Properties

Label 400.3.r.f.51.10
Level $400$
Weight $3$
Character 400.51
Analytic conductor $10.899$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,3,Mod(51,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.r (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 51.10
Character \(\chi\) \(=\) 400.51
Dual form 400.3.r.f.251.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.522340 - 1.93059i) q^{2} +(-3.58499 + 3.58499i) q^{3} +(-3.45432 - 2.01684i) q^{4} +(5.04854 + 8.79371i) q^{6} -10.0090 q^{7} +(-5.69802 + 5.61539i) q^{8} -16.7043i q^{9} +(-0.304644 - 0.304644i) q^{11} +(19.6141 - 5.15334i) q^{12} +(-6.87350 - 6.87350i) q^{13} +(-5.22809 + 19.3232i) q^{14} +(7.86468 + 13.9337i) q^{16} +25.8031 q^{17} +(-32.2490 - 8.72531i) q^{18} +(-10.2562 + 10.2562i) q^{19} +(35.8821 - 35.8821i) q^{21} +(-0.747270 + 0.429014i) q^{22} +33.7343 q^{23} +(0.296235 - 40.5584i) q^{24} +(-16.8602 + 9.67958i) q^{26} +(27.6197 + 27.6197i) q^{27} +(34.5743 + 20.1866i) q^{28} +(23.1650 + 23.1650i) q^{29} +7.31924i q^{31} +(31.0082 - 7.90534i) q^{32} +2.18429 q^{33} +(13.4780 - 49.8152i) q^{34} +(-33.6899 + 57.7020i) q^{36} +(-6.85014 + 6.85014i) q^{37} +(14.4433 + 25.1578i) q^{38} +49.2828 q^{39} -63.7855i q^{41} +(-50.5308 - 88.0161i) q^{42} +(-15.0257 - 15.0257i) q^{43} +(0.437920 + 1.66676i) q^{44} +(17.6208 - 65.1271i) q^{46} -41.8744i q^{47} +(-78.1468 - 21.7572i) q^{48} +51.1799 q^{49} +(-92.5039 + 92.5039i) q^{51} +(9.88051 + 37.6060i) q^{52} +(36.5375 - 36.5375i) q^{53} +(67.7491 - 38.8954i) q^{54} +(57.0314 - 56.2044i) q^{56} -73.5369i q^{57} +(56.8221 - 32.6221i) q^{58} +(58.1638 + 58.1638i) q^{59} +(-26.2928 - 26.2928i) q^{61} +(14.1304 + 3.82313i) q^{62} +167.193i q^{63} +(0.934849 - 63.9932i) q^{64} +(1.14094 - 4.21696i) q^{66} +(4.48091 - 4.48091i) q^{67} +(-89.1323 - 52.0409i) q^{68} +(-120.937 + 120.937i) q^{69} +11.5673 q^{71} +(93.8010 + 95.1813i) q^{72} +101.723i q^{73} +(9.64668 + 16.8029i) q^{74} +(56.1135 - 14.7431i) q^{76} +(3.04918 + 3.04918i) q^{77} +(25.7424 - 95.1447i) q^{78} -73.1288i q^{79} -47.6943 q^{81} +(-123.143 - 33.3177i) q^{82} +(-39.9292 + 39.9292i) q^{83} +(-196.317 + 51.5798i) q^{84} +(-36.8568 + 21.1598i) q^{86} -166.093 q^{87} +(3.44656 + 0.0251734i) q^{88} +37.2154i q^{89} +(68.7968 + 68.7968i) q^{91} +(-116.529 - 68.0369i) q^{92} +(-26.2394 - 26.2394i) q^{93} +(-80.8420 - 21.8726i) q^{94} +(-82.8233 + 139.504i) q^{96} +114.749 q^{97} +(26.7333 - 98.8071i) q^{98} +(-5.08886 + 5.08886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 12 q^{4} + 12 q^{6} + 32 q^{11} + 60 q^{12} - 36 q^{14} + 48 q^{16} - 160 q^{18} - 32 q^{19} + 12 q^{22} + 128 q^{23} - 120 q^{24} - 48 q^{26} + 96 q^{27} + 180 q^{28} + 32 q^{29} + 160 q^{32} + 16 q^{34}+ \cdots + 608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.522340 1.93059i 0.261170 0.965293i
\(3\) −3.58499 + 3.58499i −1.19500 + 1.19500i −0.219350 + 0.975646i \(0.570394\pi\)
−0.975646 + 0.219350i \(0.929606\pi\)
\(4\) −3.45432 2.01684i −0.863581 0.504211i
\(5\) 0 0
\(6\) 5.04854 + 8.79371i 0.841424 + 1.46562i
\(7\) −10.0090 −1.42986 −0.714928 0.699198i \(-0.753540\pi\)
−0.714928 + 0.699198i \(0.753540\pi\)
\(8\) −5.69802 + 5.61539i −0.712252 + 0.701923i
\(9\) 16.7043i 1.85603i
\(10\) 0 0
\(11\) −0.304644 0.304644i −0.0276949 0.0276949i 0.693124 0.720819i \(-0.256234\pi\)
−0.720819 + 0.693124i \(0.756234\pi\)
\(12\) 19.6141 5.15334i 1.63451 0.429445i
\(13\) −6.87350 6.87350i −0.528731 0.528731i 0.391463 0.920194i \(-0.371969\pi\)
−0.920194 + 0.391463i \(0.871969\pi\)
\(14\) −5.22809 + 19.3232i −0.373435 + 1.38023i
\(15\) 0 0
\(16\) 7.86468 + 13.9337i 0.491543 + 0.870853i
\(17\) 25.8031 1.51783 0.758916 0.651189i \(-0.225730\pi\)
0.758916 + 0.651189i \(0.225730\pi\)
\(18\) −32.2490 8.72531i −1.79161 0.484739i
\(19\) −10.2562 + 10.2562i −0.539802 + 0.539802i −0.923471 0.383669i \(-0.874660\pi\)
0.383669 + 0.923471i \(0.374660\pi\)
\(20\) 0 0
\(21\) 35.8821 35.8821i 1.70867 1.70867i
\(22\) −0.747270 + 0.429014i −0.0339668 + 0.0195006i
\(23\) 33.7343 1.46671 0.733355 0.679845i \(-0.237953\pi\)
0.733355 + 0.679845i \(0.237953\pi\)
\(24\) 0.296235 40.5584i 0.0123431 1.68993i
\(25\) 0 0
\(26\) −16.8602 + 9.67958i −0.648468 + 0.372291i
\(27\) 27.6197 + 27.6197i 1.02295 + 1.02295i
\(28\) 34.5743 + 20.1866i 1.23480 + 0.720949i
\(29\) 23.1650 + 23.1650i 0.798794 + 0.798794i 0.982905 0.184111i \(-0.0589407\pi\)
−0.184111 + 0.982905i \(0.558941\pi\)
\(30\) 0 0
\(31\) 7.31924i 0.236104i 0.993007 + 0.118052i \(0.0376650\pi\)
−0.993007 + 0.118052i \(0.962335\pi\)
\(32\) 31.0082 7.90534i 0.969005 0.247042i
\(33\) 2.18429 0.0661907
\(34\) 13.4780 49.8152i 0.396412 1.46515i
\(35\) 0 0
\(36\) −33.6899 + 57.7020i −0.935831 + 1.60283i
\(37\) −6.85014 + 6.85014i −0.185139 + 0.185139i −0.793591 0.608452i \(-0.791791\pi\)
0.608452 + 0.793591i \(0.291791\pi\)
\(38\) 14.4433 + 25.1578i 0.380087 + 0.662047i
\(39\) 49.2828 1.26366
\(40\) 0 0
\(41\) 63.7855i 1.55574i −0.628423 0.777872i \(-0.716299\pi\)
0.628423 0.777872i \(-0.283701\pi\)
\(42\) −50.5308 88.0161i −1.20311 2.09562i
\(43\) −15.0257 15.0257i −0.349434 0.349434i 0.510465 0.859899i \(-0.329473\pi\)
−0.859899 + 0.510465i \(0.829473\pi\)
\(44\) 0.437920 + 1.66676i 0.00995272 + 0.0378809i
\(45\) 0 0
\(46\) 17.6208 65.1271i 0.383061 1.41581i
\(47\) 41.8744i 0.890944i −0.895296 0.445472i \(-0.853036\pi\)
0.895296 0.445472i \(-0.146964\pi\)
\(48\) −78.1468 21.7572i −1.62806 0.453275i
\(49\) 51.1799 1.04449
\(50\) 0 0
\(51\) −92.5039 + 92.5039i −1.81380 + 1.81380i
\(52\) 9.88051 + 37.6060i 0.190010 + 0.723193i
\(53\) 36.5375 36.5375i 0.689388 0.689388i −0.272709 0.962097i \(-0.587920\pi\)
0.962097 + 0.272709i \(0.0879196\pi\)
\(54\) 67.7491 38.8954i 1.25461 0.720285i
\(55\) 0 0
\(56\) 57.0314 56.2044i 1.01842 1.00365i
\(57\) 73.5369i 1.29012i
\(58\) 56.8221 32.6221i 0.979691 0.562449i
\(59\) 58.1638 + 58.1638i 0.985828 + 0.985828i 0.999901 0.0140734i \(-0.00447984\pi\)
−0.0140734 + 0.999901i \(0.504480\pi\)
\(60\) 0 0
\(61\) −26.2928 26.2928i −0.431030 0.431030i 0.457949 0.888979i \(-0.348584\pi\)
−0.888979 + 0.457949i \(0.848584\pi\)
\(62\) 14.1304 + 3.82313i 0.227910 + 0.0616634i
\(63\) 167.193i 2.65386i
\(64\) 0.934849 63.9932i 0.0146070 0.999893i
\(65\) 0 0
\(66\) 1.14094 4.21696i 0.0172870 0.0638934i
\(67\) 4.48091 4.48091i 0.0668793 0.0668793i −0.672876 0.739755i \(-0.734941\pi\)
0.739755 + 0.672876i \(0.234941\pi\)
\(68\) −89.1323 52.0409i −1.31077 0.765307i
\(69\) −120.937 + 120.937i −1.75271 + 1.75271i
\(70\) 0 0
\(71\) 11.5673 0.162919 0.0814595 0.996677i \(-0.474042\pi\)
0.0814595 + 0.996677i \(0.474042\pi\)
\(72\) 93.8010 + 95.1813i 1.30279 + 1.32196i
\(73\) 101.723i 1.39346i 0.717332 + 0.696732i \(0.245363\pi\)
−0.717332 + 0.696732i \(0.754637\pi\)
\(74\) 9.64668 + 16.8029i 0.130361 + 0.227066i
\(75\) 0 0
\(76\) 56.1135 14.7431i 0.738336 0.193988i
\(77\) 3.04918 + 3.04918i 0.0395998 + 0.0395998i
\(78\) 25.7424 95.1447i 0.330030 1.21980i
\(79\) 73.1288i 0.925681i −0.886442 0.462840i \(-0.846830\pi\)
0.886442 0.462840i \(-0.153170\pi\)
\(80\) 0 0
\(81\) −47.6943 −0.588819
\(82\) −123.143 33.3177i −1.50175 0.406313i
\(83\) −39.9292 + 39.9292i −0.481075 + 0.481075i −0.905475 0.424400i \(-0.860485\pi\)
0.424400 + 0.905475i \(0.360485\pi\)
\(84\) −196.317 + 51.5798i −2.33711 + 0.614045i
\(85\) 0 0
\(86\) −36.8568 + 21.1598i −0.428568 + 0.246045i
\(87\) −166.093 −1.90911
\(88\) 3.44656 + 0.0251734i 0.0391655 + 0.000286061i
\(89\) 37.2154i 0.418151i 0.977899 + 0.209076i \(0.0670455\pi\)
−0.977899 + 0.209076i \(0.932955\pi\)
\(90\) 0 0
\(91\) 68.7968 + 68.7968i 0.756008 + 0.756008i
\(92\) −116.529 68.0369i −1.26662 0.739532i
\(93\) −26.2394 26.2394i −0.282144 0.282144i
\(94\) −80.8420 21.8726i −0.860022 0.232688i
\(95\) 0 0
\(96\) −82.8233 + 139.504i −0.862743 + 1.45317i
\(97\) 114.749 1.18298 0.591490 0.806312i \(-0.298540\pi\)
0.591490 + 0.806312i \(0.298540\pi\)
\(98\) 26.7333 98.8071i 0.272789 1.00824i
\(99\) −5.08886 + 5.08886i −0.0514026 + 0.0514026i
\(100\) 0 0
\(101\) 3.86189 3.86189i 0.0382366 0.0382366i −0.687730 0.725967i \(-0.741393\pi\)
0.725967 + 0.687730i \(0.241393\pi\)
\(102\) 130.268 + 226.905i 1.27714 + 2.22456i
\(103\) −82.3074 −0.799101 −0.399551 0.916711i \(-0.630834\pi\)
−0.399551 + 0.916711i \(0.630834\pi\)
\(104\) 77.7627 + 0.567971i 0.747718 + 0.00546126i
\(105\) 0 0
\(106\) −51.4538 89.6239i −0.485414 0.845508i
\(107\) 109.631 + 109.631i 1.02459 + 1.02459i 0.999690 + 0.0248967i \(0.00792568\pi\)
0.0248967 + 0.999690i \(0.492074\pi\)
\(108\) −39.7028 151.112i −0.367618 1.39919i
\(109\) −2.99231 2.99231i −0.0274524 0.0274524i 0.693247 0.720700i \(-0.256179\pi\)
−0.720700 + 0.693247i \(0.756179\pi\)
\(110\) 0 0
\(111\) 49.1153i 0.442480i
\(112\) −78.7175 139.462i −0.702835 1.24519i
\(113\) −73.3488 −0.649105 −0.324552 0.945868i \(-0.605214\pi\)
−0.324552 + 0.945868i \(0.605214\pi\)
\(114\) −141.969 38.4113i −1.24535 0.336941i
\(115\) 0 0
\(116\) −33.2992 126.740i −0.287062 1.09258i
\(117\) −114.817 + 114.817i −0.981340 + 0.981340i
\(118\) 142.672 81.9090i 1.20908 0.694144i
\(119\) −258.263 −2.17028
\(120\) 0 0
\(121\) 120.814i 0.998466i
\(122\) −64.4943 + 37.0267i −0.528642 + 0.303498i
\(123\) 228.670 + 228.670i 1.85911 + 1.85911i
\(124\) 14.7618 25.2830i 0.119046 0.203895i
\(125\) 0 0
\(126\) 322.780 + 87.3315i 2.56175 + 0.693107i
\(127\) 212.909i 1.67645i −0.545323 0.838226i \(-0.683593\pi\)
0.545323 0.838226i \(-0.316407\pi\)
\(128\) −123.056 35.2310i −0.961375 0.275242i
\(129\) 107.734 0.835145
\(130\) 0 0
\(131\) 34.5741 34.5741i 0.263924 0.263924i −0.562722 0.826646i \(-0.690246\pi\)
0.826646 + 0.562722i \(0.190246\pi\)
\(132\) −7.54525 4.40538i −0.0571610 0.0333741i
\(133\) 102.655 102.655i 0.771838 0.771838i
\(134\) −6.31023 10.9913i −0.0470912 0.0820249i
\(135\) 0 0
\(136\) −147.027 + 144.895i −1.08108 + 1.06540i
\(137\) 156.675i 1.14362i 0.820388 + 0.571808i \(0.193758\pi\)
−0.820388 + 0.571808i \(0.806242\pi\)
\(138\) 170.309 + 296.650i 1.23413 + 2.14964i
\(139\) 150.961 + 150.961i 1.08605 + 1.08605i 0.995931 + 0.0901190i \(0.0287247\pi\)
0.0901190 + 0.995931i \(0.471275\pi\)
\(140\) 0 0
\(141\) 150.119 + 150.119i 1.06467 + 1.06467i
\(142\) 6.04204 22.3316i 0.0425496 0.157265i
\(143\) 4.18794i 0.0292863i
\(144\) 232.752 131.374i 1.61633 0.912318i
\(145\) 0 0
\(146\) 196.385 + 53.1339i 1.34510 + 0.363931i
\(147\) −183.479 + 183.479i −1.24816 + 1.24816i
\(148\) 37.4782 9.84693i 0.253231 0.0665333i
\(149\) 96.4520 96.4520i 0.647329 0.647329i −0.305018 0.952347i \(-0.598662\pi\)
0.952347 + 0.305018i \(0.0986624\pi\)
\(150\) 0 0
\(151\) 29.4114 0.194777 0.0973886 0.995246i \(-0.468951\pi\)
0.0973886 + 0.995246i \(0.468951\pi\)
\(152\) 0.847493 116.033i 0.00557561 0.763374i
\(153\) 431.023i 2.81714i
\(154\) 7.47941 4.29400i 0.0485676 0.0278831i
\(155\) 0 0
\(156\) −170.239 99.3957i −1.09127 0.637152i
\(157\) 117.658 + 117.658i 0.749415 + 0.749415i 0.974369 0.224954i \(-0.0722232\pi\)
−0.224954 + 0.974369i \(0.572223\pi\)
\(158\) −141.181 38.1981i −0.893553 0.241760i
\(159\) 261.973i 1.64763i
\(160\) 0 0
\(161\) −337.647 −2.09718
\(162\) −24.9127 + 92.0780i −0.153782 + 0.568383i
\(163\) 7.81267 7.81267i 0.0479305 0.0479305i −0.682735 0.730666i \(-0.739210\pi\)
0.730666 + 0.682735i \(0.239210\pi\)
\(164\) −128.645 + 220.336i −0.784423 + 1.34351i
\(165\) 0 0
\(166\) 56.2302 + 97.9434i 0.338736 + 0.590021i
\(167\) 255.372 1.52918 0.764588 0.644520i \(-0.222943\pi\)
0.764588 + 0.644520i \(0.222943\pi\)
\(168\) −2.96501 + 405.949i −0.0176489 + 2.41636i
\(169\) 74.5100i 0.440888i
\(170\) 0 0
\(171\) 171.323 + 171.323i 1.00189 + 1.00189i
\(172\) 21.5991 + 82.2079i 0.125576 + 0.477953i
\(173\) −27.0161 27.0161i −0.156162 0.156162i 0.624701 0.780864i \(-0.285221\pi\)
−0.780864 + 0.624701i \(0.785221\pi\)
\(174\) −86.7568 + 320.656i −0.498602 + 1.84285i
\(175\) 0 0
\(176\) 1.84888 6.64074i 0.0105050 0.0377315i
\(177\) −417.033 −2.35612
\(178\) 71.8476 + 19.4391i 0.403638 + 0.109208i
\(179\) 50.8893 50.8893i 0.284298 0.284298i −0.550523 0.834820i \(-0.685572\pi\)
0.834820 + 0.550523i \(0.185572\pi\)
\(180\) 0 0
\(181\) −13.6488 + 13.6488i −0.0754079 + 0.0754079i −0.743805 0.668397i \(-0.766981\pi\)
0.668397 + 0.743805i \(0.266981\pi\)
\(182\) 168.753 96.8828i 0.927216 0.532323i
\(183\) 188.519 1.03016
\(184\) −192.219 + 189.431i −1.04467 + 1.02952i
\(185\) 0 0
\(186\) −64.3632 + 36.9515i −0.346039 + 0.198664i
\(187\) −7.86078 7.86078i −0.0420362 0.0420362i
\(188\) −84.4540 + 144.648i −0.449224 + 0.769402i
\(189\) −276.446 276.446i −1.46268 1.46268i
\(190\) 0 0
\(191\) 263.019i 1.37706i −0.725206 0.688532i \(-0.758255\pi\)
0.725206 0.688532i \(-0.241745\pi\)
\(192\) 226.063 + 232.766i 1.17741 + 1.21232i
\(193\) 58.9456 0.305418 0.152709 0.988271i \(-0.451200\pi\)
0.152709 + 0.988271i \(0.451200\pi\)
\(194\) 59.9381 221.533i 0.308959 1.14192i
\(195\) 0 0
\(196\) −176.792 103.222i −0.901999 0.526642i
\(197\) −9.54461 + 9.54461i −0.0484498 + 0.0484498i −0.730917 0.682467i \(-0.760907\pi\)
0.682467 + 0.730917i \(0.260907\pi\)
\(198\) 7.16637 + 12.4826i 0.0361938 + 0.0630434i
\(199\) 103.151 0.518348 0.259174 0.965831i \(-0.416550\pi\)
0.259174 + 0.965831i \(0.416550\pi\)
\(200\) 0 0
\(201\) 32.1280i 0.159841i
\(202\) −5.43849 9.47293i −0.0269232 0.0468957i
\(203\) −231.859 231.859i −1.14216 1.14216i
\(204\) 506.104 132.972i 2.48090 0.651825i
\(205\) 0 0
\(206\) −42.9924 + 158.902i −0.208701 + 0.771367i
\(207\) 563.508i 2.72226i
\(208\) 41.7151 149.831i 0.200553 0.720341i
\(209\) 6.24900 0.0298995
\(210\) 0 0
\(211\) 4.93870 4.93870i 0.0234062 0.0234062i −0.695307 0.718713i \(-0.744732\pi\)
0.718713 + 0.695307i \(0.244732\pi\)
\(212\) −199.903 + 52.5219i −0.942938 + 0.247745i
\(213\) −41.4685 + 41.4685i −0.194688 + 0.194688i
\(214\) 268.916 154.387i 1.25662 0.721435i
\(215\) 0 0
\(216\) −312.473 2.28227i −1.44664 0.0105661i
\(217\) 73.2582i 0.337595i
\(218\) −7.33992 + 4.21391i −0.0336693 + 0.0193299i
\(219\) −364.675 364.675i −1.66518 1.66518i
\(220\) 0 0
\(221\) −177.358 177.358i −0.802524 0.802524i
\(222\) −94.8213 25.6549i −0.427123 0.115563i
\(223\) 177.151i 0.794401i −0.917732 0.397200i \(-0.869982\pi\)
0.917732 0.397200i \(-0.130018\pi\)
\(224\) −310.360 + 79.1245i −1.38554 + 0.353234i
\(225\) 0 0
\(226\) −38.3130 + 141.606i −0.169527 + 0.626576i
\(227\) 239.268 239.268i 1.05404 1.05404i 0.0555894 0.998454i \(-0.482296\pi\)
0.998454 0.0555894i \(-0.0177038\pi\)
\(228\) −148.312 + 254.020i −0.650493 + 1.11412i
\(229\) −106.699 + 106.699i −0.465933 + 0.465933i −0.900594 0.434661i \(-0.856868\pi\)
0.434661 + 0.900594i \(0.356868\pi\)
\(230\) 0 0
\(231\) −21.8626 −0.0946431
\(232\) −262.075 1.91417i −1.12964 0.00825074i
\(233\) 132.961i 0.570649i −0.958431 0.285324i \(-0.907899\pi\)
0.958431 0.285324i \(-0.0921013\pi\)
\(234\) 161.690 + 281.637i 0.690984 + 1.20358i
\(235\) 0 0
\(236\) −83.6093 318.224i −0.354277 1.34841i
\(237\) 262.166 + 262.166i 1.10618 + 1.10618i
\(238\) −134.901 + 498.599i −0.566812 + 2.09496i
\(239\) 89.6649i 0.375167i −0.982249 0.187584i \(-0.939934\pi\)
0.982249 0.187584i \(-0.0600655\pi\)
\(240\) 0 0
\(241\) 259.019 1.07477 0.537383 0.843338i \(-0.319413\pi\)
0.537383 + 0.843338i \(0.319413\pi\)
\(242\) −233.243 63.1062i −0.963812 0.260769i
\(243\) −77.5940 + 77.5940i −0.319317 + 0.319317i
\(244\) 37.7954 + 143.852i 0.154899 + 0.589559i
\(245\) 0 0
\(246\) 560.911 322.024i 2.28013 1.30904i
\(247\) 140.992 0.570819
\(248\) −41.1004 41.7052i −0.165727 0.168166i
\(249\) 286.292i 1.14977i
\(250\) 0 0
\(251\) 85.2338 + 85.2338i 0.339577 + 0.339577i 0.856208 0.516631i \(-0.172814\pi\)
−0.516631 + 0.856208i \(0.672814\pi\)
\(252\) 337.202 577.538i 1.33810 2.29182i
\(253\) −10.2770 10.2770i −0.0406205 0.0406205i
\(254\) −411.040 111.211i −1.61827 0.437839i
\(255\) 0 0
\(256\) −132.293 + 219.168i −0.516771 + 0.856123i
\(257\) −451.683 −1.75752 −0.878760 0.477264i \(-0.841628\pi\)
−0.878760 + 0.477264i \(0.841628\pi\)
\(258\) 56.2736 207.989i 0.218115 0.806159i
\(259\) 68.5629 68.5629i 0.264722 0.264722i
\(260\) 0 0
\(261\) 386.955 386.955i 1.48259 1.48259i
\(262\) −48.6888 84.8077i −0.185835 0.323694i
\(263\) 0.939393 0.00357184 0.00178592 0.999998i \(-0.499432\pi\)
0.00178592 + 0.999998i \(0.499432\pi\)
\(264\) −12.4461 + 12.2656i −0.0471445 + 0.0464608i
\(265\) 0 0
\(266\) −144.563 251.804i −0.543469 0.946631i
\(267\) −133.417 133.417i −0.499689 0.499689i
\(268\) −24.5158 + 6.44121i −0.0914769 + 0.0240344i
\(269\) 141.098 + 141.098i 0.524527 + 0.524527i 0.918935 0.394408i \(-0.129050\pi\)
−0.394408 + 0.918935i \(0.629050\pi\)
\(270\) 0 0
\(271\) 237.677i 0.877037i 0.898722 + 0.438518i \(0.144497\pi\)
−0.898722 + 0.438518i \(0.855503\pi\)
\(272\) 202.933 + 359.532i 0.746079 + 1.32181i
\(273\) −493.271 −1.80685
\(274\) 302.475 + 81.8378i 1.10392 + 0.298678i
\(275\) 0 0
\(276\) 661.668 173.845i 2.39735 0.629872i
\(277\) 301.681 301.681i 1.08910 1.08910i 0.0934800 0.995621i \(-0.470201\pi\)
0.995621 0.0934800i \(-0.0297991\pi\)
\(278\) 370.296 212.590i 1.33200 0.764713i
\(279\) 122.263 0.438217
\(280\) 0 0
\(281\) 209.865i 0.746850i 0.927660 + 0.373425i \(0.121817\pi\)
−0.927660 + 0.373425i \(0.878183\pi\)
\(282\) 368.231 211.405i 1.30578 0.749661i
\(283\) −87.1403 87.1403i −0.307916 0.307916i 0.536184 0.844101i \(-0.319865\pi\)
−0.844101 + 0.536184i \(0.819865\pi\)
\(284\) −39.9570 23.3293i −0.140694 0.0821456i
\(285\) 0 0
\(286\) 8.08518 + 2.18753i 0.0282699 + 0.00764871i
\(287\) 638.428i 2.22449i
\(288\) −132.053 517.969i −0.458518 1.79850i
\(289\) 376.801 1.30381
\(290\) 0 0
\(291\) −411.374 + 411.374i −1.41366 + 1.41366i
\(292\) 205.159 351.383i 0.702599 1.20337i
\(293\) −210.545 + 210.545i −0.718583 + 0.718583i −0.968315 0.249732i \(-0.919657\pi\)
0.249732 + 0.968315i \(0.419657\pi\)
\(294\) 258.384 + 450.061i 0.878856 + 1.53082i
\(295\) 0 0
\(296\) 0.566040 77.4984i 0.00191230 0.261819i
\(297\) 16.8284i 0.0566612i
\(298\) −135.828 236.590i −0.455799 0.793925i
\(299\) −231.873 231.873i −0.775495 0.775495i
\(300\) 0 0
\(301\) 150.392 + 150.392i 0.499640 + 0.499640i
\(302\) 15.3627 56.7812i 0.0508699 0.188017i
\(303\) 27.6897i 0.0913851i
\(304\) −223.569 62.2448i −0.735424 0.204753i
\(305\) 0 0
\(306\) −832.126 225.140i −2.71937 0.735752i
\(307\) −345.339 + 345.339i −1.12488 + 1.12488i −0.133888 + 0.990996i \(0.542746\pi\)
−0.990996 + 0.133888i \(0.957254\pi\)
\(308\) −4.38313 16.6826i −0.0142310 0.0541642i
\(309\) 295.071 295.071i 0.954923 0.954923i
\(310\) 0 0
\(311\) −99.7096 −0.320610 −0.160305 0.987068i \(-0.551248\pi\)
−0.160305 + 0.987068i \(0.551248\pi\)
\(312\) −280.814 + 276.742i −0.900046 + 0.886994i
\(313\) 311.334i 0.994678i 0.867556 + 0.497339i \(0.165689\pi\)
−0.867556 + 0.497339i \(0.834311\pi\)
\(314\) 288.607 165.692i 0.919130 0.527680i
\(315\) 0 0
\(316\) −147.489 + 252.610i −0.466738 + 0.799400i
\(317\) −19.2419 19.2419i −0.0607000 0.0607000i 0.676105 0.736805i \(-0.263666\pi\)
−0.736805 + 0.676105i \(0.763666\pi\)
\(318\) 505.762 + 136.839i 1.59045 + 0.430312i
\(319\) 14.1142i 0.0442451i
\(320\) 0 0
\(321\) −786.050 −2.44875
\(322\) −176.366 + 651.856i −0.547722 + 2.02440i
\(323\) −264.643 + 264.643i −0.819328 + 0.819328i
\(324\) 164.752 + 96.1920i 0.508493 + 0.296889i
\(325\) 0 0
\(326\) −11.0022 19.1639i −0.0337490 0.0587850i
\(327\) 21.4548 0.0656110
\(328\) 358.180 + 363.451i 1.09201 + 1.10808i
\(329\) 419.120i 1.27392i
\(330\) 0 0
\(331\) 194.214 + 194.214i 0.586750 + 0.586750i 0.936750 0.350000i \(-0.113818\pi\)
−0.350000 + 0.936750i \(0.613818\pi\)
\(332\) 218.459 57.3974i 0.658010 0.172884i
\(333\) 114.427 + 114.427i 0.343623 + 0.343623i
\(334\) 133.391 493.018i 0.399375 1.47610i
\(335\) 0 0
\(336\) 782.170 + 217.767i 2.32789 + 0.648117i
\(337\) 552.303 1.63888 0.819441 0.573164i \(-0.194284\pi\)
0.819441 + 0.573164i \(0.194284\pi\)
\(338\) −143.848 38.9196i −0.425586 0.115147i
\(339\) 262.955 262.955i 0.775677 0.775677i
\(340\) 0 0
\(341\) 2.22976 2.22976i 0.00653890 0.00653890i
\(342\) 420.242 241.265i 1.22878 0.705453i
\(343\) −21.8182 −0.0636099
\(344\) 169.991 + 1.24160i 0.494161 + 0.00360930i
\(345\) 0 0
\(346\) −66.2685 + 38.0453i −0.191527 + 0.109958i
\(347\) −119.162 119.162i −0.343407 0.343407i 0.514239 0.857647i \(-0.328074\pi\)
−0.857647 + 0.514239i \(0.828074\pi\)
\(348\) 573.738 + 334.983i 1.64867 + 0.962595i
\(349\) −170.249 170.249i −0.487821 0.487821i 0.419797 0.907618i \(-0.362101\pi\)
−0.907618 + 0.419797i \(0.862101\pi\)
\(350\) 0 0
\(351\) 379.688i 1.08173i
\(352\) −11.8548 7.03814i −0.0336783 0.0199947i
\(353\) 551.816 1.56322 0.781609 0.623769i \(-0.214399\pi\)
0.781609 + 0.623769i \(0.214399\pi\)
\(354\) −217.833 + 805.118i −0.615348 + 2.27435i
\(355\) 0 0
\(356\) 75.0577 128.554i 0.210836 0.361107i
\(357\) 925.871 925.871i 2.59347 2.59347i
\(358\) −71.6646 124.828i −0.200180 0.348680i
\(359\) 432.275 1.20411 0.602054 0.798456i \(-0.294349\pi\)
0.602054 + 0.798456i \(0.294349\pi\)
\(360\) 0 0
\(361\) 150.619i 0.417228i
\(362\) 19.2209 + 33.4796i 0.0530964 + 0.0924850i
\(363\) 433.118 + 433.118i 1.19316 + 1.19316i
\(364\) −98.8939 376.399i −0.271687 1.03406i
\(365\) 0 0
\(366\) 98.4709 363.952i 0.269046 0.994404i
\(367\) 223.982i 0.610306i −0.952303 0.305153i \(-0.901292\pi\)
0.952303 0.305153i \(-0.0987076\pi\)
\(368\) 265.310 + 470.043i 0.720951 + 1.27729i
\(369\) −1065.49 −2.88751
\(370\) 0 0
\(371\) −365.704 + 365.704i −0.985725 + 0.985725i
\(372\) 37.7185 + 143.560i 0.101394 + 0.385914i
\(373\) 348.716 348.716i 0.934897 0.934897i −0.0631100 0.998007i \(-0.520102\pi\)
0.998007 + 0.0631100i \(0.0201019\pi\)
\(374\) −19.2819 + 11.0699i −0.0515559 + 0.0295987i
\(375\) 0 0
\(376\) 235.141 + 238.601i 0.625374 + 0.634577i
\(377\) 318.450i 0.844694i
\(378\) −678.100 + 389.303i −1.79392 + 1.02990i
\(379\) −374.578 374.578i −0.988332 0.988332i 0.0116005 0.999933i \(-0.496307\pi\)
−0.999933 + 0.0116005i \(0.996307\pi\)
\(380\) 0 0
\(381\) 763.278 + 763.278i 2.00335 + 2.00335i
\(382\) −507.781 137.385i −1.32927 0.359648i
\(383\) 431.347i 1.12623i −0.826378 0.563116i \(-0.809602\pi\)
0.826378 0.563116i \(-0.190398\pi\)
\(384\) 567.457 314.852i 1.47775 0.819926i
\(385\) 0 0
\(386\) 30.7896 113.800i 0.0797659 0.294817i
\(387\) −250.993 + 250.993i −0.648560 + 0.648560i
\(388\) −396.381 231.431i −1.02160 0.596472i
\(389\) 55.8528 55.8528i 0.143580 0.143580i −0.631663 0.775243i \(-0.717627\pi\)
0.775243 + 0.631663i \(0.217627\pi\)
\(390\) 0 0
\(391\) 870.452 2.22622
\(392\) −291.624 + 287.395i −0.743938 + 0.733150i
\(393\) 247.895i 0.630777i
\(394\) 13.4412 + 23.4122i 0.0341146 + 0.0594219i
\(395\) 0 0
\(396\) 27.8420 7.31513i 0.0703081 0.0184726i
\(397\) 104.083 + 104.083i 0.262173 + 0.262173i 0.825936 0.563763i \(-0.190647\pi\)
−0.563763 + 0.825936i \(0.690647\pi\)
\(398\) 53.8800 199.142i 0.135377 0.500358i
\(399\) 736.030i 1.84469i
\(400\) 0 0
\(401\) 32.9517 0.0821738 0.0410869 0.999156i \(-0.486918\pi\)
0.0410869 + 0.999156i \(0.486918\pi\)
\(402\) 62.0259 + 16.7817i 0.154293 + 0.0417456i
\(403\) 50.3088 50.3088i 0.124836 0.124836i
\(404\) −21.1291 + 5.55139i −0.0522996 + 0.0137411i
\(405\) 0 0
\(406\) −568.732 + 326.514i −1.40082 + 0.804221i
\(407\) 4.17371 0.0102548
\(408\) 7.64378 1046.53i 0.0187348 2.56503i
\(409\) 559.822i 1.36876i 0.729126 + 0.684379i \(0.239927\pi\)
−0.729126 + 0.684379i \(0.760073\pi\)
\(410\) 0 0
\(411\) −561.679 561.679i −1.36662 1.36662i
\(412\) 284.316 + 166.001i 0.690088 + 0.402916i
\(413\) −582.161 582.161i −1.40959 1.40959i
\(414\) −1087.90 294.343i −2.62778 0.710972i
\(415\) 0 0
\(416\) −267.472 158.797i −0.642961 0.381724i
\(417\) −1082.39 −2.59565
\(418\) 3.26410 12.0642i 0.00780886 0.0288618i
\(419\) 168.614 168.614i 0.402420 0.402420i −0.476665 0.879085i \(-0.658155\pi\)
0.879085 + 0.476665i \(0.158155\pi\)
\(420\) 0 0
\(421\) 409.607 409.607i 0.972937 0.972937i −0.0267062 0.999643i \(-0.508502\pi\)
0.999643 + 0.0267062i \(0.00850184\pi\)
\(422\) −6.95491 12.1143i −0.0164808 0.0287068i
\(423\) −699.481 −1.65362
\(424\) −3.01917 + 413.364i −0.00712068 + 0.974915i
\(425\) 0 0
\(426\) 58.3978 + 101.719i 0.137084 + 0.238777i
\(427\) 263.164 + 263.164i 0.616310 + 0.616310i
\(428\) −157.592 599.808i −0.368205 1.40142i
\(429\) −15.0137 15.0137i −0.0349970 0.0349970i
\(430\) 0 0
\(431\) 307.273i 0.712930i −0.934309 0.356465i \(-0.883982\pi\)
0.934309 0.356465i \(-0.116018\pi\)
\(432\) −167.623 + 602.064i −0.388017 + 1.39367i
\(433\) 573.906 1.32542 0.662709 0.748877i \(-0.269407\pi\)
0.662709 + 0.748877i \(0.269407\pi\)
\(434\) −141.431 38.2657i −0.325878 0.0881697i
\(435\) 0 0
\(436\) 4.30138 + 16.3714i 0.00986556 + 0.0375492i
\(437\) −345.987 + 345.987i −0.791733 + 0.791733i
\(438\) −894.521 + 513.552i −2.04228 + 1.17249i
\(439\) −491.449 −1.11947 −0.559737 0.828670i \(-0.689098\pi\)
−0.559737 + 0.828670i \(0.689098\pi\)
\(440\) 0 0
\(441\) 854.922i 1.93860i
\(442\) −435.045 + 249.763i −0.984266 + 0.565075i
\(443\) −343.974 343.974i −0.776466 0.776466i 0.202762 0.979228i \(-0.435008\pi\)
−0.979228 + 0.202762i \(0.935008\pi\)
\(444\) −99.0579 + 169.660i −0.223103 + 0.382117i
\(445\) 0 0
\(446\) −342.006 92.5332i −0.766829 0.207474i
\(447\) 691.558i 1.54711i
\(448\) −9.35690 + 640.507i −0.0208859 + 1.42970i
\(449\) −153.260 −0.341337 −0.170668 0.985329i \(-0.554593\pi\)
−0.170668 + 0.985329i \(0.554593\pi\)
\(450\) 0 0
\(451\) −19.4319 + 19.4319i −0.0430862 + 0.0430862i
\(452\) 253.370 + 147.933i 0.560554 + 0.327286i
\(453\) −105.439 + 105.439i −0.232758 + 0.232758i
\(454\) −336.948 586.906i −0.742176 1.29274i
\(455\) 0 0
\(456\) 412.938 + 419.015i 0.905567 + 0.918892i
\(457\) 708.281i 1.54985i 0.632054 + 0.774924i \(0.282212\pi\)
−0.632054 + 0.774924i \(0.717788\pi\)
\(458\) 150.258 + 261.724i 0.328074 + 0.571450i
\(459\) 712.676 + 712.676i 1.55267 + 1.55267i
\(460\) 0 0
\(461\) 20.0249 + 20.0249i 0.0434379 + 0.0434379i 0.728492 0.685054i \(-0.240221\pi\)
−0.685054 + 0.728492i \(0.740221\pi\)
\(462\) −11.4197 + 42.2075i −0.0247179 + 0.0913583i
\(463\) 30.9338i 0.0668117i 0.999442 + 0.0334059i \(0.0106354\pi\)
−0.999442 + 0.0334059i \(0.989365\pi\)
\(464\) −140.588 + 504.959i −0.302991 + 1.08827i
\(465\) 0 0
\(466\) −256.693 69.4509i −0.550843 0.149036i
\(467\) −89.9400 + 89.9400i −0.192591 + 0.192591i −0.796815 0.604224i \(-0.793483\pi\)
0.604224 + 0.796815i \(0.293483\pi\)
\(468\) 628.182 165.047i 1.34227 0.352664i
\(469\) −44.8494 + 44.8494i −0.0956277 + 0.0956277i
\(470\) 0 0
\(471\) −843.606 −1.79110
\(472\) −658.031 4.80619i −1.39413 0.0101826i
\(473\) 9.15497i 0.0193551i
\(474\) 643.073 369.194i 1.35669 0.778890i
\(475\) 0 0
\(476\) 892.124 + 520.877i 1.87421 + 1.09428i
\(477\) −610.333 610.333i −1.27952 1.27952i
\(478\) −173.106 46.8356i −0.362146 0.0979824i
\(479\) 424.069i 0.885322i −0.896689 0.442661i \(-0.854035\pi\)
0.896689 0.442661i \(-0.145965\pi\)
\(480\) 0 0
\(481\) 94.1688 0.195777
\(482\) 135.296 500.058i 0.280697 1.03746i
\(483\) 1210.46 1210.46i 2.50613 2.50613i
\(484\) −243.664 + 417.332i −0.503437 + 0.862256i
\(485\) 0 0
\(486\) 109.271 + 190.332i 0.224838 + 0.391630i
\(487\) −509.544 −1.04629 −0.523146 0.852243i \(-0.675242\pi\)
−0.523146 + 0.852243i \(0.675242\pi\)
\(488\) 297.461 + 2.17263i 0.609552 + 0.00445210i
\(489\) 56.0166i 0.114553i
\(490\) 0 0
\(491\) 232.469 + 232.469i 0.473461 + 0.473461i 0.903033 0.429572i \(-0.141335\pi\)
−0.429572 + 0.903033i \(0.641335\pi\)
\(492\) −328.708 1251.09i −0.668107 2.54287i
\(493\) 597.730 + 597.730i 1.21243 + 1.21243i
\(494\) 73.6459 272.198i 0.149081 0.551008i
\(495\) 0 0
\(496\) −101.984 + 57.5635i −0.205612 + 0.116055i
\(497\) −115.777 −0.232951
\(498\) −552.710 149.541i −1.10986 0.300284i
\(499\) −609.443 + 609.443i −1.22133 + 1.22133i −0.254170 + 0.967160i \(0.581802\pi\)
−0.967160 + 0.254170i \(0.918198\pi\)
\(500\) 0 0
\(501\) −915.506 + 915.506i −1.82736 + 1.82736i
\(502\) 209.072 120.030i 0.416479 0.239104i
\(503\) 83.3154 0.165637 0.0828185 0.996565i \(-0.473608\pi\)
0.0828185 + 0.996565i \(0.473608\pi\)
\(504\) −938.853 952.668i −1.86280 1.89022i
\(505\) 0 0
\(506\) −25.2087 + 14.4725i −0.0498195 + 0.0286018i
\(507\) 267.118 + 267.118i 0.526859 + 0.526859i
\(508\) −429.405 + 735.458i −0.845285 + 1.44775i
\(509\) 534.566 + 534.566i 1.05023 + 1.05023i 0.998670 + 0.0515585i \(0.0164189\pi\)
0.0515585 + 0.998670i \(0.483581\pi\)
\(510\) 0 0
\(511\) 1018.14i 1.99245i
\(512\) 354.020 + 369.884i 0.691445 + 0.722429i
\(513\) −566.549 −1.10438
\(514\) −235.932 + 872.012i −0.459011 + 1.69652i
\(515\) 0 0
\(516\) −372.147 217.282i −0.721215 0.421089i
\(517\) −12.7568 + 12.7568i −0.0246746 + 0.0246746i
\(518\) −96.5535 168.180i −0.186397 0.324671i
\(519\) 193.705 0.373227
\(520\) 0 0
\(521\) 513.800i 0.986181i 0.869978 + 0.493091i \(0.164133\pi\)
−0.869978 + 0.493091i \(0.835867\pi\)
\(522\) −544.928 949.172i −1.04392 1.81834i
\(523\) 146.299 + 146.299i 0.279731 + 0.279731i 0.833001 0.553271i \(-0.186621\pi\)
−0.553271 + 0.833001i \(0.686621\pi\)
\(524\) −189.161 + 49.6995i −0.360994 + 0.0948464i
\(525\) 0 0
\(526\) 0.490682 1.81358i 0.000932856 0.00344787i
\(527\) 188.859i 0.358367i
\(528\) 17.1788 + 30.4352i 0.0325355 + 0.0576424i
\(529\) 609.006 1.15124
\(530\) 0 0
\(531\) 971.585 971.585i 1.82973 1.82973i
\(532\) −561.640 + 147.564i −1.05571 + 0.277375i
\(533\) −438.429 + 438.429i −0.822569 + 0.822569i
\(534\) −327.262 + 187.884i −0.612850 + 0.351842i
\(535\) 0 0
\(536\) −0.370267 + 50.6944i −0.000690796 + 0.0945791i
\(537\) 364.875i 0.679469i
\(538\) 346.102 198.700i 0.643313 0.369332i
\(539\) −15.5917 15.5917i −0.0289270 0.0289270i
\(540\) 0 0
\(541\) −610.827 610.827i −1.12907 1.12907i −0.990328 0.138743i \(-0.955694\pi\)
−0.138743 0.990328i \(-0.544306\pi\)
\(542\) 458.856 + 124.148i 0.846597 + 0.229056i
\(543\) 97.8618i 0.180224i
\(544\) 800.107 203.983i 1.47079 0.374968i
\(545\) 0 0
\(546\) −257.655 + 952.302i −0.471896 + 1.74414i
\(547\) 392.410 392.410i 0.717386 0.717386i −0.250683 0.968069i \(-0.580655\pi\)
0.968069 + 0.250683i \(0.0806552\pi\)
\(548\) 315.990 541.207i 0.576624 0.987604i
\(549\) −439.202 + 439.202i −0.800004 + 0.800004i
\(550\) 0 0
\(551\) −475.172 −0.862381
\(552\) 9.99328 1368.21i 0.0181038 2.47865i
\(553\) 731.945i 1.32359i
\(554\) −424.841 740.001i −0.766861 1.33574i
\(555\) 0 0
\(556\) −217.003 825.932i −0.390293 1.48549i
\(557\) 587.051 + 587.051i 1.05395 + 1.05395i 0.998459 + 0.0554921i \(0.0176728\pi\)
0.0554921 + 0.998459i \(0.482327\pi\)
\(558\) 63.8626 236.038i 0.114449 0.423008i
\(559\) 206.558i 0.369513i
\(560\) 0 0
\(561\) 56.3616 0.100466
\(562\) 405.162 + 109.621i 0.720929 + 0.195055i
\(563\) −168.514 + 168.514i −0.299314 + 0.299314i −0.840745 0.541431i \(-0.817883\pi\)
0.541431 + 0.840745i \(0.317883\pi\)
\(564\) −215.793 821.326i −0.382612 1.45625i
\(565\) 0 0
\(566\) −213.749 + 122.715i −0.377648 + 0.216811i
\(567\) 477.372 0.841926
\(568\) −65.9104 + 64.9546i −0.116040 + 0.114357i
\(569\) 550.627i 0.967711i −0.875148 0.483855i \(-0.839236\pi\)
0.875148 0.483855i \(-0.160764\pi\)
\(570\) 0 0
\(571\) −163.518 163.518i −0.286371 0.286371i 0.549272 0.835644i \(-0.314905\pi\)
−0.835644 + 0.549272i \(0.814905\pi\)
\(572\) 8.44643 14.4665i 0.0147665 0.0252911i
\(573\) 942.921 + 942.921i 1.64559 + 1.64559i
\(574\) 1232.54 + 333.476i 2.14728 + 0.580969i
\(575\) 0 0
\(576\) −1068.96 15.6160i −1.85583 0.0271111i
\(577\) −15.6965 −0.0272037 −0.0136018 0.999907i \(-0.504330\pi\)
−0.0136018 + 0.999907i \(0.504330\pi\)
\(578\) 196.818 727.447i 0.340516 1.25856i
\(579\) −211.319 + 211.319i −0.364973 + 0.364973i
\(580\) 0 0
\(581\) 399.651 399.651i 0.687868 0.687868i
\(582\) 579.316 + 1009.07i 0.995389 + 1.73380i
\(583\) −22.2619 −0.0381851
\(584\) −571.213 579.619i −0.978104 0.992497i
\(585\) 0 0
\(586\) 296.499 + 516.451i 0.505971 + 0.881315i
\(587\) −715.538 715.538i −1.21897 1.21897i −0.967992 0.250983i \(-0.919246\pi\)
−0.250983 0.967992i \(-0.580754\pi\)
\(588\) 1003.85 263.747i 1.70722 0.448550i
\(589\) −75.0678 75.0678i −0.127450 0.127450i
\(590\) 0 0
\(591\) 68.4346i 0.115795i
\(592\) −149.322 41.5733i −0.252232 0.0702251i
\(593\) 557.100 0.939460 0.469730 0.882810i \(-0.344351\pi\)
0.469730 + 0.882810i \(0.344351\pi\)
\(594\) −32.4886 8.79014i −0.0546947 0.0147982i
\(595\) 0 0
\(596\) −527.705 + 138.648i −0.885411 + 0.232630i
\(597\) −369.796 + 369.796i −0.619424 + 0.619424i
\(598\) −568.767 + 326.534i −0.951116 + 0.546044i
\(599\) 524.845 0.876202 0.438101 0.898926i \(-0.355651\pi\)
0.438101 + 0.898926i \(0.355651\pi\)
\(600\) 0 0
\(601\) 182.301i 0.303330i −0.988432 0.151665i \(-0.951537\pi\)
0.988432 0.151665i \(-0.0484635\pi\)
\(602\) 368.900 211.789i 0.612790 0.351808i
\(603\) −74.8504 74.8504i −0.124130 0.124130i
\(604\) −101.596 59.3181i −0.168206 0.0982088i
\(605\) 0 0
\(606\) 53.4573 + 14.4634i 0.0882133 + 0.0238670i
\(607\) 987.505i 1.62686i −0.581662 0.813431i \(-0.697597\pi\)
0.581662 0.813431i \(-0.302403\pi\)
\(608\) −236.948 + 399.106i −0.389717 + 0.656424i
\(609\) 1662.42 2.72975
\(610\) 0 0
\(611\) −287.823 + 287.823i −0.471069 + 0.471069i
\(612\) −869.305 + 1488.89i −1.42043 + 2.43283i
\(613\) −768.517 + 768.517i −1.25370 + 1.25370i −0.299648 + 0.954050i \(0.596869\pi\)
−0.954050 + 0.299648i \(0.903131\pi\)
\(614\) 486.323 + 847.092i 0.792057 + 1.37963i
\(615\) 0 0
\(616\) −34.4966 0.251960i −0.0560010 0.000409026i
\(617\) 467.462i 0.757636i −0.925471 0.378818i \(-0.876331\pi\)
0.925471 0.378818i \(-0.123669\pi\)
\(618\) −415.533 723.787i −0.672383 1.17118i
\(619\) −272.667 272.667i −0.440496 0.440496i 0.451682 0.892179i \(-0.350824\pi\)
−0.892179 + 0.451682i \(0.850824\pi\)
\(620\) 0 0
\(621\) 931.734 + 931.734i 1.50038 + 1.50038i
\(622\) −52.0823 + 192.498i −0.0837336 + 0.309482i
\(623\) 372.489i 0.597896i
\(624\) 387.594 + 686.690i 0.621144 + 1.10046i
\(625\) 0 0
\(626\) 601.057 + 162.622i 0.960155 + 0.259780i
\(627\) −22.4026 + 22.4026i −0.0357298 + 0.0357298i
\(628\) −169.131 643.727i −0.269317 1.02504i
\(629\) −176.755 + 176.755i −0.281009 + 0.281009i
\(630\) 0 0
\(631\) 1107.18 1.75465 0.877324 0.479898i \(-0.159326\pi\)
0.877324 + 0.479898i \(0.159326\pi\)
\(632\) 410.646 + 416.689i 0.649757 + 0.659318i
\(633\) 35.4104i 0.0559405i
\(634\) −47.1989 + 27.0973i −0.0744462 + 0.0427402i
\(635\) 0 0
\(636\) 528.359 904.940i 0.830753 1.42286i
\(637\) −351.785 351.785i −0.552252 0.552252i
\(638\) −27.2486 7.37240i −0.0427095 0.0115555i
\(639\) 193.223i 0.302383i
\(640\) 0 0
\(641\) −645.436 −1.00692 −0.503460 0.864018i \(-0.667940\pi\)
−0.503460 + 0.864018i \(0.667940\pi\)
\(642\) −410.585 + 1517.54i −0.639541 + 2.36376i
\(643\) −397.860 + 397.860i −0.618756 + 0.618756i −0.945212 0.326456i \(-0.894145\pi\)
0.326456 + 0.945212i \(0.394145\pi\)
\(644\) 1166.34 + 680.981i 1.81109 + 1.05742i
\(645\) 0 0
\(646\) 372.682 + 649.149i 0.576907 + 1.00487i
\(647\) 386.850 0.597913 0.298956 0.954267i \(-0.403361\pi\)
0.298956 + 0.954267i \(0.403361\pi\)
\(648\) 271.763 267.822i 0.419388 0.413306i
\(649\) 35.4386i 0.0546049i
\(650\) 0 0
\(651\) 262.630 + 262.630i 0.403425 + 0.403425i
\(652\) −42.7444 + 11.2305i −0.0655589 + 0.0172248i
\(653\) 557.600 + 557.600i 0.853905 + 0.853905i 0.990612 0.136707i \(-0.0436517\pi\)
−0.136707 + 0.990612i \(0.543652\pi\)
\(654\) 11.2067 41.4203i 0.0171356 0.0633338i
\(655\) 0 0
\(656\) 888.765 501.653i 1.35482 0.764714i
\(657\) 1699.21 2.58631
\(658\) 809.147 + 218.923i 1.22971 + 0.332710i
\(659\) 85.5304 85.5304i 0.129788 0.129788i −0.639229 0.769017i \(-0.720746\pi\)
0.769017 + 0.639229i \(0.220746\pi\)
\(660\) 0 0
\(661\) −677.148 + 677.148i −1.02443 + 1.02443i −0.0247351 + 0.999694i \(0.507874\pi\)
−0.999694 + 0.0247351i \(0.992126\pi\)
\(662\) 476.393 273.501i 0.719627 0.413144i
\(663\) 1271.65 1.91803
\(664\) 3.29943 451.736i 0.00496902 0.680325i
\(665\) 0 0
\(666\) 280.680 161.141i 0.421441 0.241953i
\(667\) 781.457 + 781.457i 1.17160 + 1.17160i
\(668\) −882.138 515.046i −1.32057 0.771027i
\(669\) 635.086 + 635.086i 0.949306 + 0.949306i
\(670\) 0 0
\(671\) 16.0199i 0.0238747i
\(672\) 828.977 1396.30i 1.23360 2.07782i
\(673\) −1077.92 −1.60167 −0.800836 0.598884i \(-0.795611\pi\)
−0.800836 + 0.598884i \(0.795611\pi\)
\(674\) 288.490 1066.27i 0.428027 1.58200i
\(675\) 0 0
\(676\) −150.275 + 257.382i −0.222300 + 0.380742i
\(677\) −926.183 + 926.183i −1.36807 + 1.36807i −0.504881 + 0.863189i \(0.668464\pi\)
−0.863189 + 0.504881i \(0.831536\pi\)
\(678\) −370.305 645.008i −0.546172 0.951339i
\(679\) −1148.52 −1.69149
\(680\) 0 0
\(681\) 1715.54i 2.51915i
\(682\) −3.14006 5.46944i −0.00460419 0.00801971i
\(683\) −548.522 548.522i −0.803107 0.803107i 0.180473 0.983580i \(-0.442237\pi\)
−0.983580 + 0.180473i \(0.942237\pi\)
\(684\) −246.273 937.336i −0.360048 1.37037i
\(685\) 0 0
\(686\) −11.3965 + 42.1219i −0.0166130 + 0.0614022i
\(687\) 765.027i 1.11358i
\(688\) 91.1903 327.535i 0.132544 0.476068i
\(689\) −502.281 −0.729001
\(690\) 0 0
\(691\) −21.6062 + 21.6062i −0.0312680 + 0.0312680i −0.722568 0.691300i \(-0.757038\pi\)
0.691300 + 0.722568i \(0.257038\pi\)
\(692\) 38.8351 + 147.810i 0.0561200 + 0.213598i
\(693\) 50.9344 50.9344i 0.0734984 0.0734984i
\(694\) −292.296 + 167.810i −0.421176 + 0.241801i
\(695\) 0 0
\(696\) 946.399 932.675i 1.35977 1.34005i
\(697\) 1645.86i 2.36136i
\(698\) −417.609 + 239.753i −0.598294 + 0.343486i
\(699\) 476.664 + 476.664i 0.681923 + 0.681923i
\(700\) 0 0
\(701\) −462.868 462.868i −0.660296 0.660296i 0.295153 0.955450i \(-0.404629\pi\)
−0.955450 + 0.295153i \(0.904629\pi\)
\(702\) −733.021 198.326i −1.04419 0.282516i
\(703\) 140.513i 0.199877i
\(704\) −19.7800 + 19.2104i −0.0280965 + 0.0272874i
\(705\) 0 0
\(706\) 288.235 1065.33i 0.408266 1.50896i
\(707\) −38.6536 + 38.6536i −0.0546728 + 0.0546728i
\(708\) 1440.57 + 841.091i 2.03470 + 1.18798i
\(709\) −91.9564 + 91.9564i −0.129699 + 0.129699i −0.768976 0.639277i \(-0.779234\pi\)
0.639277 + 0.768976i \(0.279234\pi\)
\(710\) 0 0
\(711\) −1221.56 −1.71809
\(712\) −208.979 212.054i −0.293510 0.297829i
\(713\) 246.910i 0.346297i
\(714\) −1303.85 2271.09i −1.82613 3.18080i
\(715\) 0 0
\(716\) −278.424 + 73.1522i −0.388860 + 0.102168i
\(717\) 321.448 + 321.448i 0.448323 + 0.448323i
\(718\) 225.794 834.543i 0.314477 1.16232i
\(719\) 463.016i 0.643972i 0.946744 + 0.321986i \(0.104350\pi\)
−0.946744 + 0.321986i \(0.895650\pi\)
\(720\) 0 0
\(721\) 823.814 1.14260
\(722\) 290.784 + 78.6745i 0.402748 + 0.108967i
\(723\) −928.579 + 928.579i −1.28434 + 1.28434i
\(724\) 74.6750 19.6199i 0.103142 0.0270993i
\(725\) 0 0
\(726\) 1062.41 609.937i 1.46337 0.840133i
\(727\) 233.171 0.320730 0.160365 0.987058i \(-0.448733\pi\)
0.160365 + 0.987058i \(0.448733\pi\)
\(728\) −778.326 5.68481i −1.06913 0.00780881i
\(729\) 985.596i 1.35198i
\(730\) 0 0
\(731\) −387.709 387.709i −0.530382 0.530382i
\(732\) −651.205 380.213i −0.889624 0.519417i
\(733\) −873.035 873.035i −1.19104 1.19104i −0.976775 0.214269i \(-0.931263\pi\)
−0.214269 0.976775i \(-0.568737\pi\)
\(734\) −432.417 116.995i −0.589124 0.159394i
\(735\) 0 0
\(736\) 1046.04 266.682i 1.42125 0.362339i
\(737\) −2.73017 −0.00370443
\(738\) −556.548 + 2057.02i −0.754130 + 2.78729i
\(739\) −127.699 + 127.699i −0.172799 + 0.172799i −0.788208 0.615409i \(-0.788991\pi\)
0.615409 + 0.788208i \(0.288991\pi\)
\(740\) 0 0
\(741\) −505.456 + 505.456i −0.682127 + 0.682127i
\(742\) 515.001 + 897.044i 0.694071 + 1.20895i
\(743\) −226.592 −0.304968 −0.152484 0.988306i \(-0.548727\pi\)
−0.152484 + 0.988306i \(0.548727\pi\)
\(744\) 296.857 + 2.16821i 0.399001 + 0.00291426i
\(745\) 0 0
\(746\) −491.078 855.375i −0.658282 1.14662i
\(747\) 666.989 + 666.989i 0.892890 + 0.892890i
\(748\) 11.2997 + 43.0076i 0.0151065 + 0.0574968i
\(749\) −1097.29 1097.29i −1.46501 1.46501i
\(750\) 0 0
\(751\) 516.811i 0.688164i 0.938940 + 0.344082i \(0.111810\pi\)
−0.938940 + 0.344082i \(0.888190\pi\)
\(752\) 583.463 329.329i 0.775881 0.437937i
\(753\) −611.124 −0.811586
\(754\) −614.794 166.339i −0.815377 0.220609i
\(755\) 0 0
\(756\) 397.385 + 1512.48i 0.525641 + 2.00063i
\(757\) −135.597 + 135.597i −0.179124 + 0.179124i −0.790974 0.611850i \(-0.790426\pi\)
0.611850 + 0.790974i \(0.290426\pi\)
\(758\) −918.812 + 527.498i −1.21215 + 0.695907i
\(759\) 73.6857 0.0970826
\(760\) 0 0
\(761\) 268.435i 0.352739i 0.984324 + 0.176370i \(0.0564354\pi\)
−0.984324 + 0.176370i \(0.943565\pi\)
\(762\) 1872.26 1074.88i 2.45704 1.41061i
\(763\) 29.9500 + 29.9500i 0.0392530 + 0.0392530i
\(764\) −530.469 + 908.553i −0.694331 + 1.18921i
\(765\) 0 0
\(766\) −832.752 225.310i −1.08714 0.294138i
\(767\) 799.578i 1.04247i
\(768\) −311.443 1259.98i −0.405524 1.64060i
\(769\) −826.424 −1.07467 −0.537337 0.843368i \(-0.680570\pi\)
−0.537337 + 0.843368i \(0.680570\pi\)
\(770\) 0 0
\(771\) 1619.28 1619.28i 2.10023 2.10023i
\(772\) −203.617 118.884i −0.263753 0.153995i
\(773\) 1042.45 1042.45i 1.34857 1.34857i 0.461359 0.887213i \(-0.347362\pi\)
0.887213 0.461359i \(-0.152638\pi\)
\(774\) 353.460 + 615.667i 0.456666 + 0.795435i
\(775\) 0 0
\(776\) −653.843 + 644.361i −0.842581 + 0.830362i
\(777\) 491.595i 0.632683i
\(778\) −78.6544 137.003i −0.101098 0.176096i
\(779\) 654.199 + 654.199i 0.839793 + 0.839793i
\(780\) 0 0
\(781\) −3.52390 3.52390i −0.00451203 0.00451203i
\(782\) 454.672 1680.48i 0.581421 2.14895i
\(783\) 1279.62i 1.63426i
\(784\) 402.513 + 713.123i 0.513410 + 0.909595i
\(785\) 0 0
\(786\) 478.583 + 129.486i 0.608885 + 0.164740i
\(787\) 924.222 924.222i 1.17436 1.17436i 0.193201 0.981159i \(-0.438113\pi\)
0.981159 0.193201i \(-0.0618870\pi\)
\(788\) 52.2201 13.7202i 0.0662692 0.0174114i
\(789\) −3.36771 + 3.36771i −0.00426833 + 0.00426833i
\(790\) 0 0
\(791\) 734.148 0.928126
\(792\) 0.420503 57.5724i 0.000530938 0.0726924i
\(793\) 361.447i 0.455797i
\(794\) 255.307 146.574i 0.321546 0.184602i
\(795\) 0 0
\(796\) −356.318 208.040i −0.447636 0.261357i
\(797\) −761.055 761.055i −0.954899 0.954899i 0.0441268 0.999026i \(-0.485949\pi\)
−0.999026 + 0.0441268i \(0.985949\pi\)
\(798\) 1420.97 + 384.458i 1.78066 + 0.481777i
\(799\) 1080.49i 1.35230i
\(800\) 0 0
\(801\) 621.657 0.776101
\(802\) 17.2120 63.6160i 0.0214613 0.0793217i
\(803\) 30.9893 30.9893i 0.0385919 0.0385919i
\(804\) 64.7972 110.981i 0.0805935 0.138036i
\(805\) 0 0
\(806\) −70.8471 123.404i −0.0878996 0.153106i
\(807\) −1011.67 −1.25362
\(808\) −0.319116 + 43.6912i −0.000394945 + 0.0540732i
\(809\) 106.311i 0.131410i −0.997839 0.0657052i \(-0.979070\pi\)
0.997839 0.0657052i \(-0.0209297\pi\)
\(810\) 0 0
\(811\) −602.747 602.747i −0.743214 0.743214i 0.229981 0.973195i \(-0.426134\pi\)
−0.973195 + 0.229981i \(0.926134\pi\)
\(812\) 333.292 + 1268.54i 0.410458 + 1.56224i
\(813\) −852.069 852.069i −1.04806 1.04806i
\(814\) 2.18010 8.05771i 0.00267825 0.00989890i
\(815\) 0 0
\(816\) −2016.43 561.403i −2.47112 0.687994i
\(817\) 308.213 0.377250
\(818\) 1080.78 + 292.417i 1.32125 + 0.357479i
\(819\) 1149.20 1149.20i 1.40317 1.40317i
\(820\) 0 0
\(821\) 236.461 236.461i 0.288016 0.288016i −0.548280 0.836295i \(-0.684717\pi\)
0.836295 + 0.548280i \(0.184717\pi\)
\(822\) −1377.76 + 790.982i −1.67610 + 0.962266i
\(823\) 412.888 0.501687 0.250843 0.968028i \(-0.419292\pi\)
0.250843 + 0.968028i \(0.419292\pi\)
\(824\) 468.989 462.188i 0.569162 0.560908i
\(825\) 0 0
\(826\) −1428.00 + 819.826i −1.72881 + 0.992525i
\(827\) 772.140 + 772.140i 0.933664 + 0.933664i 0.997933 0.0642682i \(-0.0204713\pi\)
−0.0642682 + 0.997933i \(0.520471\pi\)
\(828\) −1136.51 + 1946.54i −1.37259 + 2.35089i
\(829\) −163.360 163.360i −0.197056 0.197056i 0.601681 0.798737i \(-0.294498\pi\)
−0.798737 + 0.601681i \(0.794498\pi\)
\(830\) 0 0
\(831\) 2163.05i 2.60294i
\(832\) −446.283 + 433.431i −0.536397 + 0.520951i
\(833\) 1320.60 1.58535
\(834\) −565.373 + 2089.64i −0.677906 + 2.50556i
\(835\) 0 0
\(836\) −21.5861 12.6033i −0.0258207 0.0150757i
\(837\) −202.155 + 202.155i −0.241524 + 0.241524i
\(838\) −237.450 413.598i −0.283353 0.493553i
\(839\) 156.751 0.186831 0.0934154 0.995627i \(-0.470222\pi\)
0.0934154 + 0.995627i \(0.470222\pi\)
\(840\) 0 0
\(841\) 232.237i 0.276144i
\(842\) −576.827 1004.73i −0.685067 1.19327i
\(843\) −752.363 752.363i −0.892482 0.892482i
\(844\) −27.0205 + 7.09928i −0.0320148 + 0.00841147i
\(845\) 0 0
\(846\) −365.367 + 1350.41i −0.431875 + 1.59623i
\(847\) 1209.23i 1.42766i
\(848\) 796.458 + 221.745i 0.939219 + 0.261492i
\(849\) 624.794 0.735917
\(850\) 0 0
\(851\) −231.085 + 231.085i −0.271545 + 0.271545i
\(852\) 226.881 59.6100i 0.266292 0.0699648i
\(853\) 933.500 933.500i 1.09437 1.09437i 0.0993169 0.995056i \(-0.468334\pi\)
0.995056 0.0993169i \(-0.0316657\pi\)
\(854\) 645.523 370.600i 0.755881 0.433958i
\(855\) 0 0
\(856\) −1240.30 9.05901i −1.44895 0.0105830i
\(857\) 988.694i 1.15367i −0.816861 0.576834i \(-0.804288\pi\)
0.816861 0.576834i \(-0.195712\pi\)
\(858\) −36.8276 + 21.1430i −0.0429226 + 0.0246422i
\(859\) 868.729 + 868.729i 1.01133 + 1.01133i 0.999935 + 0.0113913i \(0.00362604\pi\)
0.0113913 + 0.999935i \(0.496374\pi\)
\(860\) 0 0
\(861\) −2288.76 2288.76i −2.65825 2.65825i
\(862\) −593.216 160.501i −0.688186 0.186196i
\(863\) 1065.18i 1.23428i 0.786854 + 0.617139i \(0.211709\pi\)
−0.786854 + 0.617139i \(0.788291\pi\)
\(864\) 1074.78 + 638.093i 1.24396 + 0.738534i
\(865\) 0 0
\(866\) 299.774 1107.97i 0.346159 1.27942i
\(867\) −1350.83 + 1350.83i −1.55805 + 1.55805i
\(868\) −147.750 + 253.057i −0.170219 + 0.291541i
\(869\) −22.2783 + 22.2783i −0.0256367 + 0.0256367i
\(870\) 0 0
\(871\) −61.5991 −0.0707222
\(872\) 33.8532 + 0.247261i 0.0388225 + 0.000283556i
\(873\) 1916.80i 2.19565i
\(874\) 487.235 + 848.681i 0.557477 + 0.971031i
\(875\) 0 0
\(876\) 524.213 + 1995.20i 0.598416 + 2.27762i
\(877\) 107.637 + 107.637i 0.122733 + 0.122733i 0.765805 0.643072i \(-0.222341\pi\)
−0.643072 + 0.765805i \(0.722341\pi\)
\(878\) −256.703 + 948.785i −0.292373 + 1.08062i
\(879\) 1509.60i 1.71741i
\(880\) 0 0
\(881\) 1289.21 1.46334 0.731672 0.681657i \(-0.238740\pi\)
0.731672 + 0.681657i \(0.238740\pi\)
\(882\) −1650.50 446.560i −1.87132 0.506304i
\(883\) 89.1493 89.1493i 0.100962 0.100962i −0.654822 0.755783i \(-0.727256\pi\)
0.755783 + 0.654822i \(0.227256\pi\)
\(884\) 254.948 + 970.354i 0.288403 + 1.09769i
\(885\) 0 0
\(886\) −843.743 + 484.400i −0.952306 + 0.546727i
\(887\) −1235.62 −1.39303 −0.696516 0.717541i \(-0.745268\pi\)
−0.696516 + 0.717541i \(0.745268\pi\)
\(888\) 275.802 + 279.860i 0.310587 + 0.315158i
\(889\) 2131.01i 2.39708i
\(890\) 0 0
\(891\) 14.5298 + 14.5298i 0.0163073 + 0.0163073i
\(892\) −357.287 + 611.938i −0.400546 + 0.686029i
\(893\) 429.473 + 429.473i 0.480933 + 0.480933i
\(894\) 1335.11 + 361.229i 1.49341 + 0.404059i
\(895\) 0 0
\(896\) 1231.67 + 352.627i 1.37463 + 0.393556i
\(897\) 1662.52 1.85343
\(898\) −80.0539 + 295.882i −0.0891468 + 0.329490i
\(899\) −169.550 + 169.550i −0.188599 + 0.188599i
\(900\) 0 0
\(901\) 942.783 942.783i 1.04637 1.04637i
\(902\) 27.3649 + 47.6650i 0.0303380 + 0.0528436i
\(903\) −1078.30 −1.19414
\(904\) 417.943 411.882i 0.462326 0.455622i
\(905\) 0 0
\(906\) 148.485 + 258.635i 0.163890 + 0.285469i
\(907\) −1170.07 1170.07i −1.29004 1.29004i −0.934757 0.355287i \(-0.884383\pi\)
−0.355287 0.934757i \(-0.615617\pi\)
\(908\) −1309.07 + 343.942i −1.44171 + 0.378791i
\(909\) −64.5101 64.5101i −0.0709682 0.0709682i
\(910\) 0 0
\(911\) 174.325i 0.191356i 0.995412 + 0.0956781i \(0.0305019\pi\)
−0.995412 + 0.0956781i \(0.969498\pi\)
\(912\) 1024.64 578.345i 1.12351 0.634150i
\(913\) 24.3284 0.0266467
\(914\) 1367.40 + 369.963i 1.49606 + 0.404774i
\(915\) 0 0
\(916\) 583.766 153.377i 0.637299 0.167442i
\(917\) −346.052 + 346.052i −0.377374 + 0.377374i
\(918\) 1748.14 1003.62i 1.90429 1.09327i
\(919\) −1108.52 −1.20622 −0.603110 0.797658i \(-0.706072\pi\)
−0.603110 + 0.797658i \(0.706072\pi\)
\(920\) 0 0
\(921\) 2476.08i 2.68846i
\(922\) 49.1195 28.2000i 0.0532750 0.0305856i
\(923\) −79.5075 79.5075i −0.0861403 0.0861403i
\(924\) 75.5203 + 44.0934i 0.0817319 + 0.0477201i
\(925\) 0 0
\(926\) 59.7204 + 16.1580i 0.0644929 + 0.0174492i
\(927\) 1374.89i 1.48316i
\(928\) 901.432 + 535.177i 0.971371 + 0.576700i
\(929\) −410.945 −0.442352 −0.221176 0.975234i \(-0.570990\pi\)
−0.221176 + 0.975234i \(0.570990\pi\)
\(930\) 0 0
\(931\) −524.912 + 524.912i −0.563816 + 0.563816i
\(932\) −268.162 + 459.291i −0.287727 + 0.492801i
\(933\) 357.458 357.458i 0.383127 0.383127i
\(934\) 126.658 + 220.616i 0.135608 + 0.236206i
\(935\) 0 0
\(936\) 9.48754 1298.97i 0.0101363 1.38779i
\(937\) 181.492i 0.193694i 0.995299 + 0.0968472i \(0.0308758\pi\)
−0.995299 + 0.0968472i \(0.969124\pi\)
\(938\) 63.1590 + 110.012i 0.0673337 + 0.117284i
\(939\) −1116.13 1116.13i −1.18864 1.18864i
\(940\) 0 0
\(941\) −363.737 363.737i −0.386543 0.386543i 0.486910 0.873452i \(-0.338124\pi\)
−0.873452 + 0.486910i \(0.838124\pi\)
\(942\) −440.649 + 1628.65i −0.467780 + 1.72893i
\(943\) 2151.76i 2.28183i
\(944\) −352.995 + 1267.87i −0.373935 + 1.34309i
\(945\) 0 0
\(946\) 17.6744 + 4.78200i 0.0186833 + 0.00505497i
\(947\) 616.971 616.971i 0.651500 0.651500i −0.301854 0.953354i \(-0.597605\pi\)
0.953354 + 0.301854i \(0.0976055\pi\)
\(948\) −376.858 1434.35i −0.397529 1.51303i
\(949\) 699.192 699.192i 0.736767 0.736767i
\(950\) 0 0
\(951\) 137.964 0.145072
\(952\) 1471.59 1450.25i 1.54579 1.52337i
\(953\) 602.419i 0.632129i 0.948738 + 0.316064i \(0.102362\pi\)
−0.948738 + 0.316064i \(0.897638\pi\)
\(954\) −1497.10 + 859.499i −1.56929 + 0.900943i
\(955\) 0 0
\(956\) −180.840 + 309.732i −0.189163 + 0.323987i
\(957\) 50.5992 + 50.5992i 0.0528727 + 0.0528727i
\(958\) −818.702 221.508i −0.854595 0.231219i
\(959\) 1568.16i 1.63521i
\(960\) 0 0
\(961\) 907.429 0.944255
\(962\) 49.1881 181.801i 0.0511311 0.188982i
\(963\) 1831.30 1831.30i 1.90166 1.90166i
\(964\) −894.734 522.400i −0.928147 0.541909i
\(965\) 0 0
\(966\) −1704.62 2969.17i −1.76462 3.07367i
\(967\) −1277.51 −1.32111 −0.660553 0.750779i \(-0.729678\pi\)
−0.660553 + 0.750779i \(0.729678\pi\)
\(968\) 678.420 + 688.403i 0.700847 + 0.711160i
\(969\) 1897.48i 1.95819i
\(970\) 0 0
\(971\) 122.966 + 122.966i 0.126639 + 0.126639i 0.767585 0.640947i \(-0.221458\pi\)
−0.640947 + 0.767585i \(0.721458\pi\)
\(972\) 424.530 111.540i 0.436759 0.114753i
\(973\) −1510.97 1510.97i −1.55289 1.55289i
\(974\) −266.155 + 983.718i −0.273260 + 1.00998i
\(975\) 0 0
\(976\) 159.570 573.140i 0.163494 0.587233i
\(977\) −809.129 −0.828177 −0.414088 0.910237i \(-0.635900\pi\)
−0.414088 + 0.910237i \(0.635900\pi\)
\(978\) 108.145 + 29.2597i 0.110578 + 0.0299179i
\(979\) 11.3375 11.3375i 0.0115807 0.0115807i
\(980\) 0 0
\(981\) −49.9844 + 49.9844i −0.0509525 + 0.0509525i
\(982\) 570.230 327.374i 0.580682 0.333375i
\(983\) 986.542 1.00360 0.501802 0.864983i \(-0.332671\pi\)
0.501802 + 0.864983i \(0.332671\pi\)
\(984\) −2587.04 18.8955i −2.62910 0.0192027i
\(985\) 0 0
\(986\) 1466.19 841.751i 1.48701 0.853703i
\(987\) −1502.54 1502.54i −1.52233 1.52233i
\(988\) −487.033 284.360i −0.492948 0.287813i
\(989\) −506.881 506.881i −0.512519 0.512519i
\(990\) 0 0
\(991\) 674.433i 0.680558i −0.940325 0.340279i \(-0.889479\pi\)
0.940325 0.340279i \(-0.110521\pi\)
\(992\) 57.8611 + 226.956i 0.0583277 + 0.228786i
\(993\) −1392.51 −1.40233
\(994\) −60.4747 + 223.517i −0.0608397 + 0.224866i
\(995\) 0 0
\(996\) −577.405 + 988.943i −0.579724 + 0.992915i
\(997\) 1315.09 1315.09i 1.31905 1.31905i 0.404519 0.914530i \(-0.367439\pi\)
0.914530 0.404519i \(-0.132561\pi\)
\(998\) 858.246 + 1494.92i 0.859966 + 1.49792i
\(999\) −378.398 −0.378777
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.r.f.51.10 32
5.2 odd 4 400.3.k.h.99.16 32
5.3 odd 4 400.3.k.g.99.1 32
5.4 even 2 80.3.r.a.51.7 yes 32
16.11 odd 4 inner 400.3.r.f.251.10 32
20.19 odd 2 320.3.r.a.111.2 32
40.19 odd 2 640.3.r.b.351.15 32
40.29 even 2 640.3.r.a.351.2 32
80.19 odd 4 640.3.r.a.31.2 32
80.27 even 4 400.3.k.g.299.1 32
80.29 even 4 640.3.r.b.31.15 32
80.43 even 4 400.3.k.h.299.16 32
80.59 odd 4 80.3.r.a.11.7 32
80.69 even 4 320.3.r.a.271.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.r.a.11.7 32 80.59 odd 4
80.3.r.a.51.7 yes 32 5.4 even 2
320.3.r.a.111.2 32 20.19 odd 2
320.3.r.a.271.2 32 80.69 even 4
400.3.k.g.99.1 32 5.3 odd 4
400.3.k.g.299.1 32 80.27 even 4
400.3.k.h.99.16 32 5.2 odd 4
400.3.k.h.299.16 32 80.43 even 4
400.3.r.f.51.10 32 1.1 even 1 trivial
400.3.r.f.251.10 32 16.11 odd 4 inner
640.3.r.a.31.2 32 80.19 odd 4
640.3.r.a.351.2 32 40.29 even 2
640.3.r.b.31.15 32 80.29 even 4
640.3.r.b.351.15 32 40.19 odd 2