Properties

Label 400.8.c.l.49.1
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,4302] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.l.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.00000i q^{3} +706.000i q^{7} +2151.00 q^{9} +3840.00 q^{11} +4054.00i q^{13} +858.000i q^{17} +21044.0 q^{19} +4236.00 q^{21} +85338.0i q^{23} -26028.0i q^{27} +83106.0 q^{29} +145564. q^{31} -23040.0i q^{33} -498886. i q^{37} +24324.0 q^{39} -689514. q^{41} +867890. i q^{43} -235638. i q^{47} +325107. q^{49} +5148.00 q^{51} -1.83544e6i q^{53} -126264. i q^{57} +629508. q^{59} -2.66796e6 q^{61} +1.51861e6i q^{63} +3.37331e6i q^{67} +512028. q^{69} +2.60005e6 q^{71} +1.62849e6i q^{73} +2.71104e6i q^{77} -4.24353e6 q^{79} +4.54807e6 q^{81} +1.25138e6i q^{83} -498636. i q^{87} -6.29947e6 q^{89} -2.86212e6 q^{91} -873384. i q^{93} +3.97651e6i q^{97} +8.25984e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4302 q^{9} + 7680 q^{11} + 42088 q^{19} + 8472 q^{21} + 166212 q^{29} + 291128 q^{31} + 48648 q^{39} - 1379028 q^{41} + 650214 q^{49} + 10296 q^{51} + 1259016 q^{59} - 5335916 q^{61} + 1024056 q^{69}+ \cdots + 16519680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 6.00000i − 0.128300i −0.997940 0.0641500i \(-0.979566\pi\)
0.997940 0.0641500i \(-0.0204336\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 706.000i 0.777968i 0.921245 + 0.388984i \(0.127174\pi\)
−0.921245 + 0.388984i \(0.872826\pi\)
\(8\) 0 0
\(9\) 2151.00 0.983539
\(10\) 0 0
\(11\) 3840.00 0.869875 0.434937 0.900461i \(-0.356770\pi\)
0.434937 + 0.900461i \(0.356770\pi\)
\(12\) 0 0
\(13\) 4054.00i 0.511778i 0.966706 + 0.255889i \(0.0823682\pi\)
−0.966706 + 0.255889i \(0.917632\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 858.000i 0.0423561i 0.999776 + 0.0211781i \(0.00674169\pi\)
−0.999776 + 0.0211781i \(0.993258\pi\)
\(18\) 0 0
\(19\) 21044.0 0.703867 0.351934 0.936025i \(-0.385524\pi\)
0.351934 + 0.936025i \(0.385524\pi\)
\(20\) 0 0
\(21\) 4236.00 0.0998133
\(22\) 0 0
\(23\) 85338.0i 1.46250i 0.682111 + 0.731249i \(0.261062\pi\)
−0.682111 + 0.731249i \(0.738938\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 26028.0i − 0.254488i
\(28\) 0 0
\(29\) 83106.0 0.632761 0.316380 0.948632i \(-0.397532\pi\)
0.316380 + 0.948632i \(0.397532\pi\)
\(30\) 0 0
\(31\) 145564. 0.877583 0.438791 0.898589i \(-0.355407\pi\)
0.438791 + 0.898589i \(0.355407\pi\)
\(32\) 0 0
\(33\) − 23040.0i − 0.111605i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 498886.i − 1.61918i −0.586995 0.809590i \(-0.699689\pi\)
0.586995 0.809590i \(-0.300311\pi\)
\(38\) 0 0
\(39\) 24324.0 0.0656612
\(40\) 0 0
\(41\) −689514. −1.56243 −0.781213 0.624264i \(-0.785399\pi\)
−0.781213 + 0.624264i \(0.785399\pi\)
\(42\) 0 0
\(43\) 867890.i 1.66466i 0.554282 + 0.832329i \(0.312993\pi\)
−0.554282 + 0.832329i \(0.687007\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 235638.i − 0.331057i −0.986205 0.165529i \(-0.947067\pi\)
0.986205 0.165529i \(-0.0529330\pi\)
\(48\) 0 0
\(49\) 325107. 0.394766
\(50\) 0 0
\(51\) 5148.00 0.00543429
\(52\) 0 0
\(53\) − 1.83544e6i − 1.69346i −0.532022 0.846730i \(-0.678568\pi\)
0.532022 0.846730i \(-0.321432\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 126264.i − 0.0903062i
\(58\) 0 0
\(59\) 629508. 0.399043 0.199521 0.979893i \(-0.436061\pi\)
0.199521 + 0.979893i \(0.436061\pi\)
\(60\) 0 0
\(61\) −2.66796e6 −1.50496 −0.752479 0.658616i \(-0.771142\pi\)
−0.752479 + 0.658616i \(0.771142\pi\)
\(62\) 0 0
\(63\) 1.51861e6i 0.765162i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.37331e6i 1.37023i 0.728434 + 0.685116i \(0.240248\pi\)
−0.728434 + 0.685116i \(0.759752\pi\)
\(68\) 0 0
\(69\) 512028. 0.187638
\(70\) 0 0
\(71\) 2.60005e6 0.862140 0.431070 0.902318i \(-0.358136\pi\)
0.431070 + 0.902318i \(0.358136\pi\)
\(72\) 0 0
\(73\) 1.62849e6i 0.489955i 0.969529 + 0.244977i \(0.0787806\pi\)
−0.969529 + 0.244977i \(0.921219\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.71104e6i 0.676735i
\(78\) 0 0
\(79\) −4.24353e6 −0.968350 −0.484175 0.874971i \(-0.660880\pi\)
−0.484175 + 0.874971i \(0.660880\pi\)
\(80\) 0 0
\(81\) 4.54807e6 0.950888
\(82\) 0 0
\(83\) 1.25138e6i 0.240223i 0.992760 + 0.120112i \(0.0383253\pi\)
−0.992760 + 0.120112i \(0.961675\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 498636.i − 0.0811832i
\(88\) 0 0
\(89\) −6.29947e6 −0.947194 −0.473597 0.880742i \(-0.657045\pi\)
−0.473597 + 0.880742i \(0.657045\pi\)
\(90\) 0 0
\(91\) −2.86212e6 −0.398147
\(92\) 0 0
\(93\) − 873384.i − 0.112594i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.97651e6i 0.442386i 0.975230 + 0.221193i \(0.0709951\pi\)
−0.975230 + 0.221193i \(0.929005\pi\)
\(98\) 0 0
\(99\) 8.25984e6 0.855556
\(100\) 0 0
\(101\) 1.25053e7 1.20773 0.603865 0.797086i \(-0.293626\pi\)
0.603865 + 0.797086i \(0.293626\pi\)
\(102\) 0 0
\(103\) − 2.17226e7i − 1.95876i −0.202015 0.979382i \(-0.564749\pi\)
0.202015 0.979382i \(-0.435251\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 3.04592e6i − 0.240367i −0.992752 0.120184i \(-0.961652\pi\)
0.992752 0.120184i \(-0.0383483\pi\)
\(108\) 0 0
\(109\) 1.37261e7 1.01521 0.507603 0.861591i \(-0.330532\pi\)
0.507603 + 0.861591i \(0.330532\pi\)
\(110\) 0 0
\(111\) −2.99332e6 −0.207741
\(112\) 0 0
\(113\) 2.03152e7i 1.32449i 0.749289 + 0.662243i \(0.230395\pi\)
−0.749289 + 0.662243i \(0.769605\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 8.72015e6i 0.503354i
\(118\) 0 0
\(119\) −605748. −0.0329517
\(120\) 0 0
\(121\) −4.74157e6 −0.243318
\(122\) 0 0
\(123\) 4.13708e6i 0.200459i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.44019e7i 0.623888i 0.950100 + 0.311944i \(0.100980\pi\)
−0.950100 + 0.311944i \(0.899020\pi\)
\(128\) 0 0
\(129\) 5.20734e6 0.213576
\(130\) 0 0
\(131\) −3.51283e7 −1.36524 −0.682618 0.730775i \(-0.739159\pi\)
−0.682618 + 0.730775i \(0.739159\pi\)
\(132\) 0 0
\(133\) 1.48571e7i 0.547586i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.66669e7i 0.886036i 0.896513 + 0.443018i \(0.146092\pi\)
−0.896513 + 0.443018i \(0.853908\pi\)
\(138\) 0 0
\(139\) 5.37105e7 1.69632 0.848159 0.529742i \(-0.177711\pi\)
0.848159 + 0.529742i \(0.177711\pi\)
\(140\) 0 0
\(141\) −1.41383e6 −0.0424746
\(142\) 0 0
\(143\) 1.55674e7i 0.445183i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.95064e6i − 0.0506485i
\(148\) 0 0
\(149\) 3.57914e7 0.886393 0.443197 0.896424i \(-0.353844\pi\)
0.443197 + 0.896424i \(0.353844\pi\)
\(150\) 0 0
\(151\) 8.13922e6 0.192382 0.0961908 0.995363i \(-0.469334\pi\)
0.0961908 + 0.995363i \(0.469334\pi\)
\(152\) 0 0
\(153\) 1.84556e6i 0.0416589i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.10735e6i 0.105329i 0.998612 + 0.0526643i \(0.0167713\pi\)
−0.998612 + 0.0526643i \(0.983229\pi\)
\(158\) 0 0
\(159\) −1.10127e7 −0.217271
\(160\) 0 0
\(161\) −6.02486e7 −1.13778
\(162\) 0 0
\(163\) 8.85622e7i 1.60174i 0.598839 + 0.800870i \(0.295629\pi\)
−0.598839 + 0.800870i \(0.704371\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.12170e8i 1.86367i 0.362885 + 0.931834i \(0.381792\pi\)
−0.362885 + 0.931834i \(0.618208\pi\)
\(168\) 0 0
\(169\) 4.63136e7 0.738083
\(170\) 0 0
\(171\) 4.52656e7 0.692281
\(172\) 0 0
\(173\) − 1.03754e7i − 0.152350i −0.997094 0.0761749i \(-0.975729\pi\)
0.997094 0.0761749i \(-0.0242707\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 3.77705e6i − 0.0511972i
\(178\) 0 0
\(179\) 1.91537e7 0.249613 0.124806 0.992181i \(-0.460169\pi\)
0.124806 + 0.992181i \(0.460169\pi\)
\(180\) 0 0
\(181\) −2.46040e7 −0.308411 −0.154206 0.988039i \(-0.549282\pi\)
−0.154206 + 0.988039i \(0.549282\pi\)
\(182\) 0 0
\(183\) 1.60077e7i 0.193086i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.29472e6i 0.0368445i
\(188\) 0 0
\(189\) 1.83758e7 0.197984
\(190\) 0 0
\(191\) 1.15013e8 1.19434 0.597171 0.802114i \(-0.296291\pi\)
0.597171 + 0.802114i \(0.296291\pi\)
\(192\) 0 0
\(193\) − 1.31761e8i − 1.31928i −0.751582 0.659640i \(-0.770709\pi\)
0.751582 0.659640i \(-0.229291\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.46842e8i 1.36841i 0.729288 + 0.684206i \(0.239851\pi\)
−0.729288 + 0.684206i \(0.760149\pi\)
\(198\) 0 0
\(199\) 1.27107e8 1.14336 0.571679 0.820477i \(-0.306292\pi\)
0.571679 + 0.820477i \(0.306292\pi\)
\(200\) 0 0
\(201\) 2.02398e7 0.175801
\(202\) 0 0
\(203\) 5.86728e7i 0.492267i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.83562e8i 1.43842i
\(208\) 0 0
\(209\) 8.08090e7 0.612276
\(210\) 0 0
\(211\) −8.90501e7 −0.652598 −0.326299 0.945267i \(-0.605802\pi\)
−0.326299 + 0.945267i \(0.605802\pi\)
\(212\) 0 0
\(213\) − 1.56003e7i − 0.110613i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.02768e8i 0.682731i
\(218\) 0 0
\(219\) 9.77096e6 0.0628612
\(220\) 0 0
\(221\) −3.47833e6 −0.0216769
\(222\) 0 0
\(223\) − 4.78436e7i − 0.288906i −0.989512 0.144453i \(-0.953858\pi\)
0.989512 0.144453i \(-0.0461423\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.51060e7i 0.426171i 0.977034 + 0.213086i \(0.0683513\pi\)
−0.977034 + 0.213086i \(0.931649\pi\)
\(228\) 0 0
\(229\) 5.53497e7 0.304573 0.152286 0.988336i \(-0.451336\pi\)
0.152286 + 0.988336i \(0.451336\pi\)
\(230\) 0 0
\(231\) 1.62662e7 0.0868251
\(232\) 0 0
\(233\) 2.88910e8i 1.49629i 0.663533 + 0.748147i \(0.269056\pi\)
−0.663533 + 0.748147i \(0.730944\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.54612e7i 0.124239i
\(238\) 0 0
\(239\) −9.79382e7 −0.464044 −0.232022 0.972710i \(-0.574534\pi\)
−0.232022 + 0.972710i \(0.574534\pi\)
\(240\) 0 0
\(241\) 8.64399e7 0.397790 0.198895 0.980021i \(-0.436265\pi\)
0.198895 + 0.980021i \(0.436265\pi\)
\(242\) 0 0
\(243\) − 8.42116e7i − 0.376487i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.53124e7i 0.360224i
\(248\) 0 0
\(249\) 7.50827e6 0.0308207
\(250\) 0 0
\(251\) −1.35898e8 −0.542443 −0.271221 0.962517i \(-0.587428\pi\)
−0.271221 + 0.962517i \(0.587428\pi\)
\(252\) 0 0
\(253\) 3.27698e8i 1.27219i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.52157e8i 1.66159i 0.556581 + 0.830793i \(0.312113\pi\)
−0.556581 + 0.830793i \(0.687887\pi\)
\(258\) 0 0
\(259\) 3.52214e8 1.25967
\(260\) 0 0
\(261\) 1.78761e8 0.622345
\(262\) 0 0
\(263\) − 6.05973e7i − 0.205404i −0.994712 0.102702i \(-0.967251\pi\)
0.994712 0.102702i \(-0.0327487\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.77968e7i 0.121525i
\(268\) 0 0
\(269\) 3.74181e7 0.117206 0.0586029 0.998281i \(-0.481335\pi\)
0.0586029 + 0.998281i \(0.481335\pi\)
\(270\) 0 0
\(271\) −5.16074e8 −1.57514 −0.787571 0.616224i \(-0.788661\pi\)
−0.787571 + 0.616224i \(0.788661\pi\)
\(272\) 0 0
\(273\) 1.71727e7i 0.0510823i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 7.86991e7i − 0.222480i −0.993794 0.111240i \(-0.964518\pi\)
0.993794 0.111240i \(-0.0354822\pi\)
\(278\) 0 0
\(279\) 3.13108e8 0.863137
\(280\) 0 0
\(281\) 5.36047e7 0.144122 0.0720611 0.997400i \(-0.477042\pi\)
0.0720611 + 0.997400i \(0.477042\pi\)
\(282\) 0 0
\(283\) 1.17665e8i 0.308599i 0.988024 + 0.154299i \(0.0493121\pi\)
−0.988024 + 0.154299i \(0.950688\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.86797e8i − 1.21552i
\(288\) 0 0
\(289\) 4.09603e8 0.998206
\(290\) 0 0
\(291\) 2.38591e7 0.0567582
\(292\) 0 0
\(293\) 2.79303e8i 0.648693i 0.945938 + 0.324347i \(0.105144\pi\)
−0.945938 + 0.324347i \(0.894856\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 9.99475e7i − 0.221373i
\(298\) 0 0
\(299\) −3.45960e8 −0.748475
\(300\) 0 0
\(301\) −6.12730e8 −1.29505
\(302\) 0 0
\(303\) − 7.50320e7i − 0.154952i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.72857e8i 1.32721i 0.748085 + 0.663603i \(0.230973\pi\)
−0.748085 + 0.663603i \(0.769027\pi\)
\(308\) 0 0
\(309\) −1.30336e8 −0.251310
\(310\) 0 0
\(311\) −3.93153e7 −0.0741139 −0.0370570 0.999313i \(-0.511798\pi\)
−0.0370570 + 0.999313i \(0.511798\pi\)
\(312\) 0 0
\(313\) 1.92264e8i 0.354399i 0.984175 + 0.177199i \(0.0567037\pi\)
−0.984175 + 0.177199i \(0.943296\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.31614e7i 0.128995i 0.997918 + 0.0644977i \(0.0205445\pi\)
−0.997918 + 0.0644977i \(0.979455\pi\)
\(318\) 0 0
\(319\) 3.19127e8 0.550423
\(320\) 0 0
\(321\) −1.82755e7 −0.0308391
\(322\) 0 0
\(323\) 1.80558e7i 0.0298131i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 8.23566e7i − 0.130251i
\(328\) 0 0
\(329\) 1.66360e8 0.257552
\(330\) 0 0
\(331\) 9.16104e8 1.38850 0.694252 0.719732i \(-0.255735\pi\)
0.694252 + 0.719732i \(0.255735\pi\)
\(332\) 0 0
\(333\) − 1.07310e9i − 1.59253i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 7.56503e8i − 1.07673i −0.842712 0.538364i \(-0.819042\pi\)
0.842712 0.538364i \(-0.180958\pi\)
\(338\) 0 0
\(339\) 1.21891e8 0.169932
\(340\) 0 0
\(341\) 5.58966e8 0.763387
\(342\) 0 0
\(343\) 8.10947e8i 1.08508i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 3.87175e8i − 0.497456i −0.968573 0.248728i \(-0.919988\pi\)
0.968573 0.248728i \(-0.0800125\pi\)
\(348\) 0 0
\(349\) 1.99761e7 0.0251548 0.0125774 0.999921i \(-0.495996\pi\)
0.0125774 + 0.999921i \(0.495996\pi\)
\(350\) 0 0
\(351\) 1.05518e8 0.130242
\(352\) 0 0
\(353\) − 1.36499e9i − 1.65165i −0.563923 0.825827i \(-0.690709\pi\)
0.563923 0.825827i \(-0.309291\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.63449e6i 0.00422770i
\(358\) 0 0
\(359\) −1.09937e9 −1.25404 −0.627022 0.779001i \(-0.715726\pi\)
−0.627022 + 0.779001i \(0.715726\pi\)
\(360\) 0 0
\(361\) −4.51022e8 −0.504571
\(362\) 0 0
\(363\) 2.84494e7i 0.0312177i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 3.64118e8i − 0.384513i −0.981345 0.192256i \(-0.938419\pi\)
0.981345 0.192256i \(-0.0615805\pi\)
\(368\) 0 0
\(369\) −1.48314e9 −1.53671
\(370\) 0 0
\(371\) 1.29582e9 1.31746
\(372\) 0 0
\(373\) − 9.57949e7i − 0.0955788i −0.998857 0.0477894i \(-0.984782\pi\)
0.998857 0.0477894i \(-0.0152176\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.36912e8i 0.323833i
\(378\) 0 0
\(379\) −6.84090e8 −0.645470 −0.322735 0.946489i \(-0.604602\pi\)
−0.322735 + 0.946489i \(0.604602\pi\)
\(380\) 0 0
\(381\) 8.64114e7 0.0800449
\(382\) 0 0
\(383\) − 8.50349e8i − 0.773395i −0.922207 0.386698i \(-0.873616\pi\)
0.922207 0.386698i \(-0.126384\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.86683e9i 1.63726i
\(388\) 0 0
\(389\) 1.28862e8 0.110994 0.0554972 0.998459i \(-0.482326\pi\)
0.0554972 + 0.998459i \(0.482326\pi\)
\(390\) 0 0
\(391\) −7.32200e7 −0.0619457
\(392\) 0 0
\(393\) 2.10770e8i 0.175160i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.47383e9i − 1.18217i −0.806610 0.591084i \(-0.798700\pi\)
0.806610 0.591084i \(-0.201300\pi\)
\(398\) 0 0
\(399\) 8.91424e7 0.0702553
\(400\) 0 0
\(401\) −1.00938e9 −0.781717 −0.390858 0.920451i \(-0.627822\pi\)
−0.390858 + 0.920451i \(0.627822\pi\)
\(402\) 0 0
\(403\) 5.90116e8i 0.449128i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.91572e9i − 1.40848i
\(408\) 0 0
\(409\) −8.79404e8 −0.635561 −0.317780 0.948164i \(-0.602937\pi\)
−0.317780 + 0.948164i \(0.602937\pi\)
\(410\) 0 0
\(411\) 1.60002e8 0.113678
\(412\) 0 0
\(413\) 4.44433e8i 0.310442i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 3.22263e8i − 0.217638i
\(418\) 0 0
\(419\) −2.38560e9 −1.58434 −0.792170 0.610300i \(-0.791049\pi\)
−0.792170 + 0.610300i \(0.791049\pi\)
\(420\) 0 0
\(421\) 1.41780e9 0.926034 0.463017 0.886349i \(-0.346767\pi\)
0.463017 + 0.886349i \(0.346767\pi\)
\(422\) 0 0
\(423\) − 5.06857e8i − 0.325608i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 1.88358e9i − 1.17081i
\(428\) 0 0
\(429\) 9.34042e7 0.0571170
\(430\) 0 0
\(431\) −2.47434e9 −1.48864 −0.744319 0.667825i \(-0.767226\pi\)
−0.744319 + 0.667825i \(0.767226\pi\)
\(432\) 0 0
\(433\) 1.42266e8i 0.0842160i 0.999113 + 0.0421080i \(0.0134074\pi\)
−0.999113 + 0.0421080i \(0.986593\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.79585e9i 1.02940i
\(438\) 0 0
\(439\) 2.80718e9 1.58359 0.791797 0.610785i \(-0.209146\pi\)
0.791797 + 0.610785i \(0.209146\pi\)
\(440\) 0 0
\(441\) 6.99305e8 0.388268
\(442\) 0 0
\(443\) − 2.29630e9i − 1.25492i −0.778649 0.627460i \(-0.784095\pi\)
0.778649 0.627460i \(-0.215905\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 2.14748e8i − 0.113724i
\(448\) 0 0
\(449\) −1.63361e8 −0.0851700 −0.0425850 0.999093i \(-0.513559\pi\)
−0.0425850 + 0.999093i \(0.513559\pi\)
\(450\) 0 0
\(451\) −2.64773e9 −1.35912
\(452\) 0 0
\(453\) − 4.88353e7i − 0.0246826i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 3.28894e9i − 1.61194i −0.591956 0.805970i \(-0.701644\pi\)
0.591956 0.805970i \(-0.298356\pi\)
\(458\) 0 0
\(459\) 2.23320e7 0.0107791
\(460\) 0 0
\(461\) −9.55698e8 −0.454326 −0.227163 0.973857i \(-0.572945\pi\)
−0.227163 + 0.973857i \(0.572945\pi\)
\(462\) 0 0
\(463\) − 1.26696e9i − 0.593237i −0.954996 0.296618i \(-0.904141\pi\)
0.954996 0.296618i \(-0.0958589\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.93953e9i − 1.78993i −0.446140 0.894963i \(-0.647202\pi\)
0.446140 0.894963i \(-0.352798\pi\)
\(468\) 0 0
\(469\) −2.38155e9 −1.06600
\(470\) 0 0
\(471\) 3.06441e7 0.0135137
\(472\) 0 0
\(473\) 3.33270e9i 1.44804i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 3.94804e9i − 1.66558i
\(478\) 0 0
\(479\) −3.23581e9 −1.34527 −0.672634 0.739975i \(-0.734837\pi\)
−0.672634 + 0.739975i \(0.734837\pi\)
\(480\) 0 0
\(481\) 2.02248e9 0.828662
\(482\) 0 0
\(483\) 3.61492e8i 0.145977i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 1.47239e9i − 0.577658i −0.957381 0.288829i \(-0.906734\pi\)
0.957381 0.288829i \(-0.0932659\pi\)
\(488\) 0 0
\(489\) 5.31373e8 0.205503
\(490\) 0 0
\(491\) 3.21107e9 1.22423 0.612116 0.790768i \(-0.290318\pi\)
0.612116 + 0.790768i \(0.290318\pi\)
\(492\) 0 0
\(493\) 7.13049e7i 0.0268013i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.83564e9i 0.670717i
\(498\) 0 0
\(499\) −4.19098e8 −0.150995 −0.0754976 0.997146i \(-0.524055\pi\)
−0.0754976 + 0.997146i \(0.524055\pi\)
\(500\) 0 0
\(501\) 6.73019e8 0.239109
\(502\) 0 0
\(503\) − 3.70706e9i − 1.29880i −0.760448 0.649399i \(-0.775021\pi\)
0.760448 0.649399i \(-0.224979\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.77882e8i − 0.0946961i
\(508\) 0 0
\(509\) 2.28893e9 0.769343 0.384672 0.923053i \(-0.374315\pi\)
0.384672 + 0.923053i \(0.374315\pi\)
\(510\) 0 0
\(511\) −1.14972e9 −0.381169
\(512\) 0 0
\(513\) − 5.47733e8i − 0.179126i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 9.04850e8i − 0.287978i
\(518\) 0 0
\(519\) −6.22522e7 −0.0195465
\(520\) 0 0
\(521\) 1.90038e9 0.588719 0.294359 0.955695i \(-0.404894\pi\)
0.294359 + 0.955695i \(0.404894\pi\)
\(522\) 0 0
\(523\) 6.07040e9i 1.85550i 0.373200 + 0.927751i \(0.378261\pi\)
−0.373200 + 0.927751i \(0.621739\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.24894e8i 0.0371710i
\(528\) 0 0
\(529\) −3.87775e9 −1.13890
\(530\) 0 0
\(531\) 1.35407e9 0.392474
\(532\) 0 0
\(533\) − 2.79529e9i − 0.799616i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 1.14922e8i − 0.0320253i
\(538\) 0 0
\(539\) 1.24841e9 0.343397
\(540\) 0 0
\(541\) −4.10261e9 −1.11396 −0.556981 0.830526i \(-0.688040\pi\)
−0.556981 + 0.830526i \(0.688040\pi\)
\(542\) 0 0
\(543\) 1.47624e8i 0.0395692i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.53877e9i 0.663234i 0.943414 + 0.331617i \(0.107594\pi\)
−0.943414 + 0.331617i \(0.892406\pi\)
\(548\) 0 0
\(549\) −5.73878e9 −1.48019
\(550\) 0 0
\(551\) 1.74888e9 0.445379
\(552\) 0 0
\(553\) − 2.99593e9i − 0.753345i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.19358e9i 0.783041i 0.920169 + 0.391520i \(0.128051\pi\)
−0.920169 + 0.391520i \(0.871949\pi\)
\(558\) 0 0
\(559\) −3.51843e9 −0.851936
\(560\) 0 0
\(561\) 1.97683e7 0.00472715
\(562\) 0 0
\(563\) 3.52214e9i 0.831815i 0.909407 + 0.415908i \(0.136536\pi\)
−0.909407 + 0.415908i \(0.863464\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.21094e9i 0.739760i
\(568\) 0 0
\(569\) 5.35081e9 1.21766 0.608831 0.793300i \(-0.291639\pi\)
0.608831 + 0.793300i \(0.291639\pi\)
\(570\) 0 0
\(571\) 2.59117e9 0.582464 0.291232 0.956652i \(-0.405935\pi\)
0.291232 + 0.956652i \(0.405935\pi\)
\(572\) 0 0
\(573\) − 6.90076e8i − 0.153234i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 3.50238e8i − 0.0759011i −0.999280 0.0379505i \(-0.987917\pi\)
0.999280 0.0379505i \(-0.0120829\pi\)
\(578\) 0 0
\(579\) −7.90567e8 −0.169264
\(580\) 0 0
\(581\) −8.83473e8 −0.186886
\(582\) 0 0
\(583\) − 7.04810e9i − 1.47310i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.42501e9i 0.494857i 0.968906 + 0.247429i \(0.0795856\pi\)
−0.968906 + 0.247429i \(0.920414\pi\)
\(588\) 0 0
\(589\) 3.06325e9 0.617702
\(590\) 0 0
\(591\) 8.81049e8 0.175567
\(592\) 0 0
\(593\) − 7.57894e9i − 1.49251i −0.665661 0.746254i \(-0.731850\pi\)
0.665661 0.746254i \(-0.268150\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 7.62639e8i − 0.146693i
\(598\) 0 0
\(599\) −3.06431e9 −0.582557 −0.291279 0.956638i \(-0.594081\pi\)
−0.291279 + 0.956638i \(0.594081\pi\)
\(600\) 0 0
\(601\) −8.51705e9 −1.60040 −0.800200 0.599733i \(-0.795273\pi\)
−0.800200 + 0.599733i \(0.795273\pi\)
\(602\) 0 0
\(603\) 7.25598e9i 1.34768i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.51105e9i 1.00017i 0.865976 + 0.500085i \(0.166698\pi\)
−0.865976 + 0.500085i \(0.833302\pi\)
\(608\) 0 0
\(609\) 3.52037e8 0.0631579
\(610\) 0 0
\(611\) 9.55276e8 0.169428
\(612\) 0 0
\(613\) − 1.31574e9i − 0.230706i −0.993325 0.115353i \(-0.963200\pi\)
0.993325 0.115353i \(-0.0368000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.70804e8i − 0.166392i −0.996533 0.0831962i \(-0.973487\pi\)
0.996533 0.0831962i \(-0.0265128\pi\)
\(618\) 0 0
\(619\) 6.96530e9 1.18038 0.590191 0.807264i \(-0.299052\pi\)
0.590191 + 0.807264i \(0.299052\pi\)
\(620\) 0 0
\(621\) 2.22118e9 0.372188
\(622\) 0 0
\(623\) − 4.44742e9i − 0.736886i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 4.84854e8i − 0.0785551i
\(628\) 0 0
\(629\) 4.28044e8 0.0685822
\(630\) 0 0
\(631\) −1.57127e9 −0.248971 −0.124485 0.992221i \(-0.539728\pi\)
−0.124485 + 0.992221i \(0.539728\pi\)
\(632\) 0 0
\(633\) 5.34300e8i 0.0837283i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.31798e9i 0.202033i
\(638\) 0 0
\(639\) 5.59271e9 0.847948
\(640\) 0 0
\(641\) 4.19744e9 0.629479 0.314740 0.949178i \(-0.398083\pi\)
0.314740 + 0.949178i \(0.398083\pi\)
\(642\) 0 0
\(643\) 5.02531e9i 0.745460i 0.927940 + 0.372730i \(0.121578\pi\)
−0.927940 + 0.372730i \(0.878422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 1.28047e10i − 1.85867i −0.369232 0.929337i \(-0.620379\pi\)
0.369232 0.929337i \(-0.379621\pi\)
\(648\) 0 0
\(649\) 2.41731e9 0.347117
\(650\) 0 0
\(651\) 6.16609e8 0.0875944
\(652\) 0 0
\(653\) 1.11817e10i 1.57148i 0.618554 + 0.785742i \(0.287719\pi\)
−0.618554 + 0.785742i \(0.712281\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.50289e9i 0.481890i
\(658\) 0 0
\(659\) 4.11341e9 0.559891 0.279945 0.960016i \(-0.409684\pi\)
0.279945 + 0.960016i \(0.409684\pi\)
\(660\) 0 0
\(661\) 4.55818e9 0.613884 0.306942 0.951728i \(-0.400694\pi\)
0.306942 + 0.951728i \(0.400694\pi\)
\(662\) 0 0
\(663\) 2.08700e7i 0.00278115i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.09210e9i 0.925410i
\(668\) 0 0
\(669\) −2.87062e8 −0.0370667
\(670\) 0 0
\(671\) −1.02450e10 −1.30913
\(672\) 0 0
\(673\) 7.02401e9i 0.888244i 0.895966 + 0.444122i \(0.146484\pi\)
−0.895966 + 0.444122i \(0.853516\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.27731e9i 0.777523i 0.921338 + 0.388762i \(0.127097\pi\)
−0.921338 + 0.388762i \(0.872903\pi\)
\(678\) 0 0
\(679\) −2.80742e9 −0.344162
\(680\) 0 0
\(681\) 4.50636e8 0.0546778
\(682\) 0 0
\(683\) 6.99148e9i 0.839647i 0.907606 + 0.419823i \(0.137908\pi\)
−0.907606 + 0.419823i \(0.862092\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 3.32098e8i − 0.0390767i
\(688\) 0 0
\(689\) 7.44088e9 0.866677
\(690\) 0 0
\(691\) 4.17342e9 0.481193 0.240596 0.970625i \(-0.422657\pi\)
0.240596 + 0.970625i \(0.422657\pi\)
\(692\) 0 0
\(693\) 5.83145e9i 0.665595i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 5.91603e8i − 0.0661783i
\(698\) 0 0
\(699\) 1.73346e9 0.191975
\(700\) 0 0
\(701\) −6.73860e9 −0.738851 −0.369425 0.929260i \(-0.620445\pi\)
−0.369425 + 0.929260i \(0.620445\pi\)
\(702\) 0 0
\(703\) − 1.04986e10i − 1.13969i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.82876e9i 0.939576i
\(708\) 0 0
\(709\) 7.10555e9 0.748749 0.374374 0.927278i \(-0.377858\pi\)
0.374374 + 0.927278i \(0.377858\pi\)
\(710\) 0 0
\(711\) −9.12783e9 −0.952410
\(712\) 0 0
\(713\) 1.24221e10i 1.28346i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.87629e8i 0.0595369i
\(718\) 0 0
\(719\) 1.77811e10 1.78405 0.892024 0.451988i \(-0.149285\pi\)
0.892024 + 0.451988i \(0.149285\pi\)
\(720\) 0 0
\(721\) 1.53362e10 1.52386
\(722\) 0 0
\(723\) − 5.18639e8i − 0.0510365i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.27207e9i 0.315829i 0.987453 + 0.157915i \(0.0504771\pi\)
−0.987453 + 0.157915i \(0.949523\pi\)
\(728\) 0 0
\(729\) 9.44136e9 0.902585
\(730\) 0 0
\(731\) −7.44650e8 −0.0705084
\(732\) 0 0
\(733\) 7.15509e9i 0.671044i 0.942032 + 0.335522i \(0.108913\pi\)
−0.942032 + 0.335522i \(0.891087\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.29535e10i 1.19193i
\(738\) 0 0
\(739\) 1.70559e9 0.155460 0.0777299 0.996974i \(-0.475233\pi\)
0.0777299 + 0.996974i \(0.475233\pi\)
\(740\) 0 0
\(741\) 5.11874e8 0.0462168
\(742\) 0 0
\(743\) − 9.59074e9i − 0.857810i −0.903350 0.428905i \(-0.858899\pi\)
0.903350 0.428905i \(-0.141101\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.69171e9i 0.236269i
\(748\) 0 0
\(749\) 2.15042e9 0.186998
\(750\) 0 0
\(751\) −6.33249e9 −0.545550 −0.272775 0.962078i \(-0.587941\pi\)
−0.272775 + 0.962078i \(0.587941\pi\)
\(752\) 0 0
\(753\) 8.15386e8i 0.0695954i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.95934e10i 1.64163i 0.571197 + 0.820813i \(0.306479\pi\)
−0.571197 + 0.820813i \(0.693521\pi\)
\(758\) 0 0
\(759\) 1.96619e9 0.163222
\(760\) 0 0
\(761\) −1.16891e10 −0.961471 −0.480736 0.876866i \(-0.659630\pi\)
−0.480736 + 0.876866i \(0.659630\pi\)
\(762\) 0 0
\(763\) 9.69063e9i 0.789798i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.55203e9i 0.204221i
\(768\) 0 0
\(769\) −2.10168e10 −1.66657 −0.833287 0.552841i \(-0.813544\pi\)
−0.833287 + 0.552841i \(0.813544\pi\)
\(770\) 0 0
\(771\) 2.71294e9 0.213182
\(772\) 0 0
\(773\) − 2.12393e10i − 1.65391i −0.562267 0.826956i \(-0.690071\pi\)
0.562267 0.826956i \(-0.309929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 2.11328e9i − 0.161616i
\(778\) 0 0
\(779\) −1.45101e10 −1.09974
\(780\) 0 0
\(781\) 9.98420e9 0.749954
\(782\) 0 0
\(783\) − 2.16308e9i − 0.161030i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 8.33601e9i 0.609602i 0.952416 + 0.304801i \(0.0985900\pi\)
−0.952416 + 0.304801i \(0.901410\pi\)
\(788\) 0 0
\(789\) −3.63584e8 −0.0263533
\(790\) 0 0
\(791\) −1.43426e10 −1.03041
\(792\) 0 0
\(793\) − 1.08159e10i − 0.770205i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.60775e10i − 1.12490i −0.826830 0.562451i \(-0.809858\pi\)
0.826830 0.562451i \(-0.190142\pi\)
\(798\) 0 0
\(799\) 2.02177e8 0.0140223
\(800\) 0 0
\(801\) −1.35502e10 −0.931602
\(802\) 0 0
\(803\) 6.25342e9i 0.426200i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.24509e8i − 0.0150375i
\(808\) 0 0
\(809\) 1.86150e9 0.123607 0.0618034 0.998088i \(-0.480315\pi\)
0.0618034 + 0.998088i \(0.480315\pi\)
\(810\) 0 0
\(811\) 2.58014e10 1.69852 0.849258 0.527979i \(-0.177050\pi\)
0.849258 + 0.527979i \(0.177050\pi\)
\(812\) 0 0
\(813\) 3.09644e9i 0.202091i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.82639e10i 1.17170i
\(818\) 0 0
\(819\) −6.15643e9 −0.391593
\(820\) 0 0
\(821\) −6.63649e9 −0.418540 −0.209270 0.977858i \(-0.567109\pi\)
−0.209270 + 0.977858i \(0.567109\pi\)
\(822\) 0 0
\(823\) − 1.48106e8i − 0.00926130i −0.999989 0.00463065i \(-0.998526\pi\)
0.999989 0.00463065i \(-0.00147399\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.01466e10i 1.23861i 0.785152 + 0.619303i \(0.212585\pi\)
−0.785152 + 0.619303i \(0.787415\pi\)
\(828\) 0 0
\(829\) 1.98564e10 1.21049 0.605243 0.796041i \(-0.293076\pi\)
0.605243 + 0.796041i \(0.293076\pi\)
\(830\) 0 0
\(831\) −4.72195e8 −0.0285442
\(832\) 0 0
\(833\) 2.78942e8i 0.0167208i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 3.78874e9i − 0.223334i
\(838\) 0 0
\(839\) 1.71078e10 1.00006 0.500031 0.866007i \(-0.333322\pi\)
0.500031 + 0.866007i \(0.333322\pi\)
\(840\) 0 0
\(841\) −1.03433e10 −0.599614
\(842\) 0 0
\(843\) − 3.21628e8i − 0.0184909i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 3.34755e9i − 0.189293i
\(848\) 0 0
\(849\) 7.05990e8 0.0395933
\(850\) 0 0
\(851\) 4.25739e10 2.36805
\(852\) 0 0
\(853\) − 2.00983e10i − 1.10876i −0.832264 0.554379i \(-0.812956\pi\)
0.832264 0.554379i \(-0.187044\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.23744e10i − 1.21428i −0.794595 0.607140i \(-0.792317\pi\)
0.794595 0.607140i \(-0.207683\pi\)
\(858\) 0 0
\(859\) −1.88899e10 −1.01684 −0.508421 0.861109i \(-0.669771\pi\)
−0.508421 + 0.861109i \(0.669771\pi\)
\(860\) 0 0
\(861\) −2.92078e9 −0.155951
\(862\) 0 0
\(863\) 1.66361e10i 0.881075i 0.897734 + 0.440538i \(0.145212\pi\)
−0.897734 + 0.440538i \(0.854788\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 2.45762e9i − 0.128070i
\(868\) 0 0
\(869\) −1.62951e10 −0.842343
\(870\) 0 0
\(871\) −1.36754e10 −0.701255
\(872\) 0 0
\(873\) 8.55348e9i 0.435104i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.42290e10i 0.712323i 0.934424 + 0.356161i \(0.115915\pi\)
−0.934424 + 0.356161i \(0.884085\pi\)
\(878\) 0 0
\(879\) 1.67582e9 0.0832274
\(880\) 0 0
\(881\) 2.41869e10 1.19169 0.595847 0.803098i \(-0.296816\pi\)
0.595847 + 0.803098i \(0.296816\pi\)
\(882\) 0 0
\(883\) 3.23241e10i 1.58003i 0.613090 + 0.790013i \(0.289926\pi\)
−0.613090 + 0.790013i \(0.710074\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.10944e9i 0.438287i 0.975693 + 0.219144i \(0.0703264\pi\)
−0.975693 + 0.219144i \(0.929674\pi\)
\(888\) 0 0
\(889\) −1.01677e10 −0.485365
\(890\) 0 0
\(891\) 1.74646e10 0.827154
\(892\) 0 0
\(893\) − 4.95877e9i − 0.233020i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.07576e9i 0.0960293i
\(898\) 0 0
\(899\) 1.20972e10 0.555300
\(900\) 0 0
\(901\) 1.57481e9 0.0717284
\(902\) 0 0
\(903\) 3.67638e9i 0.166155i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 6.03785e9i − 0.268693i −0.990934 0.134347i \(-0.957106\pi\)
0.990934 0.134347i \(-0.0428936\pi\)
\(908\) 0 0
\(909\) 2.68990e10 1.18785
\(910\) 0 0
\(911\) −3.61401e10 −1.58371 −0.791853 0.610711i \(-0.790884\pi\)
−0.791853 + 0.610711i \(0.790884\pi\)
\(912\) 0 0
\(913\) 4.80529e9i 0.208964i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2.48006e10i − 1.06211i
\(918\) 0 0
\(919\) 1.43783e10 0.611088 0.305544 0.952178i \(-0.401162\pi\)
0.305544 + 0.952178i \(0.401162\pi\)
\(920\) 0 0
\(921\) 4.03714e9 0.170281
\(922\) 0 0
\(923\) 1.05406e10i 0.441225i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 4.67254e10i − 1.92652i
\(928\) 0 0
\(929\) 9.95926e9 0.407542 0.203771 0.979019i \(-0.434680\pi\)
0.203771 + 0.979019i \(0.434680\pi\)
\(930\) 0 0
\(931\) 6.84155e9 0.277863
\(932\) 0 0
\(933\) 2.35892e8i 0.00950882i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 8.59930e9i − 0.341487i −0.985315 0.170744i \(-0.945383\pi\)
0.985315 0.170744i \(-0.0546170\pi\)
\(938\) 0 0
\(939\) 1.15358e9 0.0454694
\(940\) 0 0
\(941\) −3.62216e10 −1.41711 −0.708555 0.705656i \(-0.750653\pi\)
−0.708555 + 0.705656i \(0.750653\pi\)
\(942\) 0 0
\(943\) − 5.88417e10i − 2.28504i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.08322e9i 0.117972i 0.998259 + 0.0589861i \(0.0187868\pi\)
−0.998259 + 0.0589861i \(0.981213\pi\)
\(948\) 0 0
\(949\) −6.60191e9 −0.250748
\(950\) 0 0
\(951\) 4.38968e8 0.0165501
\(952\) 0 0
\(953\) − 5.78801e9i − 0.216623i −0.994117 0.108311i \(-0.965456\pi\)
0.994117 0.108311i \(-0.0345443\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 1.91476e9i − 0.0706192i
\(958\) 0 0
\(959\) −1.88269e10 −0.689307
\(960\) 0 0
\(961\) −6.32374e9 −0.229849
\(962\) 0 0
\(963\) − 6.55177e9i − 0.236410i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.82018e10i − 0.647323i −0.946173 0.323662i \(-0.895086\pi\)
0.946173 0.323662i \(-0.104914\pi\)
\(968\) 0 0
\(969\) 1.08335e8 0.00382502
\(970\) 0 0
\(971\) −4.86220e10 −1.70438 −0.852188 0.523235i \(-0.824725\pi\)
−0.852188 + 0.523235i \(0.824725\pi\)
\(972\) 0 0
\(973\) 3.79196e10i 1.31968i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 3.78750e10i − 1.29934i −0.760218 0.649668i \(-0.774908\pi\)
0.760218 0.649668i \(-0.225092\pi\)
\(978\) 0 0
\(979\) −2.41899e10 −0.823940
\(980\) 0 0
\(981\) 2.95248e10 0.998495
\(982\) 0 0
\(983\) − 4.92346e10i − 1.65323i −0.562769 0.826614i \(-0.690264\pi\)
0.562769 0.826614i \(-0.309736\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 9.98163e8i − 0.0330439i
\(988\) 0 0
\(989\) −7.40640e10 −2.43456
\(990\) 0 0
\(991\) 1.33475e10 0.435654 0.217827 0.975987i \(-0.430103\pi\)
0.217827 + 0.975987i \(0.430103\pi\)
\(992\) 0 0
\(993\) − 5.49663e9i − 0.178145i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.26641e10i − 0.404709i −0.979312 0.202354i \(-0.935141\pi\)
0.979312 0.202354i \(-0.0648593\pi\)
\(998\) 0 0
\(999\) −1.29850e10 −0.412062
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.l.49.1 2
4.3 odd 2 100.8.c.a.49.2 2
5.2 odd 4 400.8.a.j.1.1 1
5.3 odd 4 80.8.a.b.1.1 1
5.4 even 2 inner 400.8.c.l.49.2 2
20.3 even 4 20.8.a.a.1.1 1
20.7 even 4 100.8.a.a.1.1 1
20.19 odd 2 100.8.c.a.49.1 2
40.3 even 4 320.8.a.e.1.1 1
40.13 odd 4 320.8.a.d.1.1 1
60.23 odd 4 180.8.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.8.a.a.1.1 1 20.3 even 4
80.8.a.b.1.1 1 5.3 odd 4
100.8.a.a.1.1 1 20.7 even 4
100.8.c.a.49.1 2 20.19 odd 2
100.8.c.a.49.2 2 4.3 odd 2
180.8.a.c.1.1 1 60.23 odd 4
320.8.a.d.1.1 1 40.13 odd 4
320.8.a.e.1.1 1 40.3 even 4
400.8.a.j.1.1 1 5.2 odd 4
400.8.c.l.49.1 2 1.1 even 1 trivial
400.8.c.l.49.2 2 5.4 even 2 inner