) 0 0
\(893\) − 6.42492e9i − 0.301917i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.27470e9i − 0.0589705i
\(898\) 0 0
\(899\) −3.08279e10 −1.41509
\(900\) 0 0
\(901\) 4.55515e9 0.207475
\(902\) 0 0
\(903\) − 1.08815e8i − 0.00491792i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 3.82264e10i − 1.70113i −0.525870 0.850565i \(-0.676260\pi\)
0.525870 0.850565i \(-0.323740\pi\)
\(908\) 0 0
\(909\) 3.18608e10 1.40696
\(910\) 0 0
\(911\) 1.33838e10 0.586496 0.293248 0.956036i \(-0.405264\pi\)
0.293248 + 0.956036i \(0.405264\pi\)
\(912\) 0 0
\(913\) 5.05961e9i 0.220024i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.89443e9i 0.252435i
\(918\) 0 0
\(919\) −4.40027e8 −0.0187014 −0.00935072 0.999956i \(-0.502976\pi\)
−0.00935072 + 0.999956i \(0.502976\pi\)
\(920\) 0 0
\(921\) −6.15353e9 −0.259547
\(922\) 0 0
\(923\) 1.51743e9i 0.0635187i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 2.15804e10i − 0.889774i
\(928\) 0 0
\(929\) 4.86235e9 0.198972 0.0994859 0.995039i \(-0.468280\pi\)
0.0994859 + 0.995039i \(0.468280\pi\)
\(930\) 0 0
\(931\) 2.16378e9 0.0878797
\(932\) 0 0
\(933\) − 7.70894e9i − 0.310748i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 6.59809e9i − 0.262017i −0.991381 0.131009i \(-0.958178\pi\)
0.991381 0.131009i \(-0.0418216\pi\)
\(938\) 0 0
\(939\) −1.83957e10 −0.725082
\(940\) 0 0
\(941\) −3.94166e10 −1.54211 −0.771055 0.636768i \(-0.780271\pi\)
−0.771055 + 0.636768i \(0.780271\pi\)
\(942\) 0 0
\(943\) 1.48361e9i 0.0576142i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.03861e10i 1.92790i 0.266076 + 0.963952i \(0.414273\pi\)
−0.266076 + 0.963952i \(0.585727\pi\)
\(948\) 0 0
\(949\) 5.00113e9 0.189949
\(950\) 0 0
\(951\) −4.59582e9 −0.173273
\(952\) 0 0
\(953\) 2.07642e10i 0.777123i 0.921423 + 0.388562i \(0.127028\pi\)
−0.921423 + 0.388562i \(0.872972\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.57163e9i 0.0948456i
\(958\) 0 0
\(959\) 2.72739e9 0.0998576
\(960\) 0 0
\(961\) 3.78932e9 0.137730
\(962\) 0 0
\(963\) 1.94511e10i 0.701864i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 3.90452e10i − 1.38859i −0.719689 0.694297i \(-0.755715\pi\)
0.719689 0.694297i \(-0.244285\pi\)
\(968\) 0 0
\(969\) 3.60890e9 0.127421
\(970\) 0 0
\(971\) −2.96609e10 −1.03972 −0.519860 0.854251i \(-0.674016\pi\)
−0.519860 + 0.854251i \(0.674016\pi\)
\(972\) 0 0
\(973\) 6.43298e10i 2.23881i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.54794e10i 1.21715i 0.793495 + 0.608577i \(0.208259\pi\)
−0.793495 + 0.608577i \(0.791741\pi\)
\(978\) 0 0
\(979\) −4.12577e9 −0.140529
\(980\) 0 0
\(981\) −3.93463e10 −1.33064
\(982\) 0 0
\(983\) 2.82265e10i 0.947807i 0.880577 + 0.473903i \(0.157155\pi\)
−0.880577 + 0.473903i \(0.842845\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.22007e10i 0.734949i
\(988\) 0 0
\(989\) −1.90329e8 −0.00625629
\(990\) 0 0
\(991\) −3.37277e10 −1.10085 −0.550426 0.834884i \(-0.685535\pi\)
−0.550426 + 0.834884i \(0.685535\pi\)
\(992\) 0 0
\(993\) 2.55778e10i 0.828974i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.90842e10i 0.609876i 0.952372 + 0.304938i \(0.0986358\pi\)
−0.952372 + 0.304938i \(0.901364\pi\)
\(998\) 0 0
\(999\) −5.98119e9 −0.189805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.u.49.2 6
4.3 odd 2 200.8.c.j.49.5 6
5.2 odd 4 400.8.a.bh.1.2 3
5.3 odd 4 400.8.a.bi.1.2 3
5.4 even 2 inner 400.8.c.u.49.5 6
20.3 even 4 200.8.a.o.1.2 3
20.7 even 4 200.8.a.p.1.2 yes 3
20.19 odd 2 200.8.c.j.49.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.8.a.o.1.2 3 20.3 even 4
200.8.a.p.1.2 yes 3 20.7 even 4
200.8.c.j.49.2 6 20.19 odd 2
200.8.c.j.49.5 6 4.3 odd 2
400.8.a.bh.1.2 3 5.2 odd 4
400.8.a.bi.1.2 3 5.3 odd 4
400.8.c.u.49.2 6 1.1 even 1 trivial
400.8.c.u.49.5 6 5.4 even 2 inner