Properties

Label 200.8.c.g.49.1
Level $200$
Weight $8$
Character 200.49
Analytic conductor $62.477$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,8,Mod(49,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-6644] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.4770050968\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{601})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 301x^{2} + 22500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-12.7577i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.8.c.g.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-87.0306i q^{3} +741.214i q^{7} -5387.33 q^{9} -6065.61 q^{11} +4234.04i q^{13} +18488.3i q^{17} +28071.6 q^{19} +64508.3 q^{21} -104956. i q^{23} +278526. i q^{27} +204768. q^{29} +5109.59 q^{31} +527894. i q^{33} +186181. i q^{37} +368491. q^{39} -618450. q^{41} +329301. i q^{43} +56218.8i q^{47} +274144. q^{49} +1.60905e6 q^{51} -143301. i q^{53} -2.44309e6i q^{57} +3.09530e6 q^{59} -701736. q^{61} -3.99316e6i q^{63} -1.15239e6i q^{67} -9.13438e6 q^{69} +5.03809e6 q^{71} +4.64023e6i q^{73} -4.49592e6i q^{77} -2.67305e6 q^{79} +1.24582e7 q^{81} -2.64570e6i q^{83} -1.78211e7i q^{87} -3.11153e6 q^{89} -3.13833e6 q^{91} -444690. i q^{93} -4.05990e6i q^{97} +3.26774e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6644 q^{9} - 1120 q^{11} - 39120 q^{19} + 127808 q^{21} + 422120 q^{29} + 330704 q^{31} + 929136 q^{39} - 1702648 q^{41} + 2189372 q^{49} + 2974640 q^{51} + 4177008 q^{59} + 2819416 q^{61} - 17720768 q^{69}+ \cdots + 88096608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 87.0306i − 1.86101i −0.366285 0.930503i \(-0.619371\pi\)
0.366285 0.930503i \(-0.380629\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 741.214i 0.816772i 0.912809 + 0.408386i \(0.133908\pi\)
−0.912809 + 0.408386i \(0.866092\pi\)
\(8\) 0 0
\(9\) −5387.33 −2.46334
\(10\) 0 0
\(11\) −6065.61 −1.37404 −0.687021 0.726637i \(-0.741082\pi\)
−0.687021 + 0.726637i \(0.741082\pi\)
\(12\) 0 0
\(13\) 4234.04i 0.534507i 0.963626 + 0.267253i \(0.0861161\pi\)
−0.963626 + 0.267253i \(0.913884\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18488.3i 0.912696i 0.889801 + 0.456348i \(0.150843\pi\)
−0.889801 + 0.456348i \(0.849157\pi\)
\(18\) 0 0
\(19\) 28071.6 0.938923 0.469461 0.882953i \(-0.344448\pi\)
0.469461 + 0.882953i \(0.344448\pi\)
\(20\) 0 0
\(21\) 64508.3 1.52002
\(22\) 0 0
\(23\) − 104956.i − 1.79870i −0.437225 0.899352i \(-0.644039\pi\)
0.437225 0.899352i \(-0.355961\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 278526.i 2.72328i
\(28\) 0 0
\(29\) 204768. 1.55908 0.779541 0.626351i \(-0.215452\pi\)
0.779541 + 0.626351i \(0.215452\pi\)
\(30\) 0 0
\(31\) 5109.59 0.0308049 0.0154025 0.999881i \(-0.495097\pi\)
0.0154025 + 0.999881i \(0.495097\pi\)
\(32\) 0 0
\(33\) 527894.i 2.55710i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 186181.i 0.604269i 0.953265 + 0.302134i \(0.0976991\pi\)
−0.953265 + 0.302134i \(0.902301\pi\)
\(38\) 0 0
\(39\) 368491. 0.994720
\(40\) 0 0
\(41\) −618450. −1.40140 −0.700699 0.713457i \(-0.747128\pi\)
−0.700699 + 0.713457i \(0.747128\pi\)
\(42\) 0 0
\(43\) 329301.i 0.631616i 0.948823 + 0.315808i \(0.102276\pi\)
−0.948823 + 0.315808i \(0.897724\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 56218.8i 0.0789839i 0.999220 + 0.0394920i \(0.0125740\pi\)
−0.999220 + 0.0394920i \(0.987426\pi\)
\(48\) 0 0
\(49\) 274144. 0.332884
\(50\) 0 0
\(51\) 1.60905e6 1.69853
\(52\) 0 0
\(53\) − 143301.i − 0.132216i −0.997812 0.0661079i \(-0.978942\pi\)
0.997812 0.0661079i \(-0.0210582\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.44309e6i − 1.74734i
\(58\) 0 0
\(59\) 3.09530e6 1.96210 0.981049 0.193759i \(-0.0620681\pi\)
0.981049 + 0.193759i \(0.0620681\pi\)
\(60\) 0 0
\(61\) −701736. −0.395840 −0.197920 0.980218i \(-0.563419\pi\)
−0.197920 + 0.980218i \(0.563419\pi\)
\(62\) 0 0
\(63\) − 3.99316e6i − 2.01199i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.15239e6i − 0.468101i −0.972224 0.234050i \(-0.924802\pi\)
0.972224 0.234050i \(-0.0751981\pi\)
\(68\) 0 0
\(69\) −9.13438e6 −3.34740
\(70\) 0 0
\(71\) 5.03809e6 1.67056 0.835279 0.549827i \(-0.185306\pi\)
0.835279 + 0.549827i \(0.185306\pi\)
\(72\) 0 0
\(73\) 4.64023e6i 1.39608i 0.716060 + 0.698039i \(0.245944\pi\)
−0.716060 + 0.698039i \(0.754056\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.49592e6i − 1.12228i
\(78\) 0 0
\(79\) −2.67305e6 −0.609975 −0.304988 0.952356i \(-0.598652\pi\)
−0.304988 + 0.952356i \(0.598652\pi\)
\(80\) 0 0
\(81\) 1.24582e7 2.60471
\(82\) 0 0
\(83\) − 2.64570e6i − 0.507887i −0.967219 0.253944i \(-0.918272\pi\)
0.967219 0.253944i \(-0.0817278\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1.78211e7i − 2.90146i
\(88\) 0 0
\(89\) −3.11153e6 −0.467852 −0.233926 0.972254i \(-0.575157\pi\)
−0.233926 + 0.972254i \(0.575157\pi\)
\(90\) 0 0
\(91\) −3.13833e6 −0.436570
\(92\) 0 0
\(93\) − 444690.i − 0.0573281i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 4.05990e6i − 0.451662i −0.974166 0.225831i \(-0.927490\pi\)
0.974166 0.225831i \(-0.0725098\pi\)
\(98\) 0 0
\(99\) 3.26774e7 3.38473
\(100\) 0 0
\(101\) −550732. −0.0531883 −0.0265941 0.999646i \(-0.508466\pi\)
−0.0265941 + 0.999646i \(0.508466\pi\)
\(102\) 0 0
\(103\) 4.05931e6i 0.366034i 0.983110 + 0.183017i \(0.0585863\pi\)
−0.983110 + 0.183017i \(0.941414\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.79134e7i 1.41363i 0.707399 + 0.706814i \(0.249868\pi\)
−0.707399 + 0.706814i \(0.750132\pi\)
\(108\) 0 0
\(109\) 1.85504e7 1.37202 0.686011 0.727592i \(-0.259360\pi\)
0.686011 + 0.727592i \(0.259360\pi\)
\(110\) 0 0
\(111\) 1.62035e7 1.12455
\(112\) 0 0
\(113\) − 1.19073e7i − 0.776314i −0.921593 0.388157i \(-0.873112\pi\)
0.921593 0.388157i \(-0.126888\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.28102e7i − 1.31667i
\(118\) 0 0
\(119\) −1.37038e7 −0.745464
\(120\) 0 0
\(121\) 1.73045e7 0.887993
\(122\) 0 0
\(123\) 5.38241e7i 2.60801i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.43595e7i 1.48845i 0.667931 + 0.744223i \(0.267180\pi\)
−0.667931 + 0.744223i \(0.732820\pi\)
\(128\) 0 0
\(129\) 2.86592e7 1.17544
\(130\) 0 0
\(131\) 2.21781e7 0.861936 0.430968 0.902367i \(-0.358172\pi\)
0.430968 + 0.902367i \(0.358172\pi\)
\(132\) 0 0
\(133\) 2.08071e7i 0.766886i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1.16559e7i − 0.387279i −0.981073 0.193639i \(-0.937971\pi\)
0.981073 0.193639i \(-0.0620292\pi\)
\(138\) 0 0
\(139\) −5.62296e6 −0.177588 −0.0887939 0.996050i \(-0.528301\pi\)
−0.0887939 + 0.996050i \(0.528301\pi\)
\(140\) 0 0
\(141\) 4.89275e6 0.146989
\(142\) 0 0
\(143\) − 2.56820e7i − 0.734435i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2.38590e7i − 0.619499i
\(148\) 0 0
\(149\) −2.74946e7 −0.680918 −0.340459 0.940259i \(-0.610582\pi\)
−0.340459 + 0.940259i \(0.610582\pi\)
\(150\) 0 0
\(151\) 1.37682e7 0.325430 0.162715 0.986673i \(-0.447975\pi\)
0.162715 + 0.986673i \(0.447975\pi\)
\(152\) 0 0
\(153\) − 9.96026e7i − 2.24828i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.97641e7i 0.613825i 0.951738 + 0.306912i \(0.0992959\pi\)
−0.951738 + 0.306912i \(0.900704\pi\)
\(158\) 0 0
\(159\) −1.24716e7 −0.246054
\(160\) 0 0
\(161\) 7.77949e7 1.46913
\(162\) 0 0
\(163\) − 1.91229e7i − 0.345858i −0.984934 0.172929i \(-0.944677\pi\)
0.984934 0.172929i \(-0.0553232\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.55629e7i 0.258574i 0.991607 + 0.129287i \(0.0412688\pi\)
−0.991607 + 0.129287i \(0.958731\pi\)
\(168\) 0 0
\(169\) 4.48214e7 0.714303
\(170\) 0 0
\(171\) −1.51231e8 −2.31289
\(172\) 0 0
\(173\) 7.98560e6i 0.117259i 0.998280 + 0.0586295i \(0.0186731\pi\)
−0.998280 + 0.0586295i \(0.981327\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2.69386e8i − 3.65147i
\(178\) 0 0
\(179\) −9.75110e7 −1.27077 −0.635386 0.772194i \(-0.719159\pi\)
−0.635386 + 0.772194i \(0.719159\pi\)
\(180\) 0 0
\(181\) −9.94948e7 −1.24717 −0.623585 0.781756i \(-0.714324\pi\)
−0.623585 + 0.781756i \(0.714324\pi\)
\(182\) 0 0
\(183\) 6.10725e7i 0.736660i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.12143e8i − 1.25408i
\(188\) 0 0
\(189\) −2.06448e8 −2.22430
\(190\) 0 0
\(191\) 6.12311e7 0.635851 0.317925 0.948116i \(-0.397014\pi\)
0.317925 + 0.948116i \(0.397014\pi\)
\(192\) 0 0
\(193\) 8.89562e7i 0.890688i 0.895360 + 0.445344i \(0.146919\pi\)
−0.895360 + 0.445344i \(0.853081\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.14248e8i 1.06467i 0.846534 + 0.532335i \(0.178685\pi\)
−0.846534 + 0.532335i \(0.821315\pi\)
\(198\) 0 0
\(199\) 1.12801e8 1.01468 0.507338 0.861747i \(-0.330630\pi\)
0.507338 + 0.861747i \(0.330630\pi\)
\(200\) 0 0
\(201\) −1.00294e8 −0.871138
\(202\) 0 0
\(203\) 1.51777e8i 1.27341i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.65432e8i 4.43082i
\(208\) 0 0
\(209\) −1.70272e8 −1.29012
\(210\) 0 0
\(211\) −4.35111e7 −0.318868 −0.159434 0.987209i \(-0.550967\pi\)
−0.159434 + 0.987209i \(0.550967\pi\)
\(212\) 0 0
\(213\) − 4.38468e8i − 3.10892i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.78730e6i 0.0251606i
\(218\) 0 0
\(219\) 4.03842e8 2.59811
\(220\) 0 0
\(221\) −7.82803e7 −0.487842
\(222\) 0 0
\(223\) 4.72521e7i 0.285334i 0.989771 + 0.142667i \(0.0455679\pi\)
−0.989771 + 0.142667i \(0.954432\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.84159e8i 1.04497i 0.852650 + 0.522483i \(0.174994\pi\)
−0.852650 + 0.522483i \(0.825006\pi\)
\(228\) 0 0
\(229\) −1.20722e8 −0.664297 −0.332149 0.943227i \(-0.607774\pi\)
−0.332149 + 0.943227i \(0.607774\pi\)
\(230\) 0 0
\(231\) −3.91282e8 −2.08857
\(232\) 0 0
\(233\) 1.99119e8i 1.03126i 0.856812 + 0.515629i \(0.172442\pi\)
−0.856812 + 0.515629i \(0.827558\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.32637e8i 1.13517i
\(238\) 0 0
\(239\) 2.95160e8 1.39851 0.699255 0.714872i \(-0.253515\pi\)
0.699255 + 0.714872i \(0.253515\pi\)
\(240\) 0 0
\(241\) 3.22537e8 1.48429 0.742146 0.670238i \(-0.233808\pi\)
0.742146 + 0.670238i \(0.233808\pi\)
\(242\) 0 0
\(243\) − 4.75110e8i − 2.12409i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.18856e8i 0.501861i
\(248\) 0 0
\(249\) −2.30257e8 −0.945181
\(250\) 0 0
\(251\) 1.24978e8 0.498856 0.249428 0.968393i \(-0.419757\pi\)
0.249428 + 0.968393i \(0.419757\pi\)
\(252\) 0 0
\(253\) 6.36622e8i 2.47150i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.95980e8i 0.720188i 0.932916 + 0.360094i \(0.117255\pi\)
−0.932916 + 0.360094i \(0.882745\pi\)
\(258\) 0 0
\(259\) −1.38000e8 −0.493550
\(260\) 0 0
\(261\) −1.10315e9 −3.84055
\(262\) 0 0
\(263\) − 2.03297e8i − 0.689105i −0.938767 0.344552i \(-0.888031\pi\)
0.938767 0.344552i \(-0.111969\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.70798e8i 0.870676i
\(268\) 0 0
\(269\) −2.29992e8 −0.720409 −0.360205 0.932873i \(-0.617293\pi\)
−0.360205 + 0.932873i \(0.617293\pi\)
\(270\) 0 0
\(271\) 2.98723e8 0.911752 0.455876 0.890043i \(-0.349326\pi\)
0.455876 + 0.890043i \(0.349326\pi\)
\(272\) 0 0
\(273\) 2.73131e8i 0.812459i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2.55584e8i − 0.722528i −0.932464 0.361264i \(-0.882345\pi\)
0.932464 0.361264i \(-0.117655\pi\)
\(278\) 0 0
\(279\) −2.75270e7 −0.0758830
\(280\) 0 0
\(281\) 4.50862e8 1.21219 0.606096 0.795392i \(-0.292735\pi\)
0.606096 + 0.795392i \(0.292735\pi\)
\(282\) 0 0
\(283\) 3.23467e8i 0.848356i 0.905579 + 0.424178i \(0.139437\pi\)
−0.905579 + 0.424178i \(0.860563\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.58404e8i − 1.14462i
\(288\) 0 0
\(289\) 6.85205e7 0.166985
\(290\) 0 0
\(291\) −3.53335e8 −0.840546
\(292\) 0 0
\(293\) − 5.52109e8i − 1.28230i −0.767418 0.641148i \(-0.778459\pi\)
0.767418 0.641148i \(-0.221541\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.68943e9i − 3.74191i
\(298\) 0 0
\(299\) 4.44388e8 0.961420
\(300\) 0 0
\(301\) −2.44082e8 −0.515886
\(302\) 0 0
\(303\) 4.79306e7i 0.0989836i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.38962e8i 1.06310i 0.847027 + 0.531550i \(0.178390\pi\)
−0.847027 + 0.531550i \(0.821610\pi\)
\(308\) 0 0
\(309\) 3.53284e8 0.681191
\(310\) 0 0
\(311\) 6.11434e8 1.15263 0.576313 0.817229i \(-0.304491\pi\)
0.576313 + 0.817229i \(0.304491\pi\)
\(312\) 0 0
\(313\) − 1.01255e9i − 1.86642i −0.359328 0.933211i \(-0.616994\pi\)
0.359328 0.933211i \(-0.383006\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.22278e8i 0.744545i 0.928123 + 0.372273i \(0.121421\pi\)
−0.928123 + 0.372273i \(0.878579\pi\)
\(318\) 0 0
\(319\) −1.24204e9 −2.14224
\(320\) 0 0
\(321\) 1.55902e9 2.63077
\(322\) 0 0
\(323\) 5.18997e8i 0.856952i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 1.61445e9i − 2.55334i
\(328\) 0 0
\(329\) −4.16701e7 −0.0645118
\(330\) 0 0
\(331\) 6.58640e8 0.998275 0.499138 0.866523i \(-0.333650\pi\)
0.499138 + 0.866523i \(0.333650\pi\)
\(332\) 0 0
\(333\) − 1.00302e9i − 1.48852i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 4.51883e8i − 0.643164i −0.946882 0.321582i \(-0.895785\pi\)
0.946882 0.321582i \(-0.104215\pi\)
\(338\) 0 0
\(339\) −1.03630e9 −1.44472
\(340\) 0 0
\(341\) −3.09928e7 −0.0423272
\(342\) 0 0
\(343\) 8.13622e8i 1.08866i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.77854e8i 0.356996i 0.983940 + 0.178498i \(0.0571239\pi\)
−0.983940 + 0.178498i \(0.942876\pi\)
\(348\) 0 0
\(349\) −1.66487e8 −0.209648 −0.104824 0.994491i \(-0.533428\pi\)
−0.104824 + 0.994491i \(0.533428\pi\)
\(350\) 0 0
\(351\) −1.17929e9 −1.45561
\(352\) 0 0
\(353\) 1.40229e9i 1.69678i 0.529369 + 0.848392i \(0.322429\pi\)
−0.529369 + 0.848392i \(0.677571\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.19265e9i 1.38731i
\(358\) 0 0
\(359\) 6.43009e8 0.733477 0.366739 0.930324i \(-0.380474\pi\)
0.366739 + 0.930324i \(0.380474\pi\)
\(360\) 0 0
\(361\) −1.05856e8 −0.118424
\(362\) 0 0
\(363\) − 1.50602e9i − 1.65256i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 9.38196e7i − 0.0990746i −0.998772 0.0495373i \(-0.984225\pi\)
0.998772 0.0495373i \(-0.0157747\pi\)
\(368\) 0 0
\(369\) 3.33179e9 3.45212
\(370\) 0 0
\(371\) 1.06217e8 0.107990
\(372\) 0 0
\(373\) 1.01907e9i 1.01677i 0.861129 + 0.508386i \(0.169758\pi\)
−0.861129 + 0.508386i \(0.830242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.66996e8i 0.833340i
\(378\) 0 0
\(379\) 6.10359e7 0.0575902 0.0287951 0.999585i \(-0.490833\pi\)
0.0287951 + 0.999585i \(0.490833\pi\)
\(380\) 0 0
\(381\) 2.99032e9 2.77001
\(382\) 0 0
\(383\) 1.85097e9i 1.68346i 0.539895 + 0.841732i \(0.318464\pi\)
−0.539895 + 0.841732i \(0.681536\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.77405e9i − 1.55589i
\(388\) 0 0
\(389\) 6.80195e8 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(390\) 0 0
\(391\) 1.94046e9 1.64167
\(392\) 0 0
\(393\) − 1.93017e9i − 1.60407i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.86725e9i 1.49774i 0.662720 + 0.748868i \(0.269402\pi\)
−0.662720 + 0.748868i \(0.730598\pi\)
\(398\) 0 0
\(399\) 1.81085e9 1.42718
\(400\) 0 0
\(401\) 7.41095e7 0.0573943 0.0286971 0.999588i \(-0.490864\pi\)
0.0286971 + 0.999588i \(0.490864\pi\)
\(402\) 0 0
\(403\) 2.16342e7i 0.0164654i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.12930e9i − 0.830291i
\(408\) 0 0
\(409\) 1.24701e9 0.901237 0.450618 0.892717i \(-0.351204\pi\)
0.450618 + 0.892717i \(0.351204\pi\)
\(410\) 0 0
\(411\) −1.01442e9 −0.720728
\(412\) 0 0
\(413\) 2.29428e9i 1.60259i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.89370e8i 0.330492i
\(418\) 0 0
\(419\) 5.87311e8 0.390049 0.195025 0.980798i \(-0.437521\pi\)
0.195025 + 0.980798i \(0.437521\pi\)
\(420\) 0 0
\(421\) −2.72214e9 −1.77796 −0.888982 0.457942i \(-0.848587\pi\)
−0.888982 + 0.457942i \(0.848587\pi\)
\(422\) 0 0
\(423\) − 3.02869e8i − 0.194564i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 5.20137e8i − 0.323311i
\(428\) 0 0
\(429\) −2.23512e9 −1.36679
\(430\) 0 0
\(431\) −1.33258e9 −0.801721 −0.400861 0.916139i \(-0.631289\pi\)
−0.400861 + 0.916139i \(0.631289\pi\)
\(432\) 0 0
\(433\) 1.39398e9i 0.825179i 0.910917 + 0.412590i \(0.135376\pi\)
−0.910917 + 0.412590i \(0.864624\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.94629e9i − 1.68885i
\(438\) 0 0
\(439\) −1.96180e9 −1.10670 −0.553348 0.832950i \(-0.686650\pi\)
−0.553348 + 0.832950i \(0.686650\pi\)
\(440\) 0 0
\(441\) −1.47691e9 −0.820007
\(442\) 0 0
\(443\) − 1.36082e9i − 0.743684i −0.928296 0.371842i \(-0.878726\pi\)
0.928296 0.371842i \(-0.121274\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.39287e9i 1.26719i
\(448\) 0 0
\(449\) −2.43167e9 −1.26778 −0.633889 0.773424i \(-0.718542\pi\)
−0.633889 + 0.773424i \(0.718542\pi\)
\(450\) 0 0
\(451\) 3.75128e9 1.92558
\(452\) 0 0
\(453\) − 1.19826e9i − 0.605628i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 3.09420e8i − 0.151650i −0.997121 0.0758250i \(-0.975841\pi\)
0.997121 0.0758250i \(-0.0241590\pi\)
\(458\) 0 0
\(459\) −5.14948e9 −2.48553
\(460\) 0 0
\(461\) −2.43256e9 −1.15640 −0.578202 0.815894i \(-0.696245\pi\)
−0.578202 + 0.815894i \(0.696245\pi\)
\(462\) 0 0
\(463\) − 1.49638e9i − 0.700664i −0.936626 0.350332i \(-0.886069\pi\)
0.936626 0.350332i \(-0.113931\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.09165e9i − 1.40469i −0.711836 0.702346i \(-0.752136\pi\)
0.711836 0.702346i \(-0.247864\pi\)
\(468\) 0 0
\(469\) 8.54171e8 0.382332
\(470\) 0 0
\(471\) 2.59039e9 1.14233
\(472\) 0 0
\(473\) − 1.99741e9i − 0.867867i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.72009e8i 0.325693i
\(478\) 0 0
\(479\) −2.24028e8 −0.0931384 −0.0465692 0.998915i \(-0.514829\pi\)
−0.0465692 + 0.998915i \(0.514829\pi\)
\(480\) 0 0
\(481\) −7.88299e8 −0.322986
\(482\) 0 0
\(483\) − 6.77054e9i − 2.73406i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.38421e9i 0.935390i 0.883890 + 0.467695i \(0.154915\pi\)
−0.883890 + 0.467695i \(0.845085\pi\)
\(488\) 0 0
\(489\) −1.66428e9 −0.643644
\(490\) 0 0
\(491\) 1.28112e8 0.0488432 0.0244216 0.999702i \(-0.492226\pi\)
0.0244216 + 0.999702i \(0.492226\pi\)
\(492\) 0 0
\(493\) 3.78582e9i 1.42297i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.73430e9i 1.36446i
\(498\) 0 0
\(499\) 2.42499e9 0.873690 0.436845 0.899537i \(-0.356096\pi\)
0.436845 + 0.899537i \(0.356096\pi\)
\(500\) 0 0
\(501\) 1.35445e9 0.481207
\(502\) 0 0
\(503\) − 2.22661e9i − 0.780110i −0.920792 0.390055i \(-0.872456\pi\)
0.920792 0.390055i \(-0.127544\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3.90084e9i − 1.32932i
\(508\) 0 0
\(509\) 3.67616e9 1.23561 0.617807 0.786330i \(-0.288021\pi\)
0.617807 + 0.786330i \(0.288021\pi\)
\(510\) 0 0
\(511\) −3.43941e9 −1.14028
\(512\) 0 0
\(513\) 7.81869e9i 2.55695i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 3.41001e8i − 0.108527i
\(518\) 0 0
\(519\) 6.94992e8 0.218220
\(520\) 0 0
\(521\) 9.21625e8 0.285511 0.142755 0.989758i \(-0.454404\pi\)
0.142755 + 0.989758i \(0.454404\pi\)
\(522\) 0 0
\(523\) 1.57199e8i 0.0480502i 0.999711 + 0.0240251i \(0.00764816\pi\)
−0.999711 + 0.0240251i \(0.992352\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.44677e7i 0.0281155i
\(528\) 0 0
\(529\) −7.61094e9 −2.23534
\(530\) 0 0
\(531\) −1.66754e10 −4.83332
\(532\) 0 0
\(533\) − 2.61854e9i − 0.749056i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8.48644e9i 2.36491i
\(538\) 0 0
\(539\) −1.66285e9 −0.457397
\(540\) 0 0
\(541\) −2.80816e8 −0.0762486 −0.0381243 0.999273i \(-0.512138\pi\)
−0.0381243 + 0.999273i \(0.512138\pi\)
\(542\) 0 0
\(543\) 8.65909e9i 2.32099i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.15456e9i 0.301622i 0.988563 + 0.150811i \(0.0481884\pi\)
−0.988563 + 0.150811i \(0.951812\pi\)
\(548\) 0 0
\(549\) 3.78048e9 0.975088
\(550\) 0 0
\(551\) 5.74817e9 1.46386
\(552\) 0 0
\(553\) − 1.98130e9i − 0.498210i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.36841e9i 0.580715i 0.956918 + 0.290357i \(0.0937742\pi\)
−0.956918 + 0.290357i \(0.906226\pi\)
\(558\) 0 0
\(559\) −1.39427e9 −0.337603
\(560\) 0 0
\(561\) −9.75987e9 −2.33386
\(562\) 0 0
\(563\) 2.50492e9i 0.591580i 0.955253 + 0.295790i \(0.0955829\pi\)
−0.955253 + 0.295790i \(0.904417\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.23422e9i 2.12745i
\(568\) 0 0
\(569\) 4.42619e9 1.00725 0.503625 0.863922i \(-0.331999\pi\)
0.503625 + 0.863922i \(0.331999\pi\)
\(570\) 0 0
\(571\) −1.32550e9 −0.297956 −0.148978 0.988841i \(-0.547598\pi\)
−0.148978 + 0.988841i \(0.547598\pi\)
\(572\) 0 0
\(573\) − 5.32898e9i − 1.18332i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.76604e9i 0.599436i 0.954028 + 0.299718i \(0.0968926\pi\)
−0.954028 + 0.299718i \(0.903107\pi\)
\(578\) 0 0
\(579\) 7.74191e9 1.65757
\(580\) 0 0
\(581\) 1.96103e9 0.414828
\(582\) 0 0
\(583\) 8.69208e8i 0.181670i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.15575e9i 0.439912i 0.975510 + 0.219956i \(0.0705914\pi\)
−0.975510 + 0.219956i \(0.929409\pi\)
\(588\) 0 0
\(589\) 1.43434e8 0.0289234
\(590\) 0 0
\(591\) 9.94303e9 1.98136
\(592\) 0 0
\(593\) − 9.50086e9i − 1.87099i −0.353341 0.935495i \(-0.614954\pi\)
0.353341 0.935495i \(-0.385046\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 9.81715e9i − 1.88832i
\(598\) 0 0
\(599\) 9.55306e8 0.181614 0.0908068 0.995869i \(-0.471055\pi\)
0.0908068 + 0.995869i \(0.471055\pi\)
\(600\) 0 0
\(601\) −8.41945e9 −1.58206 −0.791030 0.611777i \(-0.790455\pi\)
−0.791030 + 0.611777i \(0.790455\pi\)
\(602\) 0 0
\(603\) 6.20833e9i 1.15309i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9.80243e9i − 1.77899i −0.456945 0.889495i \(-0.651056\pi\)
0.456945 0.889495i \(-0.348944\pi\)
\(608\) 0 0
\(609\) 1.32092e10 2.36983
\(610\) 0 0
\(611\) −2.38032e8 −0.0422174
\(612\) 0 0
\(613\) 1.33970e9i 0.234907i 0.993078 + 0.117454i \(0.0374732\pi\)
−0.993078 + 0.117454i \(0.962527\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.03037e10i 1.76602i 0.469351 + 0.883012i \(0.344488\pi\)
−0.469351 + 0.883012i \(0.655512\pi\)
\(618\) 0 0
\(619\) −2.87364e9 −0.486984 −0.243492 0.969903i \(-0.578293\pi\)
−0.243492 + 0.969903i \(0.578293\pi\)
\(620\) 0 0
\(621\) 2.92330e10 4.89838
\(622\) 0 0
\(623\) − 2.30631e9i − 0.382128i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.48188e10i 2.40092i
\(628\) 0 0
\(629\) −3.44218e9 −0.551514
\(630\) 0 0
\(631\) −6.17623e9 −0.978635 −0.489317 0.872106i \(-0.662754\pi\)
−0.489317 + 0.872106i \(0.662754\pi\)
\(632\) 0 0
\(633\) 3.78680e9i 0.593416i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.16074e9i 0.177929i
\(638\) 0 0
\(639\) −2.71418e10 −4.11515
\(640\) 0 0
\(641\) −9.14422e9 −1.37134 −0.685668 0.727915i \(-0.740490\pi\)
−0.685668 + 0.727915i \(0.740490\pi\)
\(642\) 0 0
\(643\) 7.48915e8i 0.111095i 0.998456 + 0.0555475i \(0.0176904\pi\)
−0.998456 + 0.0555475i \(0.982310\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 6.13359e9i − 0.890327i −0.895449 0.445163i \(-0.853146\pi\)
0.895449 0.445163i \(-0.146854\pi\)
\(648\) 0 0
\(649\) −1.87749e10 −2.69601
\(650\) 0 0
\(651\) 3.29611e8 0.0468239
\(652\) 0 0
\(653\) − 1.37749e10i − 1.93594i −0.251059 0.967972i \(-0.580779\pi\)
0.251059 0.967972i \(-0.419221\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 2.49984e10i − 3.43901i
\(658\) 0 0
\(659\) 8.08420e9 1.10037 0.550184 0.835044i \(-0.314558\pi\)
0.550184 + 0.835044i \(0.314558\pi\)
\(660\) 0 0
\(661\) −2.44260e9 −0.328964 −0.164482 0.986380i \(-0.552595\pi\)
−0.164482 + 0.986380i \(0.552595\pi\)
\(662\) 0 0
\(663\) 6.81278e9i 0.907877i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.14916e10i − 2.80433i
\(668\) 0 0
\(669\) 4.11238e9 0.531009
\(670\) 0 0
\(671\) 4.25646e9 0.543900
\(672\) 0 0
\(673\) 1.23905e8i 0.0156689i 0.999969 + 0.00783443i \(0.00249380\pi\)
−0.999969 + 0.00783443i \(0.997506\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1.14942e10i − 1.42369i −0.702335 0.711847i \(-0.747859\pi\)
0.702335 0.711847i \(-0.252141\pi\)
\(678\) 0 0
\(679\) 3.00925e9 0.368905
\(680\) 0 0
\(681\) 1.60275e10 1.94469
\(682\) 0 0
\(683\) − 8.92504e9i − 1.07186i −0.844263 0.535929i \(-0.819961\pi\)
0.844263 0.535929i \(-0.180039\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.05065e10i 1.23626i
\(688\) 0 0
\(689\) 6.06742e8 0.0706703
\(690\) 0 0
\(691\) −2.95336e9 −0.340521 −0.170260 0.985399i \(-0.554461\pi\)
−0.170260 + 0.985399i \(0.554461\pi\)
\(692\) 0 0
\(693\) 2.42210e10i 2.76455i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.14341e10i − 1.27905i
\(698\) 0 0
\(699\) 1.73295e10 1.91918
\(700\) 0 0
\(701\) −1.43095e9 −0.156896 −0.0784479 0.996918i \(-0.524996\pi\)
−0.0784479 + 0.996918i \(0.524996\pi\)
\(702\) 0 0
\(703\) 5.22641e9i 0.567362i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 4.08211e8i − 0.0434427i
\(708\) 0 0
\(709\) 1.25151e10 1.31878 0.659392 0.751799i \(-0.270814\pi\)
0.659392 + 0.751799i \(0.270814\pi\)
\(710\) 0 0
\(711\) 1.44006e10 1.50258
\(712\) 0 0
\(713\) − 5.36282e8i − 0.0554089i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.56880e10i − 2.60263i
\(718\) 0 0
\(719\) 8.89943e9 0.892917 0.446459 0.894804i \(-0.352685\pi\)
0.446459 + 0.894804i \(0.352685\pi\)
\(720\) 0 0
\(721\) −3.00881e9 −0.298966
\(722\) 0 0
\(723\) − 2.80705e10i − 2.76227i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.56000e9i 0.343621i 0.985130 + 0.171810i \(0.0549616\pi\)
−0.985130 + 0.171810i \(0.945038\pi\)
\(728\) 0 0
\(729\) −1.41030e10 −1.34823
\(730\) 0 0
\(731\) −6.08822e9 −0.576474
\(732\) 0 0
\(733\) − 5.05266e9i − 0.473867i −0.971526 0.236934i \(-0.923858\pi\)
0.971526 0.236934i \(-0.0761424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.98998e9i 0.643191i
\(738\) 0 0
\(739\) −3.15300e9 −0.287387 −0.143694 0.989622i \(-0.545898\pi\)
−0.143694 + 0.989622i \(0.545898\pi\)
\(740\) 0 0
\(741\) 1.03441e10 0.933965
\(742\) 0 0
\(743\) − 1.93745e9i − 0.173288i −0.996239 0.0866442i \(-0.972386\pi\)
0.996239 0.0866442i \(-0.0276143\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.42533e10i 1.25110i
\(748\) 0 0
\(749\) −1.32777e10 −1.15461
\(750\) 0 0
\(751\) 1.58399e10 1.36462 0.682311 0.731062i \(-0.260975\pi\)
0.682311 + 0.731062i \(0.260975\pi\)
\(752\) 0 0
\(753\) − 1.08769e10i − 0.928374i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.57162e10i 1.31678i 0.752678 + 0.658389i \(0.228762\pi\)
−0.752678 + 0.658389i \(0.771238\pi\)
\(758\) 0 0
\(759\) 5.54056e10 4.59947
\(760\) 0 0
\(761\) −2.50123e9 −0.205735 −0.102867 0.994695i \(-0.532802\pi\)
−0.102867 + 0.994695i \(0.532802\pi\)
\(762\) 0 0
\(763\) 1.37498e10i 1.12063i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.31056e10i 1.04875i
\(768\) 0 0
\(769\) −8.48850e9 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(770\) 0 0
\(771\) 1.70563e10 1.34027
\(772\) 0 0
\(773\) 2.42832e10i 1.89094i 0.325707 + 0.945471i \(0.394398\pi\)
−0.325707 + 0.945471i \(0.605602\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.20102e10i 0.918498i
\(778\) 0 0
\(779\) −1.73609e10 −1.31580
\(780\) 0 0
\(781\) −3.05591e10 −2.29542
\(782\) 0 0
\(783\) 5.70333e10i 4.24582i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 6.20737e9i − 0.453938i −0.973902 0.226969i \(-0.927118\pi\)
0.973902 0.226969i \(-0.0728816\pi\)
\(788\) 0 0
\(789\) −1.76930e10 −1.28243
\(790\) 0 0
\(791\) 8.82583e9 0.634071
\(792\) 0 0
\(793\) − 2.97118e9i − 0.211579i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.88550e7i 0.00131924i 1.00000 0.000659619i \(0.000209963\pi\)
−1.00000 0.000659619i \(0.999790\pi\)
\(798\) 0 0
\(799\) −1.03939e9 −0.0720883
\(800\) 0 0
\(801\) 1.67628e10 1.15248
\(802\) 0 0
\(803\) − 2.81458e10i − 1.91827i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.00163e10i 1.34069i
\(808\) 0 0
\(809\) 1.59140e10 1.05672 0.528360 0.849021i \(-0.322807\pi\)
0.528360 + 0.849021i \(0.322807\pi\)
\(810\) 0 0
\(811\) −2.62774e10 −1.72986 −0.864928 0.501896i \(-0.832636\pi\)
−0.864928 + 0.501896i \(0.832636\pi\)
\(812\) 0 0
\(813\) − 2.59981e10i − 1.69678i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 9.24401e9i 0.593039i
\(818\) 0 0
\(819\) 1.69072e10 1.07542
\(820\) 0 0
\(821\) 9.37571e9 0.591293 0.295647 0.955297i \(-0.404465\pi\)
0.295647 + 0.955297i \(0.404465\pi\)
\(822\) 0 0
\(823\) 1.03455e10i 0.646920i 0.946242 + 0.323460i \(0.104846\pi\)
−0.946242 + 0.323460i \(0.895154\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.19356e10i − 1.34859i −0.738461 0.674296i \(-0.764447\pi\)
0.738461 0.674296i \(-0.235553\pi\)
\(828\) 0 0
\(829\) −3.05413e10 −1.86186 −0.930929 0.365199i \(-0.881001\pi\)
−0.930929 + 0.365199i \(0.881001\pi\)
\(830\) 0 0
\(831\) −2.22436e10 −1.34463
\(832\) 0 0
\(833\) 5.06847e9i 0.303822i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.42315e9i 0.0838905i
\(838\) 0 0
\(839\) 2.52012e10 1.47318 0.736588 0.676342i \(-0.236436\pi\)
0.736588 + 0.676342i \(0.236436\pi\)
\(840\) 0 0
\(841\) 2.46800e10 1.43074
\(842\) 0 0
\(843\) − 3.92388e10i − 2.25589i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.28263e10i 0.725287i
\(848\) 0 0
\(849\) 2.81516e10 1.57879
\(850\) 0 0
\(851\) 1.95409e10 1.08690
\(852\) 0 0
\(853\) − 3.04039e9i − 0.167729i −0.996477 0.0838644i \(-0.973274\pi\)
0.996477 0.0838644i \(-0.0267262\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 7.30094e9i − 0.396229i −0.980179 0.198114i \(-0.936518\pi\)
0.980179 0.198114i \(-0.0634818\pi\)
\(858\) 0 0
\(859\) −2.16215e10 −1.16388 −0.581941 0.813231i \(-0.697707\pi\)
−0.581941 + 0.813231i \(0.697707\pi\)
\(860\) 0 0
\(861\) −3.98952e10 −2.13015
\(862\) 0 0
\(863\) − 3.05503e10i − 1.61800i −0.587810 0.808999i \(-0.700010\pi\)
0.587810 0.808999i \(-0.299990\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 5.96338e9i − 0.310760i
\(868\) 0 0
\(869\) 1.62137e10 0.838132
\(870\) 0 0
\(871\) 4.87929e9 0.250203
\(872\) 0 0
\(873\) 2.18720e10i 1.11260i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.48353e8i 0.0124329i 0.999981 + 0.00621644i \(0.00197877\pi\)
−0.999981 + 0.00621644i \(0.998021\pi\)
\(878\) 0 0
\(879\) −4.80504e10 −2.38636
\(880\) 0 0
\(881\) −2.96667e10 −1.46169 −0.730843 0.682546i \(-0.760873\pi\)
−0.730843 + 0.682546i \(0.760873\pi\)
\(882\) 0 0
\(883\) 7.57977e9i 0.370505i 0.982691 + 0.185252i \(0.0593102\pi\)
−0.982691 + 0.185252i \(0.940690\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.01060e10i − 0.486235i −0.969997 0.243117i \(-0.921830\pi\)
0.969997 0.243117i \(-0.0781700\pi\)
\(888\) 0 0
\(889\) −2.54677e10 −1.21572
\(890\) 0 0
\(891\) −7.55668e10 −3.57898
\(892\) 0 0
\(893\) 1.57815e9i 0.0741598i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3.86753e10i − 1.78921i
\(898\) 0 0
\(899\) 1.04628e9 0.0480274
\(900\) 0 0
\(901\) 2.64939e9 0.120673
\(902\) 0 0
\(903\) 2.12426e10i 0.960067i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.98649e10i 0.884016i 0.897011 + 0.442008i \(0.145734\pi\)
−0.897011 + 0.442008i \(0.854266\pi\)
\(908\) 0 0
\(909\) 2.96698e9 0.131021
\(910\) 0 0
\(911\) −2.90396e10 −1.27256 −0.636278 0.771460i \(-0.719527\pi\)
−0.636278 + 0.771460i \(0.719527\pi\)
\(912\) 0 0
\(913\) 1.60478e10i 0.697859i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.64387e10i 0.704005i
\(918\) 0 0
\(919\) −3.06973e10 −1.30465 −0.652327 0.757938i \(-0.726207\pi\)
−0.652327 + 0.757938i \(0.726207\pi\)
\(920\) 0 0
\(921\) 4.69062e10 1.97843
\(922\) 0 0
\(923\) 2.13315e10i 0.892924i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 2.18688e10i − 0.901666i
\(928\) 0 0
\(929\) 1.29984e10 0.531904 0.265952 0.963986i \(-0.414314\pi\)
0.265952 + 0.963986i \(0.414314\pi\)
\(930\) 0 0
\(931\) 7.69568e9 0.312553
\(932\) 0 0
\(933\) − 5.32135e10i − 2.14504i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 3.51243e10i − 1.39482i −0.716670 0.697412i \(-0.754335\pi\)
0.716670 0.697412i \(-0.245665\pi\)
\(938\) 0 0
\(939\) −8.81226e10 −3.47342
\(940\) 0 0
\(941\) 4.51801e9 0.176760 0.0883800 0.996087i \(-0.471831\pi\)
0.0883800 + 0.996087i \(0.471831\pi\)
\(942\) 0 0
\(943\) 6.49101e10i 2.52070i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.07244e9i 0.270610i 0.990804 + 0.135305i \(0.0432015\pi\)
−0.990804 + 0.135305i \(0.956799\pi\)
\(948\) 0 0
\(949\) −1.96469e10 −0.746213
\(950\) 0 0
\(951\) 3.67511e10 1.38560
\(952\) 0 0
\(953\) − 7.75183e9i − 0.290121i −0.989423 0.145060i \(-0.953662\pi\)
0.989423 0.145060i \(-0.0463377\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.08096e11i 3.98673i
\(958\) 0 0
\(959\) 8.63951e9 0.316318
\(960\) 0 0
\(961\) −2.74865e10 −0.999051
\(962\) 0 0
\(963\) − 9.65054e10i − 3.48225i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.07254e9i − 0.0737071i −0.999321 0.0368536i \(-0.988266\pi\)
0.999321 0.0368536i \(-0.0117335\pi\)
\(968\) 0 0
\(969\) 4.51687e10 1.59479
\(970\) 0 0
\(971\) 3.00236e10 1.05244 0.526218 0.850350i \(-0.323610\pi\)
0.526218 + 0.850350i \(0.323610\pi\)
\(972\) 0 0
\(973\) − 4.16782e9i − 0.145049i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.62484e9i − 0.0900476i −0.998986 0.0450238i \(-0.985664\pi\)
0.998986 0.0450238i \(-0.0143364\pi\)
\(978\) 0 0
\(979\) 1.88733e10 0.642849
\(980\) 0 0
\(981\) −9.99371e10 −3.37976
\(982\) 0 0
\(983\) − 3.23601e9i − 0.108661i −0.998523 0.0543304i \(-0.982698\pi\)
0.998523 0.0543304i \(-0.0173024\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.62658e9i 0.120057i
\(988\) 0 0
\(989\) 3.45621e10 1.13609
\(990\) 0 0
\(991\) 3.91654e10 1.27834 0.639168 0.769067i \(-0.279279\pi\)
0.639168 + 0.769067i \(0.279279\pi\)
\(992\) 0 0
\(993\) − 5.73219e10i − 1.85780i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.65367e10i 1.48718i 0.668638 + 0.743588i \(0.266877\pi\)
−0.668638 + 0.743588i \(0.733123\pi\)
\(998\) 0 0
\(999\) −5.18564e10 −1.64560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.8.c.g.49.1 4
4.3 odd 2 400.8.c.p.49.4 4
5.2 odd 4 200.8.a.j.1.1 2
5.3 odd 4 40.8.a.d.1.2 2
5.4 even 2 inner 200.8.c.g.49.4 4
15.8 even 4 360.8.a.f.1.2 2
20.3 even 4 80.8.a.e.1.1 2
20.7 even 4 400.8.a.bg.1.2 2
20.19 odd 2 400.8.c.p.49.1 4
40.3 even 4 320.8.a.w.1.2 2
40.13 odd 4 320.8.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.a.d.1.2 2 5.3 odd 4
80.8.a.e.1.1 2 20.3 even 4
200.8.a.j.1.1 2 5.2 odd 4
200.8.c.g.49.1 4 1.1 even 1 trivial
200.8.c.g.49.4 4 5.4 even 2 inner
320.8.a.i.1.1 2 40.13 odd 4
320.8.a.w.1.2 2 40.3 even 4
360.8.a.f.1.2 2 15.8 even 4
400.8.a.bg.1.2 2 20.7 even 4
400.8.c.p.49.1 4 20.19 odd 2
400.8.c.p.49.4 4 4.3 odd 2