Properties

Label 400.8.a.bg.1.2
Level $400$
Weight $8$
Character 400.1
Self dual yes
Analytic conductor $124.954$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(1,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,76,0,0,0,796] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{601}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 150 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-11.7577\) of defining polynomial
Character \(\chi\) \(=\) 400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+87.0306 q^{3} +741.214 q^{7} +5387.33 q^{9} +6065.61 q^{11} +4234.04 q^{13} -18488.3 q^{17} +28071.6 q^{19} +64508.3 q^{21} +104956. q^{23} +278526. q^{27} -204768. q^{29} -5109.59 q^{31} +527894. q^{33} -186181. q^{37} +368491. q^{39} -618450. q^{41} -329301. q^{43} +56218.8 q^{47} -274144. q^{49} -1.60905e6 q^{51} -143301. q^{53} +2.44309e6 q^{57} +3.09530e6 q^{59} -701736. q^{61} +3.99316e6 q^{63} -1.15239e6 q^{67} +9.13438e6 q^{69} -5.03809e6 q^{71} +4.64023e6 q^{73} +4.49592e6 q^{77} -2.67305e6 q^{79} +1.24582e7 q^{81} +2.64570e6 q^{83} -1.78211e7 q^{87} +3.11153e6 q^{89} +3.13833e6 q^{91} -444690. q^{93} +4.05990e6 q^{97} +3.26774e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 76 q^{3} + 796 q^{7} + 3322 q^{9} + 560 q^{11} - 4476 q^{13} - 29524 q^{17} - 19560 q^{19} + 63904 q^{21} + 129796 q^{23} + 325432 q^{27} - 211060 q^{29} - 165352 q^{31} + 588624 q^{33} + 292100 q^{37}+ \cdots + 44048304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 87.0306 1.86101 0.930503 0.366285i \(-0.119371\pi\)
0.930503 + 0.366285i \(0.119371\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 741.214 0.816772 0.408386 0.912809i \(-0.366092\pi\)
0.408386 + 0.912809i \(0.366092\pi\)
\(8\) 0 0
\(9\) 5387.33 2.46334
\(10\) 0 0
\(11\) 6065.61 1.37404 0.687021 0.726637i \(-0.258918\pi\)
0.687021 + 0.726637i \(0.258918\pi\)
\(12\) 0 0
\(13\) 4234.04 0.534507 0.267253 0.963626i \(-0.413884\pi\)
0.267253 + 0.963626i \(0.413884\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −18488.3 −0.912696 −0.456348 0.889801i \(-0.650843\pi\)
−0.456348 + 0.889801i \(0.650843\pi\)
\(18\) 0 0
\(19\) 28071.6 0.938923 0.469461 0.882953i \(-0.344448\pi\)
0.469461 + 0.882953i \(0.344448\pi\)
\(20\) 0 0
\(21\) 64508.3 1.52002
\(22\) 0 0
\(23\) 104956. 1.79870 0.899352 0.437225i \(-0.144039\pi\)
0.899352 + 0.437225i \(0.144039\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 278526. 2.72328
\(28\) 0 0
\(29\) −204768. −1.55908 −0.779541 0.626351i \(-0.784548\pi\)
−0.779541 + 0.626351i \(0.784548\pi\)
\(30\) 0 0
\(31\) −5109.59 −0.0308049 −0.0154025 0.999881i \(-0.504903\pi\)
−0.0154025 + 0.999881i \(0.504903\pi\)
\(32\) 0 0
\(33\) 527894. 2.55710
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −186181. −0.604269 −0.302134 0.953265i \(-0.597699\pi\)
−0.302134 + 0.953265i \(0.597699\pi\)
\(38\) 0 0
\(39\) 368491. 0.994720
\(40\) 0 0
\(41\) −618450. −1.40140 −0.700699 0.713457i \(-0.747128\pi\)
−0.700699 + 0.713457i \(0.747128\pi\)
\(42\) 0 0
\(43\) −329301. −0.631616 −0.315808 0.948823i \(-0.602276\pi\)
−0.315808 + 0.948823i \(0.602276\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 56218.8 0.0789839 0.0394920 0.999220i \(-0.487426\pi\)
0.0394920 + 0.999220i \(0.487426\pi\)
\(48\) 0 0
\(49\) −274144. −0.332884
\(50\) 0 0
\(51\) −1.60905e6 −1.69853
\(52\) 0 0
\(53\) −143301. −0.132216 −0.0661079 0.997812i \(-0.521058\pi\)
−0.0661079 + 0.997812i \(0.521058\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.44309e6 1.74734
\(58\) 0 0
\(59\) 3.09530e6 1.96210 0.981049 0.193759i \(-0.0620681\pi\)
0.981049 + 0.193759i \(0.0620681\pi\)
\(60\) 0 0
\(61\) −701736. −0.395840 −0.197920 0.980218i \(-0.563419\pi\)
−0.197920 + 0.980218i \(0.563419\pi\)
\(62\) 0 0
\(63\) 3.99316e6 2.01199
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.15239e6 −0.468101 −0.234050 0.972224i \(-0.575198\pi\)
−0.234050 + 0.972224i \(0.575198\pi\)
\(68\) 0 0
\(69\) 9.13438e6 3.34740
\(70\) 0 0
\(71\) −5.03809e6 −1.67056 −0.835279 0.549827i \(-0.814694\pi\)
−0.835279 + 0.549827i \(0.814694\pi\)
\(72\) 0 0
\(73\) 4.64023e6 1.39608 0.698039 0.716060i \(-0.254056\pi\)
0.698039 + 0.716060i \(0.254056\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.49592e6 1.12228
\(78\) 0 0
\(79\) −2.67305e6 −0.609975 −0.304988 0.952356i \(-0.598652\pi\)
−0.304988 + 0.952356i \(0.598652\pi\)
\(80\) 0 0
\(81\) 1.24582e7 2.60471
\(82\) 0 0
\(83\) 2.64570e6 0.507887 0.253944 0.967219i \(-0.418272\pi\)
0.253944 + 0.967219i \(0.418272\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.78211e7 −2.90146
\(88\) 0 0
\(89\) 3.11153e6 0.467852 0.233926 0.972254i \(-0.424843\pi\)
0.233926 + 0.972254i \(0.424843\pi\)
\(90\) 0 0
\(91\) 3.13833e6 0.436570
\(92\) 0 0
\(93\) −444690. −0.0573281
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.05990e6 0.451662 0.225831 0.974166i \(-0.427490\pi\)
0.225831 + 0.974166i \(0.427490\pi\)
\(98\) 0 0
\(99\) 3.26774e7 3.38473
\(100\) 0 0
\(101\) −550732. −0.0531883 −0.0265941 0.999646i \(-0.508466\pi\)
−0.0265941 + 0.999646i \(0.508466\pi\)
\(102\) 0 0
\(103\) −4.05931e6 −0.366034 −0.183017 0.983110i \(-0.558586\pi\)
−0.183017 + 0.983110i \(0.558586\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.79134e7 1.41363 0.706814 0.707399i \(-0.250132\pi\)
0.706814 + 0.707399i \(0.250132\pi\)
\(108\) 0 0
\(109\) −1.85504e7 −1.37202 −0.686011 0.727592i \(-0.740640\pi\)
−0.686011 + 0.727592i \(0.740640\pi\)
\(110\) 0 0
\(111\) −1.62035e7 −1.12455
\(112\) 0 0
\(113\) −1.19073e7 −0.776314 −0.388157 0.921593i \(-0.626888\pi\)
−0.388157 + 0.921593i \(0.626888\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.28102e7 1.31667
\(118\) 0 0
\(119\) −1.37038e7 −0.745464
\(120\) 0 0
\(121\) 1.73045e7 0.887993
\(122\) 0 0
\(123\) −5.38241e7 −2.60801
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.43595e7 1.48845 0.744223 0.667931i \(-0.232820\pi\)
0.744223 + 0.667931i \(0.232820\pi\)
\(128\) 0 0
\(129\) −2.86592e7 −1.17544
\(130\) 0 0
\(131\) −2.21781e7 −0.861936 −0.430968 0.902367i \(-0.641828\pi\)
−0.430968 + 0.902367i \(0.641828\pi\)
\(132\) 0 0
\(133\) 2.08071e7 0.766886
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.16559e7 0.387279 0.193639 0.981073i \(-0.437971\pi\)
0.193639 + 0.981073i \(0.437971\pi\)
\(138\) 0 0
\(139\) −5.62296e6 −0.177588 −0.0887939 0.996050i \(-0.528301\pi\)
−0.0887939 + 0.996050i \(0.528301\pi\)
\(140\) 0 0
\(141\) 4.89275e6 0.146989
\(142\) 0 0
\(143\) 2.56820e7 0.734435
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.38590e7 −0.619499
\(148\) 0 0
\(149\) 2.74946e7 0.680918 0.340459 0.940259i \(-0.389418\pi\)
0.340459 + 0.940259i \(0.389418\pi\)
\(150\) 0 0
\(151\) −1.37682e7 −0.325430 −0.162715 0.986673i \(-0.552025\pi\)
−0.162715 + 0.986673i \(0.552025\pi\)
\(152\) 0 0
\(153\) −9.96026e7 −2.24828
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.97641e7 −0.613825 −0.306912 0.951738i \(-0.599296\pi\)
−0.306912 + 0.951738i \(0.599296\pi\)
\(158\) 0 0
\(159\) −1.24716e7 −0.246054
\(160\) 0 0
\(161\) 7.77949e7 1.46913
\(162\) 0 0
\(163\) 1.91229e7 0.345858 0.172929 0.984934i \(-0.444677\pi\)
0.172929 + 0.984934i \(0.444677\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.55629e7 0.258574 0.129287 0.991607i \(-0.458731\pi\)
0.129287 + 0.991607i \(0.458731\pi\)
\(168\) 0 0
\(169\) −4.48214e7 −0.714303
\(170\) 0 0
\(171\) 1.51231e8 2.31289
\(172\) 0 0
\(173\) 7.98560e6 0.117259 0.0586295 0.998280i \(-0.481327\pi\)
0.0586295 + 0.998280i \(0.481327\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.69386e8 3.65147
\(178\) 0 0
\(179\) −9.75110e7 −1.27077 −0.635386 0.772194i \(-0.719159\pi\)
−0.635386 + 0.772194i \(0.719159\pi\)
\(180\) 0 0
\(181\) −9.94948e7 −1.24717 −0.623585 0.781756i \(-0.714324\pi\)
−0.623585 + 0.781756i \(0.714324\pi\)
\(182\) 0 0
\(183\) −6.10725e7 −0.736660
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.12143e8 −1.25408
\(188\) 0 0
\(189\) 2.06448e8 2.22430
\(190\) 0 0
\(191\) −6.12311e7 −0.635851 −0.317925 0.948116i \(-0.602986\pi\)
−0.317925 + 0.948116i \(0.602986\pi\)
\(192\) 0 0
\(193\) 8.89562e7 0.890688 0.445344 0.895360i \(-0.353081\pi\)
0.445344 + 0.895360i \(0.353081\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.14248e8 −1.06467 −0.532335 0.846534i \(-0.678685\pi\)
−0.532335 + 0.846534i \(0.678685\pi\)
\(198\) 0 0
\(199\) 1.12801e8 1.01468 0.507338 0.861747i \(-0.330630\pi\)
0.507338 + 0.861747i \(0.330630\pi\)
\(200\) 0 0
\(201\) −1.00294e8 −0.871138
\(202\) 0 0
\(203\) −1.51777e8 −1.27341
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.65432e8 4.43082
\(208\) 0 0
\(209\) 1.70272e8 1.29012
\(210\) 0 0
\(211\) 4.35111e7 0.318868 0.159434 0.987209i \(-0.449033\pi\)
0.159434 + 0.987209i \(0.449033\pi\)
\(212\) 0 0
\(213\) −4.38468e8 −3.10892
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.78730e6 −0.0251606
\(218\) 0 0
\(219\) 4.03842e8 2.59811
\(220\) 0 0
\(221\) −7.82803e7 −0.487842
\(222\) 0 0
\(223\) −4.72521e7 −0.285334 −0.142667 0.989771i \(-0.545568\pi\)
−0.142667 + 0.989771i \(0.545568\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.84159e8 1.04497 0.522483 0.852650i \(-0.325006\pi\)
0.522483 + 0.852650i \(0.325006\pi\)
\(228\) 0 0
\(229\) 1.20722e8 0.664297 0.332149 0.943227i \(-0.392226\pi\)
0.332149 + 0.943227i \(0.392226\pi\)
\(230\) 0 0
\(231\) 3.91282e8 2.08857
\(232\) 0 0
\(233\) 1.99119e8 1.03126 0.515629 0.856812i \(-0.327558\pi\)
0.515629 + 0.856812i \(0.327558\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.32637e8 −1.13517
\(238\) 0 0
\(239\) 2.95160e8 1.39851 0.699255 0.714872i \(-0.253515\pi\)
0.699255 + 0.714872i \(0.253515\pi\)
\(240\) 0 0
\(241\) 3.22537e8 1.48429 0.742146 0.670238i \(-0.233808\pi\)
0.742146 + 0.670238i \(0.233808\pi\)
\(242\) 0 0
\(243\) 4.75110e8 2.12409
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.18856e8 0.501861
\(248\) 0 0
\(249\) 2.30257e8 0.945181
\(250\) 0 0
\(251\) −1.24978e8 −0.498856 −0.249428 0.968393i \(-0.580243\pi\)
−0.249428 + 0.968393i \(0.580243\pi\)
\(252\) 0 0
\(253\) 6.36622e8 2.47150
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.95980e8 −0.720188 −0.360094 0.932916i \(-0.617255\pi\)
−0.360094 + 0.932916i \(0.617255\pi\)
\(258\) 0 0
\(259\) −1.38000e8 −0.493550
\(260\) 0 0
\(261\) −1.10315e9 −3.84055
\(262\) 0 0
\(263\) 2.03297e8 0.689105 0.344552 0.938767i \(-0.388031\pi\)
0.344552 + 0.938767i \(0.388031\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.70798e8 0.870676
\(268\) 0 0
\(269\) 2.29992e8 0.720409 0.360205 0.932873i \(-0.382707\pi\)
0.360205 + 0.932873i \(0.382707\pi\)
\(270\) 0 0
\(271\) −2.98723e8 −0.911752 −0.455876 0.890043i \(-0.650674\pi\)
−0.455876 + 0.890043i \(0.650674\pi\)
\(272\) 0 0
\(273\) 2.73131e8 0.812459
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.55584e8 0.722528 0.361264 0.932464i \(-0.382345\pi\)
0.361264 + 0.932464i \(0.382345\pi\)
\(278\) 0 0
\(279\) −2.75270e7 −0.0758830
\(280\) 0 0
\(281\) 4.50862e8 1.21219 0.606096 0.795392i \(-0.292735\pi\)
0.606096 + 0.795392i \(0.292735\pi\)
\(282\) 0 0
\(283\) −3.23467e8 −0.848356 −0.424178 0.905579i \(-0.639437\pi\)
−0.424178 + 0.905579i \(0.639437\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.58404e8 −1.14462
\(288\) 0 0
\(289\) −6.85205e7 −0.166985
\(290\) 0 0
\(291\) 3.53335e8 0.840546
\(292\) 0 0
\(293\) −5.52109e8 −1.28230 −0.641148 0.767418i \(-0.721541\pi\)
−0.641148 + 0.767418i \(0.721541\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.68943e9 3.74191
\(298\) 0 0
\(299\) 4.44388e8 0.961420
\(300\) 0 0
\(301\) −2.44082e8 −0.515886
\(302\) 0 0
\(303\) −4.79306e7 −0.0989836
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.38962e8 1.06310 0.531550 0.847027i \(-0.321610\pi\)
0.531550 + 0.847027i \(0.321610\pi\)
\(308\) 0 0
\(309\) −3.53284e8 −0.681191
\(310\) 0 0
\(311\) −6.11434e8 −1.15263 −0.576313 0.817229i \(-0.695509\pi\)
−0.576313 + 0.817229i \(0.695509\pi\)
\(312\) 0 0
\(313\) −1.01255e9 −1.86642 −0.933211 0.359328i \(-0.883006\pi\)
−0.933211 + 0.359328i \(0.883006\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.22278e8 −0.744545 −0.372273 0.928123i \(-0.621421\pi\)
−0.372273 + 0.928123i \(0.621421\pi\)
\(318\) 0 0
\(319\) −1.24204e9 −2.14224
\(320\) 0 0
\(321\) 1.55902e9 2.63077
\(322\) 0 0
\(323\) −5.18997e8 −0.856952
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.61445e9 −2.55334
\(328\) 0 0
\(329\) 4.16701e7 0.0645118
\(330\) 0 0
\(331\) −6.58640e8 −0.998275 −0.499138 0.866523i \(-0.666350\pi\)
−0.499138 + 0.866523i \(0.666350\pi\)
\(332\) 0 0
\(333\) −1.00302e9 −1.48852
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.51883e8 0.643164 0.321582 0.946882i \(-0.395785\pi\)
0.321582 + 0.946882i \(0.395785\pi\)
\(338\) 0 0
\(339\) −1.03630e9 −1.44472
\(340\) 0 0
\(341\) −3.09928e7 −0.0423272
\(342\) 0 0
\(343\) −8.13622e8 −1.08866
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.77854e8 0.356996 0.178498 0.983940i \(-0.442876\pi\)
0.178498 + 0.983940i \(0.442876\pi\)
\(348\) 0 0
\(349\) 1.66487e8 0.209648 0.104824 0.994491i \(-0.466572\pi\)
0.104824 + 0.994491i \(0.466572\pi\)
\(350\) 0 0
\(351\) 1.17929e9 1.45561
\(352\) 0 0
\(353\) 1.40229e9 1.69678 0.848392 0.529369i \(-0.177571\pi\)
0.848392 + 0.529369i \(0.177571\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.19265e9 −1.38731
\(358\) 0 0
\(359\) 6.43009e8 0.733477 0.366739 0.930324i \(-0.380474\pi\)
0.366739 + 0.930324i \(0.380474\pi\)
\(360\) 0 0
\(361\) −1.05856e8 −0.118424
\(362\) 0 0
\(363\) 1.50602e9 1.65256
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −9.38196e7 −0.0990746 −0.0495373 0.998772i \(-0.515775\pi\)
−0.0495373 + 0.998772i \(0.515775\pi\)
\(368\) 0 0
\(369\) −3.33179e9 −3.45212
\(370\) 0 0
\(371\) −1.06217e8 −0.107990
\(372\) 0 0
\(373\) 1.01907e9 1.01677 0.508386 0.861129i \(-0.330242\pi\)
0.508386 + 0.861129i \(0.330242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.66996e8 −0.833340
\(378\) 0 0
\(379\) 6.10359e7 0.0575902 0.0287951 0.999585i \(-0.490833\pi\)
0.0287951 + 0.999585i \(0.490833\pi\)
\(380\) 0 0
\(381\) 2.99032e9 2.77001
\(382\) 0 0
\(383\) −1.85097e9 −1.68346 −0.841732 0.539895i \(-0.818464\pi\)
−0.841732 + 0.539895i \(0.818464\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.77405e9 −1.55589
\(388\) 0 0
\(389\) −6.80195e8 −0.585882 −0.292941 0.956131i \(-0.594634\pi\)
−0.292941 + 0.956131i \(0.594634\pi\)
\(390\) 0 0
\(391\) −1.94046e9 −1.64167
\(392\) 0 0
\(393\) −1.93017e9 −1.60407
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.86725e9 −1.49774 −0.748868 0.662720i \(-0.769402\pi\)
−0.748868 + 0.662720i \(0.769402\pi\)
\(398\) 0 0
\(399\) 1.81085e9 1.42718
\(400\) 0 0
\(401\) 7.41095e7 0.0573943 0.0286971 0.999588i \(-0.490864\pi\)
0.0286971 + 0.999588i \(0.490864\pi\)
\(402\) 0 0
\(403\) −2.16342e7 −0.0164654
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.12930e9 −0.830291
\(408\) 0 0
\(409\) −1.24701e9 −0.901237 −0.450618 0.892717i \(-0.648796\pi\)
−0.450618 + 0.892717i \(0.648796\pi\)
\(410\) 0 0
\(411\) 1.01442e9 0.720728
\(412\) 0 0
\(413\) 2.29428e9 1.60259
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.89370e8 −0.330492
\(418\) 0 0
\(419\) 5.87311e8 0.390049 0.195025 0.980798i \(-0.437521\pi\)
0.195025 + 0.980798i \(0.437521\pi\)
\(420\) 0 0
\(421\) −2.72214e9 −1.77796 −0.888982 0.457942i \(-0.848587\pi\)
−0.888982 + 0.457942i \(0.848587\pi\)
\(422\) 0 0
\(423\) 3.02869e8 0.194564
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.20137e8 −0.323311
\(428\) 0 0
\(429\) 2.23512e9 1.36679
\(430\) 0 0
\(431\) 1.33258e9 0.801721 0.400861 0.916139i \(-0.368711\pi\)
0.400861 + 0.916139i \(0.368711\pi\)
\(432\) 0 0
\(433\) 1.39398e9 0.825179 0.412590 0.910917i \(-0.364624\pi\)
0.412590 + 0.910917i \(0.364624\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.94629e9 1.68885
\(438\) 0 0
\(439\) −1.96180e9 −1.10670 −0.553348 0.832950i \(-0.686650\pi\)
−0.553348 + 0.832950i \(0.686650\pi\)
\(440\) 0 0
\(441\) −1.47691e9 −0.820007
\(442\) 0 0
\(443\) 1.36082e9 0.743684 0.371842 0.928296i \(-0.378726\pi\)
0.371842 + 0.928296i \(0.378726\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.39287e9 1.26719
\(448\) 0 0
\(449\) 2.43167e9 1.26778 0.633889 0.773424i \(-0.281458\pi\)
0.633889 + 0.773424i \(0.281458\pi\)
\(450\) 0 0
\(451\) −3.75128e9 −1.92558
\(452\) 0 0
\(453\) −1.19826e9 −0.605628
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.09420e8 0.151650 0.0758250 0.997121i \(-0.475841\pi\)
0.0758250 + 0.997121i \(0.475841\pi\)
\(458\) 0 0
\(459\) −5.14948e9 −2.48553
\(460\) 0 0
\(461\) −2.43256e9 −1.15640 −0.578202 0.815894i \(-0.696245\pi\)
−0.578202 + 0.815894i \(0.696245\pi\)
\(462\) 0 0
\(463\) 1.49638e9 0.700664 0.350332 0.936626i \(-0.386069\pi\)
0.350332 + 0.936626i \(0.386069\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.09165e9 −1.40469 −0.702346 0.711836i \(-0.747864\pi\)
−0.702346 + 0.711836i \(0.747864\pi\)
\(468\) 0 0
\(469\) −8.54171e8 −0.382332
\(470\) 0 0
\(471\) −2.59039e9 −1.14233
\(472\) 0 0
\(473\) −1.99741e9 −0.867867
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.72009e8 −0.325693
\(478\) 0 0
\(479\) −2.24028e8 −0.0931384 −0.0465692 0.998915i \(-0.514829\pi\)
−0.0465692 + 0.998915i \(0.514829\pi\)
\(480\) 0 0
\(481\) −7.88299e8 −0.322986
\(482\) 0 0
\(483\) 6.77054e9 2.73406
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.38421e9 0.935390 0.467695 0.883890i \(-0.345085\pi\)
0.467695 + 0.883890i \(0.345085\pi\)
\(488\) 0 0
\(489\) 1.66428e9 0.643644
\(490\) 0 0
\(491\) −1.28112e8 −0.0488432 −0.0244216 0.999702i \(-0.507774\pi\)
−0.0244216 + 0.999702i \(0.507774\pi\)
\(492\) 0 0
\(493\) 3.78582e9 1.42297
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.73430e9 −1.36446
\(498\) 0 0
\(499\) 2.42499e9 0.873690 0.436845 0.899537i \(-0.356096\pi\)
0.436845 + 0.899537i \(0.356096\pi\)
\(500\) 0 0
\(501\) 1.35445e9 0.481207
\(502\) 0 0
\(503\) 2.22661e9 0.780110 0.390055 0.920792i \(-0.372456\pi\)
0.390055 + 0.920792i \(0.372456\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3.90084e9 −1.32932
\(508\) 0 0
\(509\) −3.67616e9 −1.23561 −0.617807 0.786330i \(-0.711979\pi\)
−0.617807 + 0.786330i \(0.711979\pi\)
\(510\) 0 0
\(511\) 3.43941e9 1.14028
\(512\) 0 0
\(513\) 7.81869e9 2.55695
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.41001e8 0.108527
\(518\) 0 0
\(519\) 6.94992e8 0.218220
\(520\) 0 0
\(521\) 9.21625e8 0.285511 0.142755 0.989758i \(-0.454404\pi\)
0.142755 + 0.989758i \(0.454404\pi\)
\(522\) 0 0
\(523\) −1.57199e8 −0.0480502 −0.0240251 0.999711i \(-0.507648\pi\)
−0.0240251 + 0.999711i \(0.507648\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.44677e7 0.0281155
\(528\) 0 0
\(529\) 7.61094e9 2.23534
\(530\) 0 0
\(531\) 1.66754e10 4.83332
\(532\) 0 0
\(533\) −2.61854e9 −0.749056
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8.48644e9 −2.36491
\(538\) 0 0
\(539\) −1.66285e9 −0.457397
\(540\) 0 0
\(541\) −2.80816e8 −0.0762486 −0.0381243 0.999273i \(-0.512138\pi\)
−0.0381243 + 0.999273i \(0.512138\pi\)
\(542\) 0 0
\(543\) −8.65909e9 −2.32099
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.15456e9 0.301622 0.150811 0.988563i \(-0.451812\pi\)
0.150811 + 0.988563i \(0.451812\pi\)
\(548\) 0 0
\(549\) −3.78048e9 −0.975088
\(550\) 0 0
\(551\) −5.74817e9 −1.46386
\(552\) 0 0
\(553\) −1.98130e9 −0.498210
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.36841e9 −0.580715 −0.290357 0.956918i \(-0.593774\pi\)
−0.290357 + 0.956918i \(0.593774\pi\)
\(558\) 0 0
\(559\) −1.39427e9 −0.337603
\(560\) 0 0
\(561\) −9.75987e9 −2.33386
\(562\) 0 0
\(563\) −2.50492e9 −0.591580 −0.295790 0.955253i \(-0.595583\pi\)
−0.295790 + 0.955253i \(0.595583\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.23422e9 2.12745
\(568\) 0 0
\(569\) −4.42619e9 −1.00725 −0.503625 0.863922i \(-0.668001\pi\)
−0.503625 + 0.863922i \(0.668001\pi\)
\(570\) 0 0
\(571\) 1.32550e9 0.297956 0.148978 0.988841i \(-0.452402\pi\)
0.148978 + 0.988841i \(0.452402\pi\)
\(572\) 0 0
\(573\) −5.32898e9 −1.18332
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.76604e9 −0.599436 −0.299718 0.954028i \(-0.596893\pi\)
−0.299718 + 0.954028i \(0.596893\pi\)
\(578\) 0 0
\(579\) 7.74191e9 1.65757
\(580\) 0 0
\(581\) 1.96103e9 0.414828
\(582\) 0 0
\(583\) −8.69208e8 −0.181670
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.15575e9 0.439912 0.219956 0.975510i \(-0.429409\pi\)
0.219956 + 0.975510i \(0.429409\pi\)
\(588\) 0 0
\(589\) −1.43434e8 −0.0289234
\(590\) 0 0
\(591\) −9.94303e9 −1.98136
\(592\) 0 0
\(593\) −9.50086e9 −1.87099 −0.935495 0.353341i \(-0.885046\pi\)
−0.935495 + 0.353341i \(0.885046\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9.81715e9 1.88832
\(598\) 0 0
\(599\) 9.55306e8 0.181614 0.0908068 0.995869i \(-0.471055\pi\)
0.0908068 + 0.995869i \(0.471055\pi\)
\(600\) 0 0
\(601\) −8.41945e9 −1.58206 −0.791030 0.611777i \(-0.790455\pi\)
−0.791030 + 0.611777i \(0.790455\pi\)
\(602\) 0 0
\(603\) −6.20833e9 −1.15309
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9.80243e9 −1.77899 −0.889495 0.456945i \(-0.848944\pi\)
−0.889495 + 0.456945i \(0.848944\pi\)
\(608\) 0 0
\(609\) −1.32092e10 −2.36983
\(610\) 0 0
\(611\) 2.38032e8 0.0422174
\(612\) 0 0
\(613\) 1.33970e9 0.234907 0.117454 0.993078i \(-0.462527\pi\)
0.117454 + 0.993078i \(0.462527\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.03037e10 −1.76602 −0.883012 0.469351i \(-0.844488\pi\)
−0.883012 + 0.469351i \(0.844488\pi\)
\(618\) 0 0
\(619\) −2.87364e9 −0.486984 −0.243492 0.969903i \(-0.578293\pi\)
−0.243492 + 0.969903i \(0.578293\pi\)
\(620\) 0 0
\(621\) 2.92330e10 4.89838
\(622\) 0 0
\(623\) 2.30631e9 0.382128
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.48188e10 2.40092
\(628\) 0 0
\(629\) 3.44218e9 0.551514
\(630\) 0 0
\(631\) 6.17623e9 0.978635 0.489317 0.872106i \(-0.337246\pi\)
0.489317 + 0.872106i \(0.337246\pi\)
\(632\) 0 0
\(633\) 3.78680e9 0.593416
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.16074e9 −0.177929
\(638\) 0 0
\(639\) −2.71418e10 −4.11515
\(640\) 0 0
\(641\) −9.14422e9 −1.37134 −0.685668 0.727915i \(-0.740490\pi\)
−0.685668 + 0.727915i \(0.740490\pi\)
\(642\) 0 0
\(643\) −7.48915e8 −0.111095 −0.0555475 0.998456i \(-0.517690\pi\)
−0.0555475 + 0.998456i \(0.517690\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.13359e9 −0.890327 −0.445163 0.895449i \(-0.646854\pi\)
−0.445163 + 0.895449i \(0.646854\pi\)
\(648\) 0 0
\(649\) 1.87749e10 2.69601
\(650\) 0 0
\(651\) −3.29611e8 −0.0468239
\(652\) 0 0
\(653\) −1.37749e10 −1.93594 −0.967972 0.251059i \(-0.919221\pi\)
−0.967972 + 0.251059i \(0.919221\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.49984e10 3.43901
\(658\) 0 0
\(659\) 8.08420e9 1.10037 0.550184 0.835044i \(-0.314558\pi\)
0.550184 + 0.835044i \(0.314558\pi\)
\(660\) 0 0
\(661\) −2.44260e9 −0.328964 −0.164482 0.986380i \(-0.552595\pi\)
−0.164482 + 0.986380i \(0.552595\pi\)
\(662\) 0 0
\(663\) −6.81278e9 −0.907877
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.14916e10 −2.80433
\(668\) 0 0
\(669\) −4.11238e9 −0.531009
\(670\) 0 0
\(671\) −4.25646e9 −0.543900
\(672\) 0 0
\(673\) 1.23905e8 0.0156689 0.00783443 0.999969i \(-0.497506\pi\)
0.00783443 + 0.999969i \(0.497506\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.14942e10 1.42369 0.711847 0.702335i \(-0.247859\pi\)
0.711847 + 0.702335i \(0.247859\pi\)
\(678\) 0 0
\(679\) 3.00925e9 0.368905
\(680\) 0 0
\(681\) 1.60275e10 1.94469
\(682\) 0 0
\(683\) 8.92504e9 1.07186 0.535929 0.844263i \(-0.319961\pi\)
0.535929 + 0.844263i \(0.319961\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.05065e10 1.23626
\(688\) 0 0
\(689\) −6.06742e8 −0.0706703
\(690\) 0 0
\(691\) 2.95336e9 0.340521 0.170260 0.985399i \(-0.445539\pi\)
0.170260 + 0.985399i \(0.445539\pi\)
\(692\) 0 0
\(693\) 2.42210e10 2.76455
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.14341e10 1.27905
\(698\) 0 0
\(699\) 1.73295e10 1.91918
\(700\) 0 0
\(701\) −1.43095e9 −0.156896 −0.0784479 0.996918i \(-0.524996\pi\)
−0.0784479 + 0.996918i \(0.524996\pi\)
\(702\) 0 0
\(703\) −5.22641e9 −0.567362
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.08211e8 −0.0434427
\(708\) 0 0
\(709\) −1.25151e10 −1.31878 −0.659392 0.751799i \(-0.729186\pi\)
−0.659392 + 0.751799i \(0.729186\pi\)
\(710\) 0 0
\(711\) −1.44006e10 −1.50258
\(712\) 0 0
\(713\) −5.36282e8 −0.0554089
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.56880e10 2.60263
\(718\) 0 0
\(719\) 8.89943e9 0.892917 0.446459 0.894804i \(-0.352685\pi\)
0.446459 + 0.894804i \(0.352685\pi\)
\(720\) 0 0
\(721\) −3.00881e9 −0.298966
\(722\) 0 0
\(723\) 2.80705e10 2.76227
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.56000e9 0.343621 0.171810 0.985130i \(-0.445038\pi\)
0.171810 + 0.985130i \(0.445038\pi\)
\(728\) 0 0
\(729\) 1.41030e10 1.34823
\(730\) 0 0
\(731\) 6.08822e9 0.576474
\(732\) 0 0
\(733\) −5.05266e9 −0.473867 −0.236934 0.971526i \(-0.576142\pi\)
−0.236934 + 0.971526i \(0.576142\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.98998e9 −0.643191
\(738\) 0 0
\(739\) −3.15300e9 −0.287387 −0.143694 0.989622i \(-0.545898\pi\)
−0.143694 + 0.989622i \(0.545898\pi\)
\(740\) 0 0
\(741\) 1.03441e10 0.933965
\(742\) 0 0
\(743\) 1.93745e9 0.173288 0.0866442 0.996239i \(-0.472386\pi\)
0.0866442 + 0.996239i \(0.472386\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.42533e10 1.25110
\(748\) 0 0
\(749\) 1.32777e10 1.15461
\(750\) 0 0
\(751\) −1.58399e10 −1.36462 −0.682311 0.731062i \(-0.739025\pi\)
−0.682311 + 0.731062i \(0.739025\pi\)
\(752\) 0 0
\(753\) −1.08769e10 −0.928374
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.57162e10 −1.31678 −0.658389 0.752678i \(-0.728762\pi\)
−0.658389 + 0.752678i \(0.728762\pi\)
\(758\) 0 0
\(759\) 5.54056e10 4.59947
\(760\) 0 0
\(761\) −2.50123e9 −0.205735 −0.102867 0.994695i \(-0.532802\pi\)
−0.102867 + 0.994695i \(0.532802\pi\)
\(762\) 0 0
\(763\) −1.37498e10 −1.12063
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.31056e10 1.04875
\(768\) 0 0
\(769\) 8.48850e9 0.673114 0.336557 0.941663i \(-0.390737\pi\)
0.336557 + 0.941663i \(0.390737\pi\)
\(770\) 0 0
\(771\) −1.70563e10 −1.34027
\(772\) 0 0
\(773\) 2.42832e10 1.89094 0.945471 0.325707i \(-0.105602\pi\)
0.945471 + 0.325707i \(0.105602\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.20102e10 −0.918498
\(778\) 0 0
\(779\) −1.73609e10 −1.31580
\(780\) 0 0
\(781\) −3.05591e10 −2.29542
\(782\) 0 0
\(783\) −5.70333e10 −4.24582
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −6.20737e9 −0.453938 −0.226969 0.973902i \(-0.572882\pi\)
−0.226969 + 0.973902i \(0.572882\pi\)
\(788\) 0 0
\(789\) 1.76930e10 1.28243
\(790\) 0 0
\(791\) −8.82583e9 −0.634071
\(792\) 0 0
\(793\) −2.97118e9 −0.211579
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.88550e7 −0.00131924 −0.000659619 1.00000i \(-0.500210\pi\)
−0.000659619 1.00000i \(0.500210\pi\)
\(798\) 0 0
\(799\) −1.03939e9 −0.0720883
\(800\) 0 0
\(801\) 1.67628e10 1.15248
\(802\) 0 0
\(803\) 2.81458e10 1.91827
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.00163e10 1.34069
\(808\) 0 0
\(809\) −1.59140e10 −1.05672 −0.528360 0.849021i \(-0.677193\pi\)
−0.528360 + 0.849021i \(0.677193\pi\)
\(810\) 0 0
\(811\) 2.62774e10 1.72986 0.864928 0.501896i \(-0.167364\pi\)
0.864928 + 0.501896i \(0.167364\pi\)
\(812\) 0 0
\(813\) −2.59981e10 −1.69678
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −9.24401e9 −0.593039
\(818\) 0 0
\(819\) 1.69072e10 1.07542
\(820\) 0 0
\(821\) 9.37571e9 0.591293 0.295647 0.955297i \(-0.404465\pi\)
0.295647 + 0.955297i \(0.404465\pi\)
\(822\) 0 0
\(823\) −1.03455e10 −0.646920 −0.323460 0.946242i \(-0.604846\pi\)
−0.323460 + 0.946242i \(0.604846\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.19356e10 −1.34859 −0.674296 0.738461i \(-0.735553\pi\)
−0.674296 + 0.738461i \(0.735553\pi\)
\(828\) 0 0
\(829\) 3.05413e10 1.86186 0.930929 0.365199i \(-0.118999\pi\)
0.930929 + 0.365199i \(0.118999\pi\)
\(830\) 0 0
\(831\) 2.22436e10 1.34463
\(832\) 0 0
\(833\) 5.06847e9 0.303822
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.42315e9 −0.0838905
\(838\) 0 0
\(839\) 2.52012e10 1.47318 0.736588 0.676342i \(-0.236436\pi\)
0.736588 + 0.676342i \(0.236436\pi\)
\(840\) 0 0
\(841\) 2.46800e10 1.43074
\(842\) 0 0
\(843\) 3.92388e10 2.25589
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.28263e10 0.725287
\(848\) 0 0
\(849\) −2.81516e10 −1.57879
\(850\) 0 0
\(851\) −1.95409e10 −1.08690
\(852\) 0 0
\(853\) −3.04039e9 −0.167729 −0.0838644 0.996477i \(-0.526726\pi\)
−0.0838644 + 0.996477i \(0.526726\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.30094e9 0.396229 0.198114 0.980179i \(-0.436518\pi\)
0.198114 + 0.980179i \(0.436518\pi\)
\(858\) 0 0
\(859\) −2.16215e10 −1.16388 −0.581941 0.813231i \(-0.697707\pi\)
−0.581941 + 0.813231i \(0.697707\pi\)
\(860\) 0 0
\(861\) −3.98952e10 −2.13015
\(862\) 0 0
\(863\) 3.05503e10 1.61800 0.808999 0.587810i \(-0.200010\pi\)
0.808999 + 0.587810i \(0.200010\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5.96338e9 −0.310760
\(868\) 0 0
\(869\) −1.62137e10 −0.838132
\(870\) 0 0
\(871\) −4.87929e9 −0.250203
\(872\) 0 0
\(873\) 2.18720e10 1.11260
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.48353e8 −0.0124329 −0.00621644 0.999981i \(-0.501979\pi\)
−0.00621644 + 0.999981i \(0.501979\pi\)
\(878\) 0 0
\(879\) −4.80504e10 −2.38636
\(880\) 0 0
\(881\) −2.96667e10 −1.46169 −0.730843 0.682546i \(-0.760873\pi\)
−0.730843 + 0.682546i \(0.760873\pi\)
\(882\) 0 0
\(883\) −7.57977e9 −0.370505 −0.185252 0.982691i \(-0.559310\pi\)
−0.185252 + 0.982691i \(0.559310\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.01060e10 −0.486235 −0.243117 0.969997i \(-0.578170\pi\)
−0.243117 + 0.969997i \(0.578170\pi\)
\(888\) 0 0
\(889\) 2.54677e10 1.21572
\(890\) 0 0
\(891\) 7.55668e10 3.57898
\(892\) 0 0
\(893\) 1.57815e9 0.0741598
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.86753e10 1.78921
\(898\) 0 0
\(899\) 1.04628e9 0.0480274
\(900\) 0 0
\(901\) 2.64939e9 0.120673
\(902\) 0 0
\(903\) −2.12426e10 −0.960067
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.98649e10 0.884016 0.442008 0.897011i \(-0.354266\pi\)
0.442008 + 0.897011i \(0.354266\pi\)
\(908\) 0 0
\(909\) −2.96698e9 −0.131021
\(910\) 0 0
\(911\) 2.90396e10 1.27256 0.636278 0.771460i \(-0.280473\pi\)
0.636278 + 0.771460i \(0.280473\pi\)
\(912\) 0 0
\(913\) 1.60478e10 0.697859
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.64387e10 −0.704005
\(918\) 0 0
\(919\) −3.06973e10 −1.30465 −0.652327 0.757938i \(-0.726207\pi\)
−0.652327 + 0.757938i \(0.726207\pi\)
\(920\) 0 0
\(921\) 4.69062e10 1.97843
\(922\) 0 0
\(923\) −2.13315e10 −0.892924
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2.18688e10 −0.901666
\(928\) 0 0
\(929\) −1.29984e10 −0.531904 −0.265952 0.963986i \(-0.585686\pi\)
−0.265952 + 0.963986i \(0.585686\pi\)
\(930\) 0 0
\(931\) −7.69568e9 −0.312553
\(932\) 0 0
\(933\) −5.32135e10 −2.14504
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.51243e10 1.39482 0.697412 0.716670i \(-0.254335\pi\)
0.697412 + 0.716670i \(0.254335\pi\)
\(938\) 0 0
\(939\) −8.81226e10 −3.47342
\(940\) 0 0
\(941\) 4.51801e9 0.176760 0.0883800 0.996087i \(-0.471831\pi\)
0.0883800 + 0.996087i \(0.471831\pi\)
\(942\) 0 0
\(943\) −6.49101e10 −2.52070
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.07244e9 0.270610 0.135305 0.990804i \(-0.456799\pi\)
0.135305 + 0.990804i \(0.456799\pi\)
\(948\) 0 0
\(949\) 1.96469e10 0.746213
\(950\) 0 0
\(951\) −3.67511e10 −1.38560
\(952\) 0 0
\(953\) −7.75183e9 −0.290121 −0.145060 0.989423i \(-0.546338\pi\)
−0.145060 + 0.989423i \(0.546338\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.08096e11 −3.98673
\(958\) 0 0
\(959\) 8.63951e9 0.316318
\(960\) 0 0
\(961\) −2.74865e10 −0.999051
\(962\) 0 0
\(963\) 9.65054e10 3.48225
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −2.07254e9 −0.0737071 −0.0368536 0.999321i \(-0.511734\pi\)
−0.0368536 + 0.999321i \(0.511734\pi\)
\(968\) 0 0
\(969\) −4.51687e10 −1.59479
\(970\) 0 0
\(971\) −3.00236e10 −1.05244 −0.526218 0.850350i \(-0.676390\pi\)
−0.526218 + 0.850350i \(0.676390\pi\)
\(972\) 0 0
\(973\) −4.16782e9 −0.145049
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.62484e9 0.0900476 0.0450238 0.998986i \(-0.485664\pi\)
0.0450238 + 0.998986i \(0.485664\pi\)
\(978\) 0 0
\(979\) 1.88733e10 0.642849
\(980\) 0 0
\(981\) −9.99371e10 −3.37976
\(982\) 0 0
\(983\) 3.23601e9 0.108661 0.0543304 0.998523i \(-0.482698\pi\)
0.0543304 + 0.998523i \(0.482698\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.62658e9 0.120057
\(988\) 0 0
\(989\) −3.45621e10 −1.13609
\(990\) 0 0
\(991\) −3.91654e10 −1.27834 −0.639168 0.769067i \(-0.720721\pi\)
−0.639168 + 0.769067i \(0.720721\pi\)
\(992\) 0 0
\(993\) −5.73219e10 −1.85780
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −4.65367e10 −1.48718 −0.743588 0.668638i \(-0.766877\pi\)
−0.743588 + 0.668638i \(0.766877\pi\)
\(998\) 0 0
\(999\) −5.18564e10 −1.64560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.a.bg.1.2 2
4.3 odd 2 200.8.a.j.1.1 2
5.2 odd 4 400.8.c.p.49.1 4
5.3 odd 4 400.8.c.p.49.4 4
5.4 even 2 80.8.a.e.1.1 2
20.3 even 4 200.8.c.g.49.1 4
20.7 even 4 200.8.c.g.49.4 4
20.19 odd 2 40.8.a.d.1.2 2
40.19 odd 2 320.8.a.i.1.1 2
40.29 even 2 320.8.a.w.1.2 2
60.59 even 2 360.8.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.a.d.1.2 2 20.19 odd 2
80.8.a.e.1.1 2 5.4 even 2
200.8.a.j.1.1 2 4.3 odd 2
200.8.c.g.49.1 4 20.3 even 4
200.8.c.g.49.4 4 20.7 even 4
320.8.a.i.1.1 2 40.19 odd 2
320.8.a.w.1.2 2 40.29 even 2
360.8.a.f.1.2 2 60.59 even 2
400.8.a.bg.1.2 2 1.1 even 1 trivial
400.8.c.p.49.1 4 5.2 odd 4
400.8.c.p.49.4 4 5.3 odd 4