Properties

Label 640.3.r.b.31.15
Level $640$
Weight $3$
Character 640.31
Analytic conductor $17.439$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,3,Mod(31,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.31"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 640.r (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.4387369191\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.15
Character \(\chi\) \(=\) 640.31
Dual form 640.3.r.b.351.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.58499 + 3.58499i) q^{3} +(1.58114 + 1.58114i) q^{5} -10.0090 q^{7} +16.7043i q^{9} +(-0.304644 + 0.304644i) q^{11} +(-6.87350 + 6.87350i) q^{13} +11.3367i q^{15} -25.8031 q^{17} +(-10.2562 - 10.2562i) q^{19} +(-35.8821 - 35.8821i) q^{21} +33.7343 q^{23} +5.00000i q^{25} +(-27.6197 + 27.6197i) q^{27} +(-23.1650 + 23.1650i) q^{29} +7.31924i q^{31} -2.18429 q^{33} +(-15.8256 - 15.8256i) q^{35} +(-6.85014 - 6.85014i) q^{37} -49.2828 q^{39} +63.7855i q^{41} +(15.0257 - 15.0257i) q^{43} +(-26.4118 + 26.4118i) q^{45} +41.8744i q^{47} +51.1799 q^{49} +(-92.5039 - 92.5039i) q^{51} +(36.5375 + 36.5375i) q^{53} -0.963370 q^{55} -73.5369i q^{57} +(58.1638 - 58.1638i) q^{59} +(26.2928 - 26.2928i) q^{61} -167.193i q^{63} -21.7359 q^{65} +(-4.48091 - 4.48091i) q^{67} +(120.937 + 120.937i) q^{69} -11.5673 q^{71} +101.723i q^{73} +(-17.9249 + 17.9249i) q^{75} +(3.04918 - 3.04918i) q^{77} -73.1288i q^{79} -47.6943 q^{81} +(39.9292 + 39.9292i) q^{83} +(-40.7983 - 40.7983i) q^{85} -166.093 q^{87} -37.2154i q^{89} +(68.7968 - 68.7968i) q^{91} +(-26.2394 + 26.2394i) q^{93} -32.4331i q^{95} -114.749 q^{97} +(-5.08886 - 5.08886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{11} - 32 q^{19} + 128 q^{23} - 96 q^{27} - 32 q^{29} + 96 q^{37} - 384 q^{39} + 96 q^{43} + 224 q^{49} - 256 q^{51} + 160 q^{53} - 352 q^{59} + 32 q^{61} + 160 q^{67} - 96 q^{69} - 256 q^{71}+ \cdots + 608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.58499 + 3.58499i 1.19500 + 1.19500i 0.975646 + 0.219350i \(0.0703935\pi\)
0.219350 + 0.975646i \(0.429606\pi\)
\(4\) 0 0
\(5\) 1.58114 + 1.58114i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) −10.0090 −1.42986 −0.714928 0.699198i \(-0.753540\pi\)
−0.714928 + 0.699198i \(0.753540\pi\)
\(8\) 0 0
\(9\) 16.7043i 1.85603i
\(10\) 0 0
\(11\) −0.304644 + 0.304644i −0.0276949 + 0.0276949i −0.720819 0.693124i \(-0.756234\pi\)
0.693124 + 0.720819i \(0.256234\pi\)
\(12\) 0 0
\(13\) −6.87350 + 6.87350i −0.528731 + 0.528731i −0.920194 0.391463i \(-0.871969\pi\)
0.391463 + 0.920194i \(0.371969\pi\)
\(14\) 0 0
\(15\) 11.3367i 0.755782i
\(16\) 0 0
\(17\) −25.8031 −1.51783 −0.758916 0.651189i \(-0.774270\pi\)
−0.758916 + 0.651189i \(0.774270\pi\)
\(18\) 0 0
\(19\) −10.2562 10.2562i −0.539802 0.539802i 0.383669 0.923471i \(-0.374660\pi\)
−0.923471 + 0.383669i \(0.874660\pi\)
\(20\) 0 0
\(21\) −35.8821 35.8821i −1.70867 1.70867i
\(22\) 0 0
\(23\) 33.7343 1.46671 0.733355 0.679845i \(-0.237953\pi\)
0.733355 + 0.679845i \(0.237953\pi\)
\(24\) 0 0
\(25\) 5.00000i 0.200000i
\(26\) 0 0
\(27\) −27.6197 + 27.6197i −1.02295 + 1.02295i
\(28\) 0 0
\(29\) −23.1650 + 23.1650i −0.798794 + 0.798794i −0.982905 0.184111i \(-0.941059\pi\)
0.184111 + 0.982905i \(0.441059\pi\)
\(30\) 0 0
\(31\) 7.31924i 0.236104i 0.993007 + 0.118052i \(0.0376650\pi\)
−0.993007 + 0.118052i \(0.962335\pi\)
\(32\) 0 0
\(33\) −2.18429 −0.0661907
\(34\) 0 0
\(35\) −15.8256 15.8256i −0.452160 0.452160i
\(36\) 0 0
\(37\) −6.85014 6.85014i −0.185139 0.185139i 0.608452 0.793591i \(-0.291791\pi\)
−0.793591 + 0.608452i \(0.791791\pi\)
\(38\) 0 0
\(39\) −49.2828 −1.26366
\(40\) 0 0
\(41\) 63.7855i 1.55574i 0.628423 + 0.777872i \(0.283701\pi\)
−0.628423 + 0.777872i \(0.716299\pi\)
\(42\) 0 0
\(43\) 15.0257 15.0257i 0.349434 0.349434i −0.510465 0.859899i \(-0.670527\pi\)
0.859899 + 0.510465i \(0.170527\pi\)
\(44\) 0 0
\(45\) −26.4118 + 26.4118i −0.586928 + 0.586928i
\(46\) 0 0
\(47\) 41.8744i 0.890944i 0.895296 + 0.445472i \(0.146964\pi\)
−0.895296 + 0.445472i \(0.853036\pi\)
\(48\) 0 0
\(49\) 51.1799 1.04449
\(50\) 0 0
\(51\) −92.5039 92.5039i −1.81380 1.81380i
\(52\) 0 0
\(53\) 36.5375 + 36.5375i 0.689388 + 0.689388i 0.962097 0.272709i \(-0.0879196\pi\)
−0.272709 + 0.962097i \(0.587920\pi\)
\(54\) 0 0
\(55\) −0.963370 −0.0175158
\(56\) 0 0
\(57\) 73.5369i 1.29012i
\(58\) 0 0
\(59\) 58.1638 58.1638i 0.985828 0.985828i −0.0140734 0.999901i \(-0.504480\pi\)
0.999901 + 0.0140734i \(0.00447984\pi\)
\(60\) 0 0
\(61\) 26.2928 26.2928i 0.431030 0.431030i −0.457949 0.888979i \(-0.651416\pi\)
0.888979 + 0.457949i \(0.151416\pi\)
\(62\) 0 0
\(63\) 167.193i 2.65386i
\(64\) 0 0
\(65\) −21.7359 −0.334399
\(66\) 0 0
\(67\) −4.48091 4.48091i −0.0668793 0.0668793i 0.672876 0.739755i \(-0.265059\pi\)
−0.739755 + 0.672876i \(0.765059\pi\)
\(68\) 0 0
\(69\) 120.937 + 120.937i 1.75271 + 1.75271i
\(70\) 0 0
\(71\) −11.5673 −0.162919 −0.0814595 0.996677i \(-0.525958\pi\)
−0.0814595 + 0.996677i \(0.525958\pi\)
\(72\) 0 0
\(73\) 101.723i 1.39346i 0.717332 + 0.696732i \(0.245363\pi\)
−0.717332 + 0.696732i \(0.754637\pi\)
\(74\) 0 0
\(75\) −17.9249 + 17.9249i −0.238999 + 0.238999i
\(76\) 0 0
\(77\) 3.04918 3.04918i 0.0395998 0.0395998i
\(78\) 0 0
\(79\) 73.1288i 0.925681i −0.886442 0.462840i \(-0.846830\pi\)
0.886442 0.462840i \(-0.153170\pi\)
\(80\) 0 0
\(81\) −47.6943 −0.588819
\(82\) 0 0
\(83\) 39.9292 + 39.9292i 0.481075 + 0.481075i 0.905475 0.424400i \(-0.139515\pi\)
−0.424400 + 0.905475i \(0.639515\pi\)
\(84\) 0 0
\(85\) −40.7983 40.7983i −0.479980 0.479980i
\(86\) 0 0
\(87\) −166.093 −1.90911
\(88\) 0 0
\(89\) 37.2154i 0.418151i −0.977899 0.209076i \(-0.932955\pi\)
0.977899 0.209076i \(-0.0670455\pi\)
\(90\) 0 0
\(91\) 68.7968 68.7968i 0.756008 0.756008i
\(92\) 0 0
\(93\) −26.2394 + 26.2394i −0.282144 + 0.282144i
\(94\) 0 0
\(95\) 32.4331i 0.341401i
\(96\) 0 0
\(97\) −114.749 −1.18298 −0.591490 0.806312i \(-0.701460\pi\)
−0.591490 + 0.806312i \(0.701460\pi\)
\(98\) 0 0
\(99\) −5.08886 5.08886i −0.0514026 0.0514026i
\(100\) 0 0
\(101\) −3.86189 3.86189i −0.0382366 0.0382366i 0.687730 0.725967i \(-0.258607\pi\)
−0.725967 + 0.687730i \(0.758607\pi\)
\(102\) 0 0
\(103\) −82.3074 −0.799101 −0.399551 0.916711i \(-0.630834\pi\)
−0.399551 + 0.916711i \(0.630834\pi\)
\(104\) 0 0
\(105\) 113.469i 1.08066i
\(106\) 0 0
\(107\) −109.631 + 109.631i −1.02459 + 1.02459i −0.0248967 + 0.999690i \(0.507926\pi\)
−0.999690 + 0.0248967i \(0.992074\pi\)
\(108\) 0 0
\(109\) 2.99231 2.99231i 0.0274524 0.0274524i −0.693247 0.720700i \(-0.743821\pi\)
0.720700 + 0.693247i \(0.243821\pi\)
\(110\) 0 0
\(111\) 49.1153i 0.442480i
\(112\) 0 0
\(113\) 73.3488 0.649105 0.324552 0.945868i \(-0.394786\pi\)
0.324552 + 0.945868i \(0.394786\pi\)
\(114\) 0 0
\(115\) 53.3387 + 53.3387i 0.463815 + 0.463815i
\(116\) 0 0
\(117\) −114.817 114.817i −0.981340 0.981340i
\(118\) 0 0
\(119\) 258.263 2.17028
\(120\) 0 0
\(121\) 120.814i 0.998466i
\(122\) 0 0
\(123\) −228.670 + 228.670i −1.85911 + 1.85911i
\(124\) 0 0
\(125\) −7.90569 + 7.90569i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 212.909i 1.67645i 0.545323 + 0.838226i \(0.316407\pi\)
−0.545323 + 0.838226i \(0.683593\pi\)
\(128\) 0 0
\(129\) 107.734 0.835145
\(130\) 0 0
\(131\) 34.5741 + 34.5741i 0.263924 + 0.263924i 0.826646 0.562722i \(-0.190246\pi\)
−0.562722 + 0.826646i \(0.690246\pi\)
\(132\) 0 0
\(133\) 102.655 + 102.655i 0.771838 + 0.771838i
\(134\) 0 0
\(135\) −87.3413 −0.646972
\(136\) 0 0
\(137\) 156.675i 1.14362i 0.820388 + 0.571808i \(0.193758\pi\)
−0.820388 + 0.571808i \(0.806242\pi\)
\(138\) 0 0
\(139\) 150.961 150.961i 1.08605 1.08605i 0.0901190 0.995931i \(-0.471275\pi\)
0.995931 0.0901190i \(-0.0287247\pi\)
\(140\) 0 0
\(141\) −150.119 + 150.119i −1.06467 + 1.06467i
\(142\) 0 0
\(143\) 4.18794i 0.0292863i
\(144\) 0 0
\(145\) −73.2543 −0.505202
\(146\) 0 0
\(147\) 183.479 + 183.479i 1.24816 + 1.24816i
\(148\) 0 0
\(149\) −96.4520 96.4520i −0.647329 0.647329i 0.305018 0.952347i \(-0.401338\pi\)
−0.952347 + 0.305018i \(0.901338\pi\)
\(150\) 0 0
\(151\) −29.4114 −0.194777 −0.0973886 0.995246i \(-0.531049\pi\)
−0.0973886 + 0.995246i \(0.531049\pi\)
\(152\) 0 0
\(153\) 431.023i 2.81714i
\(154\) 0 0
\(155\) −11.5727 + 11.5727i −0.0746628 + 0.0746628i
\(156\) 0 0
\(157\) 117.658 117.658i 0.749415 0.749415i −0.224954 0.974369i \(-0.572223\pi\)
0.974369 + 0.224954i \(0.0722232\pi\)
\(158\) 0 0
\(159\) 261.973i 1.64763i
\(160\) 0 0
\(161\) −337.647 −2.09718
\(162\) 0 0
\(163\) −7.81267 7.81267i −0.0479305 0.0479305i 0.682735 0.730666i \(-0.260790\pi\)
−0.730666 + 0.682735i \(0.760790\pi\)
\(164\) 0 0
\(165\) −3.45367 3.45367i −0.0209313 0.0209313i
\(166\) 0 0
\(167\) 255.372 1.52918 0.764588 0.644520i \(-0.222943\pi\)
0.764588 + 0.644520i \(0.222943\pi\)
\(168\) 0 0
\(169\) 74.5100i 0.440888i
\(170\) 0 0
\(171\) 171.323 171.323i 1.00189 1.00189i
\(172\) 0 0
\(173\) −27.0161 + 27.0161i −0.156162 + 0.156162i −0.780864 0.624701i \(-0.785221\pi\)
0.624701 + 0.780864i \(0.285221\pi\)
\(174\) 0 0
\(175\) 50.0449i 0.285971i
\(176\) 0 0
\(177\) 417.033 2.35612
\(178\) 0 0
\(179\) 50.8893 + 50.8893i 0.284298 + 0.284298i 0.834820 0.550523i \(-0.185572\pi\)
−0.550523 + 0.834820i \(0.685572\pi\)
\(180\) 0 0
\(181\) 13.6488 + 13.6488i 0.0754079 + 0.0754079i 0.743805 0.668397i \(-0.233019\pi\)
−0.668397 + 0.743805i \(0.733019\pi\)
\(182\) 0 0
\(183\) 188.519 1.03016
\(184\) 0 0
\(185\) 21.6620i 0.117092i
\(186\) 0 0
\(187\) 7.86078 7.86078i 0.0420362 0.0420362i
\(188\) 0 0
\(189\) 276.446 276.446i 1.46268 1.46268i
\(190\) 0 0
\(191\) 263.019i 1.37706i −0.725206 0.688532i \(-0.758255\pi\)
0.725206 0.688532i \(-0.241745\pi\)
\(192\) 0 0
\(193\) −58.9456 −0.305418 −0.152709 0.988271i \(-0.548800\pi\)
−0.152709 + 0.988271i \(0.548800\pi\)
\(194\) 0 0
\(195\) −77.9230 77.9230i −0.399605 0.399605i
\(196\) 0 0
\(197\) −9.54461 9.54461i −0.0484498 0.0484498i 0.682467 0.730917i \(-0.260907\pi\)
−0.730917 + 0.682467i \(0.760907\pi\)
\(198\) 0 0
\(199\) −103.151 −0.518348 −0.259174 0.965831i \(-0.583450\pi\)
−0.259174 + 0.965831i \(0.583450\pi\)
\(200\) 0 0
\(201\) 32.1280i 0.159841i
\(202\) 0 0
\(203\) 231.859 231.859i 1.14216 1.14216i
\(204\) 0 0
\(205\) −100.854 + 100.854i −0.491969 + 0.491969i
\(206\) 0 0
\(207\) 563.508i 2.72226i
\(208\) 0 0
\(209\) 6.24900 0.0298995
\(210\) 0 0
\(211\) 4.93870 + 4.93870i 0.0234062 + 0.0234062i 0.718713 0.695307i \(-0.244732\pi\)
−0.695307 + 0.718713i \(0.744732\pi\)
\(212\) 0 0
\(213\) −41.4685 41.4685i −0.194688 0.194688i
\(214\) 0 0
\(215\) 47.5153 0.221002
\(216\) 0 0
\(217\) 73.2582i 0.337595i
\(218\) 0 0
\(219\) −364.675 + 364.675i −1.66518 + 1.66518i
\(220\) 0 0
\(221\) 177.358 177.358i 0.802524 0.802524i
\(222\) 0 0
\(223\) 177.151i 0.794401i 0.917732 + 0.397200i \(0.130018\pi\)
−0.917732 + 0.397200i \(0.869982\pi\)
\(224\) 0 0
\(225\) −83.5214 −0.371206
\(226\) 0 0
\(227\) −239.268 239.268i −1.05404 1.05404i −0.998454 0.0555894i \(-0.982296\pi\)
−0.0555894 0.998454i \(-0.517704\pi\)
\(228\) 0 0
\(229\) 106.699 + 106.699i 0.465933 + 0.465933i 0.900594 0.434661i \(-0.143132\pi\)
−0.434661 + 0.900594i \(0.643132\pi\)
\(230\) 0 0
\(231\) 21.8626 0.0946431
\(232\) 0 0
\(233\) 132.961i 0.570649i −0.958431 0.285324i \(-0.907899\pi\)
0.958431 0.285324i \(-0.0921013\pi\)
\(234\) 0 0
\(235\) −66.2092 + 66.2092i −0.281741 + 0.281741i
\(236\) 0 0
\(237\) 262.166 262.166i 1.10618 1.10618i
\(238\) 0 0
\(239\) 89.6649i 0.375167i −0.982249 0.187584i \(-0.939934\pi\)
0.982249 0.187584i \(-0.0600655\pi\)
\(240\) 0 0
\(241\) 259.019 1.07477 0.537383 0.843338i \(-0.319413\pi\)
0.537383 + 0.843338i \(0.319413\pi\)
\(242\) 0 0
\(243\) 77.5940 + 77.5940i 0.319317 + 0.319317i
\(244\) 0 0
\(245\) 80.9225 + 80.9225i 0.330296 + 0.330296i
\(246\) 0 0
\(247\) 140.992 0.570819
\(248\) 0 0
\(249\) 286.292i 1.14977i
\(250\) 0 0
\(251\) 85.2338 85.2338i 0.339577 0.339577i −0.516631 0.856208i \(-0.672814\pi\)
0.856208 + 0.516631i \(0.172814\pi\)
\(252\) 0 0
\(253\) −10.2770 + 10.2770i −0.0406205 + 0.0406205i
\(254\) 0 0
\(255\) 292.523i 1.14715i
\(256\) 0 0
\(257\) 451.683 1.75752 0.878760 0.477264i \(-0.158372\pi\)
0.878760 + 0.477264i \(0.158372\pi\)
\(258\) 0 0
\(259\) 68.5629 + 68.5629i 0.264722 + 0.264722i
\(260\) 0 0
\(261\) −386.955 386.955i −1.48259 1.48259i
\(262\) 0 0
\(263\) 0.939393 0.00357184 0.00178592 0.999998i \(-0.499432\pi\)
0.00178592 + 0.999998i \(0.499432\pi\)
\(264\) 0 0
\(265\) 115.542i 0.436007i
\(266\) 0 0
\(267\) 133.417 133.417i 0.499689 0.499689i
\(268\) 0 0
\(269\) −141.098 + 141.098i −0.524527 + 0.524527i −0.918935 0.394408i \(-0.870950\pi\)
0.394408 + 0.918935i \(0.370950\pi\)
\(270\) 0 0
\(271\) 237.677i 0.877037i 0.898722 + 0.438518i \(0.144497\pi\)
−0.898722 + 0.438518i \(0.855503\pi\)
\(272\) 0 0
\(273\) 493.271 1.80685
\(274\) 0 0
\(275\) −1.52322 1.52322i −0.00553899 0.00553899i
\(276\) 0 0
\(277\) 301.681 + 301.681i 1.08910 + 1.08910i 0.995621 + 0.0934800i \(0.0297991\pi\)
0.0934800 + 0.995621i \(0.470201\pi\)
\(278\) 0 0
\(279\) −122.263 −0.438217
\(280\) 0 0
\(281\) 209.865i 0.746850i −0.927660 0.373425i \(-0.878183\pi\)
0.927660 0.373425i \(-0.121817\pi\)
\(282\) 0 0
\(283\) 87.1403 87.1403i 0.307916 0.307916i −0.536184 0.844101i \(-0.680135\pi\)
0.844101 + 0.536184i \(0.180135\pi\)
\(284\) 0 0
\(285\) 116.272 116.272i 0.407972 0.407972i
\(286\) 0 0
\(287\) 638.428i 2.22449i
\(288\) 0 0
\(289\) 376.801 1.30381
\(290\) 0 0
\(291\) −411.374 411.374i −1.41366 1.41366i
\(292\) 0 0
\(293\) −210.545 210.545i −0.718583 0.718583i 0.249732 0.968315i \(-0.419657\pi\)
−0.968315 + 0.249732i \(0.919657\pi\)
\(294\) 0 0
\(295\) 183.930 0.623492
\(296\) 0 0
\(297\) 16.8284i 0.0566612i
\(298\) 0 0
\(299\) −231.873 + 231.873i −0.775495 + 0.775495i
\(300\) 0 0
\(301\) −150.392 + 150.392i −0.499640 + 0.499640i
\(302\) 0 0
\(303\) 27.6897i 0.0913851i
\(304\) 0 0
\(305\) 83.1452 0.272607
\(306\) 0 0
\(307\) 345.339 + 345.339i 1.12488 + 1.12488i 0.990996 + 0.133888i \(0.0427462\pi\)
0.133888 + 0.990996i \(0.457254\pi\)
\(308\) 0 0
\(309\) −295.071 295.071i −0.954923 0.954923i
\(310\) 0 0
\(311\) 99.7096 0.320610 0.160305 0.987068i \(-0.448752\pi\)
0.160305 + 0.987068i \(0.448752\pi\)
\(312\) 0 0
\(313\) 311.334i 0.994678i 0.867556 + 0.497339i \(0.165689\pi\)
−0.867556 + 0.497339i \(0.834311\pi\)
\(314\) 0 0
\(315\) 264.355 264.355i 0.839223 0.839223i
\(316\) 0 0
\(317\) −19.2419 + 19.2419i −0.0607000 + 0.0607000i −0.736805 0.676105i \(-0.763666\pi\)
0.676105 + 0.736805i \(0.263666\pi\)
\(318\) 0 0
\(319\) 14.1142i 0.0442451i
\(320\) 0 0
\(321\) −786.050 −2.44875
\(322\) 0 0
\(323\) 264.643 + 264.643i 0.819328 + 0.819328i
\(324\) 0 0
\(325\) −34.3675 34.3675i −0.105746 0.105746i
\(326\) 0 0
\(327\) 21.4548 0.0656110
\(328\) 0 0
\(329\) 419.120i 1.27392i
\(330\) 0 0
\(331\) 194.214 194.214i 0.586750 0.586750i −0.350000 0.936750i \(-0.613818\pi\)
0.936750 + 0.350000i \(0.113818\pi\)
\(332\) 0 0
\(333\) 114.427 114.427i 0.343623 0.343623i
\(334\) 0 0
\(335\) 14.1699i 0.0422982i
\(336\) 0 0
\(337\) −552.303 −1.63888 −0.819441 0.573164i \(-0.805716\pi\)
−0.819441 + 0.573164i \(0.805716\pi\)
\(338\) 0 0
\(339\) 262.955 + 262.955i 0.775677 + 0.775677i
\(340\) 0 0
\(341\) −2.22976 2.22976i −0.00653890 0.00653890i
\(342\) 0 0
\(343\) −21.8182 −0.0636099
\(344\) 0 0
\(345\) 382.437i 1.10851i
\(346\) 0 0
\(347\) 119.162 119.162i 0.343407 0.343407i −0.514239 0.857647i \(-0.671926\pi\)
0.857647 + 0.514239i \(0.171926\pi\)
\(348\) 0 0
\(349\) 170.249 170.249i 0.487821 0.487821i −0.419797 0.907618i \(-0.637899\pi\)
0.907618 + 0.419797i \(0.137899\pi\)
\(350\) 0 0
\(351\) 379.688i 1.08173i
\(352\) 0 0
\(353\) −551.816 −1.56322 −0.781609 0.623769i \(-0.785601\pi\)
−0.781609 + 0.623769i \(0.785601\pi\)
\(354\) 0 0
\(355\) −18.2894 18.2894i −0.0515195 0.0515195i
\(356\) 0 0
\(357\) 925.871 + 925.871i 2.59347 + 2.59347i
\(358\) 0 0
\(359\) −432.275 −1.20411 −0.602054 0.798456i \(-0.705651\pi\)
−0.602054 + 0.798456i \(0.705651\pi\)
\(360\) 0 0
\(361\) 150.619i 0.417228i
\(362\) 0 0
\(363\) −433.118 + 433.118i −1.19316 + 1.19316i
\(364\) 0 0
\(365\) −160.838 + 160.838i −0.440652 + 0.440652i
\(366\) 0 0
\(367\) 223.982i 0.610306i 0.952303 + 0.305153i \(0.0987076\pi\)
−0.952303 + 0.305153i \(0.901292\pi\)
\(368\) 0 0
\(369\) −1065.49 −2.88751
\(370\) 0 0
\(371\) −365.704 365.704i −0.985725 0.985725i
\(372\) 0 0
\(373\) 348.716 + 348.716i 0.934897 + 0.934897i 0.998007 0.0631100i \(-0.0201019\pi\)
−0.0631100 + 0.998007i \(0.520102\pi\)
\(374\) 0 0
\(375\) −56.6836 −0.151156
\(376\) 0 0
\(377\) 318.450i 0.844694i
\(378\) 0 0
\(379\) −374.578 + 374.578i −0.988332 + 0.988332i −0.999933 0.0116005i \(-0.996307\pi\)
0.0116005 + 0.999933i \(0.496307\pi\)
\(380\) 0 0
\(381\) −763.278 + 763.278i −2.00335 + 2.00335i
\(382\) 0 0
\(383\) 431.347i 1.12623i 0.826378 + 0.563116i \(0.190398\pi\)
−0.826378 + 0.563116i \(0.809602\pi\)
\(384\) 0 0
\(385\) 9.64236 0.0250451
\(386\) 0 0
\(387\) 250.993 + 250.993i 0.648560 + 0.648560i
\(388\) 0 0
\(389\) −55.8528 55.8528i −0.143580 0.143580i 0.631663 0.775243i \(-0.282373\pi\)
−0.775243 + 0.631663i \(0.782373\pi\)
\(390\) 0 0
\(391\) −870.452 −2.22622
\(392\) 0 0
\(393\) 247.895i 0.630777i
\(394\) 0 0
\(395\) 115.627 115.627i 0.292726 0.292726i
\(396\) 0 0
\(397\) 104.083 104.083i 0.262173 0.262173i −0.563763 0.825936i \(-0.690647\pi\)
0.825936 + 0.563763i \(0.190647\pi\)
\(398\) 0 0
\(399\) 736.030i 1.84469i
\(400\) 0 0
\(401\) 32.9517 0.0821738 0.0410869 0.999156i \(-0.486918\pi\)
0.0410869 + 0.999156i \(0.486918\pi\)
\(402\) 0 0
\(403\) −50.3088 50.3088i −0.124836 0.124836i
\(404\) 0 0
\(405\) −75.4114 75.4114i −0.186201 0.186201i
\(406\) 0 0
\(407\) 4.17371 0.0102548
\(408\) 0 0
\(409\) 559.822i 1.36876i −0.729126 0.684379i \(-0.760073\pi\)
0.729126 0.684379i \(-0.239927\pi\)
\(410\) 0 0
\(411\) −561.679 + 561.679i −1.36662 + 1.36662i
\(412\) 0 0
\(413\) −582.161 + 582.161i −1.40959 + 1.40959i
\(414\) 0 0
\(415\) 126.267i 0.304259i
\(416\) 0 0
\(417\) 1082.39 2.59565
\(418\) 0 0
\(419\) 168.614 + 168.614i 0.402420 + 0.402420i 0.879085 0.476665i \(-0.158155\pi\)
−0.476665 + 0.879085i \(0.658155\pi\)
\(420\) 0 0
\(421\) −409.607 409.607i −0.972937 0.972937i 0.0267062 0.999643i \(-0.491498\pi\)
−0.999643 + 0.0267062i \(0.991498\pi\)
\(422\) 0 0
\(423\) −699.481 −1.65362
\(424\) 0 0
\(425\) 129.016i 0.303566i
\(426\) 0 0
\(427\) −263.164 + 263.164i −0.616310 + 0.616310i
\(428\) 0 0
\(429\) 15.0137 15.0137i 0.0349970 0.0349970i
\(430\) 0 0
\(431\) 307.273i 0.712930i −0.934309 0.356465i \(-0.883982\pi\)
0.934309 0.356465i \(-0.116018\pi\)
\(432\) 0 0
\(433\) −573.906 −1.32542 −0.662709 0.748877i \(-0.730593\pi\)
−0.662709 + 0.748877i \(0.730593\pi\)
\(434\) 0 0
\(435\) −262.616 262.616i −0.603714 0.603714i
\(436\) 0 0
\(437\) −345.987 345.987i −0.791733 0.791733i
\(438\) 0 0
\(439\) 491.449 1.11947 0.559737 0.828670i \(-0.310902\pi\)
0.559737 + 0.828670i \(0.310902\pi\)
\(440\) 0 0
\(441\) 854.922i 1.93860i
\(442\) 0 0
\(443\) 343.974 343.974i 0.776466 0.776466i −0.202762 0.979228i \(-0.564992\pi\)
0.979228 + 0.202762i \(0.0649919\pi\)
\(444\) 0 0
\(445\) 58.8428 58.8428i 0.132231 0.132231i
\(446\) 0 0
\(447\) 691.558i 1.54711i
\(448\) 0 0
\(449\) −153.260 −0.341337 −0.170668 0.985329i \(-0.554593\pi\)
−0.170668 + 0.985329i \(0.554593\pi\)
\(450\) 0 0
\(451\) −19.4319 19.4319i −0.0430862 0.0430862i
\(452\) 0 0
\(453\) −105.439 105.439i −0.232758 0.232758i
\(454\) 0 0
\(455\) 217.554 0.478142
\(456\) 0 0
\(457\) 708.281i 1.54985i 0.632054 + 0.774924i \(0.282212\pi\)
−0.632054 + 0.774924i \(0.717788\pi\)
\(458\) 0 0
\(459\) 712.676 712.676i 1.55267 1.55267i
\(460\) 0 0
\(461\) −20.0249 + 20.0249i −0.0434379 + 0.0434379i −0.728492 0.685054i \(-0.759779\pi\)
0.685054 + 0.728492i \(0.259779\pi\)
\(462\) 0 0
\(463\) 30.9338i 0.0668117i −0.999442 0.0334059i \(-0.989365\pi\)
0.999442 0.0334059i \(-0.0106354\pi\)
\(464\) 0 0
\(465\) −82.9762 −0.178443
\(466\) 0 0
\(467\) 89.9400 + 89.9400i 0.192591 + 0.192591i 0.796815 0.604224i \(-0.206517\pi\)
−0.604224 + 0.796815i \(0.706517\pi\)
\(468\) 0 0
\(469\) 44.8494 + 44.8494i 0.0956277 + 0.0956277i
\(470\) 0 0
\(471\) 843.606 1.79110
\(472\) 0 0
\(473\) 9.15497i 0.0193551i
\(474\) 0 0
\(475\) 51.2812 51.2812i 0.107960 0.107960i
\(476\) 0 0
\(477\) −610.333 + 610.333i −1.27952 + 1.27952i
\(478\) 0 0
\(479\) 424.069i 0.885322i −0.896689 0.442661i \(-0.854035\pi\)
0.896689 0.442661i \(-0.145965\pi\)
\(480\) 0 0
\(481\) 94.1688 0.195777
\(482\) 0 0
\(483\) −1210.46 1210.46i −2.50613 2.50613i
\(484\) 0 0
\(485\) −181.434 181.434i −0.374091 0.374091i
\(486\) 0 0
\(487\) −509.544 −1.04629 −0.523146 0.852243i \(-0.675242\pi\)
−0.523146 + 0.852243i \(0.675242\pi\)
\(488\) 0 0
\(489\) 56.0166i 0.114553i
\(490\) 0 0
\(491\) 232.469 232.469i 0.473461 0.473461i −0.429572 0.903033i \(-0.641335\pi\)
0.903033 + 0.429572i \(0.141335\pi\)
\(492\) 0 0
\(493\) 597.730 597.730i 1.21243 1.21243i
\(494\) 0 0
\(495\) 16.0924i 0.0325099i
\(496\) 0 0
\(497\) 115.777 0.232951
\(498\) 0 0
\(499\) −609.443 609.443i −1.22133 1.22133i −0.967160 0.254170i \(-0.918198\pi\)
−0.254170 0.967160i \(-0.581802\pi\)
\(500\) 0 0
\(501\) 915.506 + 915.506i 1.82736 + 1.82736i
\(502\) 0 0
\(503\) 83.3154 0.165637 0.0828185 0.996565i \(-0.473608\pi\)
0.0828185 + 0.996565i \(0.473608\pi\)
\(504\) 0 0
\(505\) 12.2124i 0.0241829i
\(506\) 0 0
\(507\) −267.118 + 267.118i −0.526859 + 0.526859i
\(508\) 0 0
\(509\) −534.566 + 534.566i −1.05023 + 1.05023i −0.0515585 + 0.998670i \(0.516419\pi\)
−0.998670 + 0.0515585i \(0.983581\pi\)
\(510\) 0 0
\(511\) 1018.14i 1.99245i
\(512\) 0 0
\(513\) 566.549 1.10438
\(514\) 0 0
\(515\) −130.139 130.139i −0.252698 0.252698i
\(516\) 0 0
\(517\) −12.7568 12.7568i −0.0246746 0.0246746i
\(518\) 0 0
\(519\) −193.705 −0.373227
\(520\) 0 0
\(521\) 513.800i 0.986181i −0.869978 0.493091i \(-0.835867\pi\)
0.869978 0.493091i \(-0.164133\pi\)
\(522\) 0 0
\(523\) −146.299 + 146.299i −0.279731 + 0.279731i −0.833001 0.553271i \(-0.813379\pi\)
0.553271 + 0.833001i \(0.313379\pi\)
\(524\) 0 0
\(525\) 179.411 179.411i 0.341734 0.341734i
\(526\) 0 0
\(527\) 188.859i 0.358367i
\(528\) 0 0
\(529\) 609.006 1.15124
\(530\) 0 0
\(531\) 971.585 + 971.585i 1.82973 + 1.82973i
\(532\) 0 0
\(533\) −438.429 438.429i −0.822569 0.822569i
\(534\) 0 0
\(535\) −346.683 −0.648006
\(536\) 0 0
\(537\) 364.875i 0.679469i
\(538\) 0 0
\(539\) −15.5917 + 15.5917i −0.0289270 + 0.0289270i
\(540\) 0 0
\(541\) 610.827 610.827i 1.12907 1.12907i 0.138743 0.990328i \(-0.455694\pi\)
0.990328 0.138743i \(-0.0443060\pi\)
\(542\) 0 0
\(543\) 97.8618i 0.180224i
\(544\) 0 0
\(545\) 9.46252 0.0173624
\(546\) 0 0
\(547\) −392.410 392.410i −0.717386 0.717386i 0.250683 0.968069i \(-0.419345\pi\)
−0.968069 + 0.250683i \(0.919345\pi\)
\(548\) 0 0
\(549\) 439.202 + 439.202i 0.800004 + 0.800004i
\(550\) 0 0
\(551\) 475.172 0.862381
\(552\) 0 0
\(553\) 731.945i 1.32359i
\(554\) 0 0
\(555\) 77.6581 77.6581i 0.139925 0.139925i
\(556\) 0 0
\(557\) 587.051 587.051i 1.05395 1.05395i 0.0554921 0.998459i \(-0.482327\pi\)
0.998459 0.0554921i \(-0.0176728\pi\)
\(558\) 0 0
\(559\) 206.558i 0.369513i
\(560\) 0 0
\(561\) 56.3616 0.100466
\(562\) 0 0
\(563\) 168.514 + 168.514i 0.299314 + 0.299314i 0.840745 0.541431i \(-0.182117\pi\)
−0.541431 + 0.840745i \(0.682117\pi\)
\(564\) 0 0
\(565\) 115.975 + 115.975i 0.205265 + 0.205265i
\(566\) 0 0
\(567\) 477.372 0.841926
\(568\) 0 0
\(569\) 550.627i 0.967711i 0.875148 + 0.483855i \(0.160764\pi\)
−0.875148 + 0.483855i \(0.839236\pi\)
\(570\) 0 0
\(571\) −163.518 + 163.518i −0.286371 + 0.286371i −0.835644 0.549272i \(-0.814905\pi\)
0.549272 + 0.835644i \(0.314905\pi\)
\(572\) 0 0
\(573\) 942.921 942.921i 1.64559 1.64559i
\(574\) 0 0
\(575\) 168.672i 0.293342i
\(576\) 0 0
\(577\) 15.6965 0.0272037 0.0136018 0.999907i \(-0.495670\pi\)
0.0136018 + 0.999907i \(0.495670\pi\)
\(578\) 0 0
\(579\) −211.319 211.319i −0.364973 0.364973i
\(580\) 0 0
\(581\) −399.651 399.651i −0.687868 0.687868i
\(582\) 0 0
\(583\) −22.2619 −0.0381851
\(584\) 0 0
\(585\) 363.083i 0.620654i
\(586\) 0 0
\(587\) 715.538 715.538i 1.21897 1.21897i 0.250983 0.967992i \(-0.419246\pi\)
0.967992 0.250983i \(-0.0807538\pi\)
\(588\) 0 0
\(589\) 75.0678 75.0678i 0.127450 0.127450i
\(590\) 0 0
\(591\) 68.4346i 0.115795i
\(592\) 0 0
\(593\) −557.100 −0.939460 −0.469730 0.882810i \(-0.655649\pi\)
−0.469730 + 0.882810i \(0.655649\pi\)
\(594\) 0 0
\(595\) 408.350 + 408.350i 0.686303 + 0.686303i
\(596\) 0 0
\(597\) −369.796 369.796i −0.619424 0.619424i
\(598\) 0 0
\(599\) −524.845 −0.876202 −0.438101 0.898926i \(-0.644349\pi\)
−0.438101 + 0.898926i \(0.644349\pi\)
\(600\) 0 0
\(601\) 182.301i 0.303330i 0.988432 + 0.151665i \(0.0484635\pi\)
−0.988432 + 0.151665i \(0.951537\pi\)
\(602\) 0 0
\(603\) 74.8504 74.8504i 0.124130 0.124130i
\(604\) 0 0
\(605\) −191.024 + 191.024i −0.315743 + 0.315743i
\(606\) 0 0
\(607\) 987.505i 1.62686i 0.581662 + 0.813431i \(0.302403\pi\)
−0.581662 + 0.813431i \(0.697597\pi\)
\(608\) 0 0
\(609\) 1662.42 2.72975
\(610\) 0 0
\(611\) −287.823 287.823i −0.471069 0.471069i
\(612\) 0 0
\(613\) −768.517 768.517i −1.25370 1.25370i −0.954050 0.299648i \(-0.903131\pi\)
−0.299648 0.954050i \(-0.596869\pi\)
\(614\) 0 0
\(615\) −723.119 −1.17580
\(616\) 0 0
\(617\) 467.462i 0.757636i −0.925471 0.378818i \(-0.876331\pi\)
0.925471 0.378818i \(-0.123669\pi\)
\(618\) 0 0
\(619\) −272.667 + 272.667i −0.440496 + 0.440496i −0.892179 0.451682i \(-0.850824\pi\)
0.451682 + 0.892179i \(0.350824\pi\)
\(620\) 0 0
\(621\) −931.734 + 931.734i −1.50038 + 1.50038i
\(622\) 0 0
\(623\) 372.489i 0.597896i
\(624\) 0 0
\(625\) −25.0000 −0.0400000
\(626\) 0 0
\(627\) 22.4026 + 22.4026i 0.0357298 + 0.0357298i
\(628\) 0 0
\(629\) 176.755 + 176.755i 0.281009 + 0.281009i
\(630\) 0 0
\(631\) −1107.18 −1.75465 −0.877324 0.479898i \(-0.840674\pi\)
−0.877324 + 0.479898i \(0.840674\pi\)
\(632\) 0 0
\(633\) 35.4104i 0.0559405i
\(634\) 0 0
\(635\) −336.639 + 336.639i −0.530141 + 0.530141i
\(636\) 0 0
\(637\) −351.785 + 351.785i −0.552252 + 0.552252i
\(638\) 0 0
\(639\) 193.223i 0.302383i
\(640\) 0 0
\(641\) −645.436 −1.00692 −0.503460 0.864018i \(-0.667940\pi\)
−0.503460 + 0.864018i \(0.667940\pi\)
\(642\) 0 0
\(643\) 397.860 + 397.860i 0.618756 + 0.618756i 0.945212 0.326456i \(-0.105855\pi\)
−0.326456 + 0.945212i \(0.605855\pi\)
\(644\) 0 0
\(645\) 170.342 + 170.342i 0.264096 + 0.264096i
\(646\) 0 0
\(647\) 386.850 0.597913 0.298956 0.954267i \(-0.403361\pi\)
0.298956 + 0.954267i \(0.403361\pi\)
\(648\) 0 0
\(649\) 35.4386i 0.0546049i
\(650\) 0 0
\(651\) 262.630 262.630i 0.403425 0.403425i
\(652\) 0 0
\(653\) 557.600 557.600i 0.853905 0.853905i −0.136707 0.990612i \(-0.543652\pi\)
0.990612 + 0.136707i \(0.0436517\pi\)
\(654\) 0 0
\(655\) 109.333i 0.166920i
\(656\) 0 0
\(657\) −1699.21 −2.58631
\(658\) 0 0
\(659\) 85.5304 + 85.5304i 0.129788 + 0.129788i 0.769017 0.639229i \(-0.220746\pi\)
−0.639229 + 0.769017i \(0.720746\pi\)
\(660\) 0 0
\(661\) 677.148 + 677.148i 1.02443 + 1.02443i 0.999694 + 0.0247351i \(0.00787424\pi\)
0.0247351 + 0.999694i \(0.492126\pi\)
\(662\) 0 0
\(663\) 1271.65 1.91803
\(664\) 0 0
\(665\) 324.622i 0.488153i
\(666\) 0 0
\(667\) −781.457 + 781.457i −1.17160 + 1.17160i
\(668\) 0 0
\(669\) −635.086 + 635.086i −0.949306 + 0.949306i
\(670\) 0 0
\(671\) 16.0199i 0.0238747i
\(672\) 0 0
\(673\) 1077.92 1.60167 0.800836 0.598884i \(-0.204389\pi\)
0.800836 + 0.598884i \(0.204389\pi\)
\(674\) 0 0
\(675\) −138.099 138.099i −0.204591 0.204591i
\(676\) 0 0
\(677\) −926.183 926.183i −1.36807 1.36807i −0.863189 0.504881i \(-0.831536\pi\)
−0.504881 0.863189i \(-0.668464\pi\)
\(678\) 0 0
\(679\) 1148.52 1.69149
\(680\) 0 0
\(681\) 1715.54i 2.51915i
\(682\) 0 0
\(683\) 548.522 548.522i 0.803107 0.803107i −0.180473 0.983580i \(-0.557763\pi\)
0.983580 + 0.180473i \(0.0577629\pi\)
\(684\) 0 0
\(685\) −247.725 + 247.725i −0.361643 + 0.361643i
\(686\) 0 0
\(687\) 765.027i 1.11358i
\(688\) 0 0
\(689\) −502.281 −0.729001
\(690\) 0 0
\(691\) −21.6062 21.6062i −0.0312680 0.0312680i 0.691300 0.722568i \(-0.257038\pi\)
−0.722568 + 0.691300i \(0.757038\pi\)
\(692\) 0 0
\(693\) 50.9344 + 50.9344i 0.0734984 + 0.0734984i
\(694\) 0 0
\(695\) 477.380 0.686878
\(696\) 0 0
\(697\) 1645.86i 2.36136i
\(698\) 0 0
\(699\) 476.664 476.664i 0.681923 0.681923i
\(700\) 0 0
\(701\) 462.868 462.868i 0.660296 0.660296i −0.295153 0.955450i \(-0.595371\pi\)
0.955450 + 0.295153i \(0.0953708\pi\)
\(702\) 0 0
\(703\) 140.513i 0.199877i
\(704\) 0 0
\(705\) −474.718 −0.673359
\(706\) 0 0
\(707\) 38.6536 + 38.6536i 0.0546728 + 0.0546728i
\(708\) 0 0
\(709\) 91.9564 + 91.9564i 0.129699 + 0.129699i 0.768976 0.639277i \(-0.220766\pi\)
−0.639277 + 0.768976i \(0.720766\pi\)
\(710\) 0 0
\(711\) 1221.56 1.71809
\(712\) 0 0
\(713\) 246.910i 0.346297i
\(714\) 0 0
\(715\) 6.62172 6.62172i 0.00926115 0.00926115i
\(716\) 0 0
\(717\) 321.448 321.448i 0.448323 0.448323i
\(718\) 0 0
\(719\) 463.016i 0.643972i 0.946744 + 0.321986i \(0.104350\pi\)
−0.946744 + 0.321986i \(0.895650\pi\)
\(720\) 0 0
\(721\) 823.814 1.14260
\(722\) 0 0
\(723\) 928.579 + 928.579i 1.28434 + 1.28434i
\(724\) 0 0
\(725\) −115.825 115.825i −0.159759 0.159759i
\(726\) 0 0
\(727\) 233.171 0.320730 0.160365 0.987058i \(-0.448733\pi\)
0.160365 + 0.987058i \(0.448733\pi\)
\(728\) 0 0
\(729\) 985.596i 1.35198i
\(730\) 0 0
\(731\) −387.709 + 387.709i −0.530382 + 0.530382i
\(732\) 0 0
\(733\) −873.035 + 873.035i −1.19104 + 1.19104i −0.214269 + 0.976775i \(0.568737\pi\)
−0.976775 + 0.214269i \(0.931263\pi\)
\(734\) 0 0
\(735\) 580.212i 0.789404i
\(736\) 0 0
\(737\) 2.73017 0.00370443
\(738\) 0 0
\(739\) −127.699 127.699i −0.172799 0.172799i 0.615409 0.788208i \(-0.288991\pi\)
−0.788208 + 0.615409i \(0.788991\pi\)
\(740\) 0 0
\(741\) 505.456 + 505.456i 0.682127 + 0.682127i
\(742\) 0 0
\(743\) −226.592 −0.304968 −0.152484 0.988306i \(-0.548727\pi\)
−0.152484 + 0.988306i \(0.548727\pi\)
\(744\) 0 0
\(745\) 305.008i 0.409407i
\(746\) 0 0
\(747\) −666.989 + 666.989i −0.892890 + 0.892890i
\(748\) 0 0
\(749\) 1097.29 1097.29i 1.46501 1.46501i
\(750\) 0 0
\(751\) 516.811i 0.688164i 0.938940 + 0.344082i \(0.111810\pi\)
−0.938940 + 0.344082i \(0.888190\pi\)
\(752\) 0 0
\(753\) 611.124 0.811586
\(754\) 0 0
\(755\) −46.5034 46.5034i −0.0615940 0.0615940i
\(756\) 0 0
\(757\) −135.597 135.597i −0.179124 0.179124i 0.611850 0.790974i \(-0.290426\pi\)
−0.790974 + 0.611850i \(0.790426\pi\)
\(758\) 0 0
\(759\) −73.6857 −0.0970826
\(760\) 0 0
\(761\) 268.435i 0.352739i −0.984324 0.176370i \(-0.943565\pi\)
0.984324 0.176370i \(-0.0564354\pi\)
\(762\) 0 0
\(763\) −29.9500 + 29.9500i −0.0392530 + 0.0392530i
\(764\) 0 0
\(765\) 681.507 681.507i 0.890858 0.890858i
\(766\) 0 0
\(767\) 799.578i 1.04247i
\(768\) 0 0
\(769\) −826.424 −1.07467 −0.537337 0.843368i \(-0.680570\pi\)
−0.537337 + 0.843368i \(0.680570\pi\)
\(770\) 0 0
\(771\) 1619.28 + 1619.28i 2.10023 + 2.10023i
\(772\) 0 0
\(773\) 1042.45 + 1042.45i 1.34857 + 1.34857i 0.887213 + 0.461359i \(0.152638\pi\)
0.461359 + 0.887213i \(0.347362\pi\)
\(774\) 0 0
\(775\) −36.5962 −0.0472209
\(776\) 0 0
\(777\) 491.595i 0.632683i
\(778\) 0 0
\(779\) 654.199 654.199i 0.839793 0.839793i
\(780\) 0 0
\(781\) 3.52390 3.52390i 0.00451203 0.00451203i
\(782\) 0 0
\(783\) 1279.62i 1.63426i
\(784\) 0 0
\(785\) 372.068 0.473972
\(786\) 0 0
\(787\) −924.222 924.222i −1.17436 1.17436i −0.981159 0.193201i \(-0.938113\pi\)
−0.193201 0.981159i \(-0.561887\pi\)
\(788\) 0 0
\(789\) 3.36771 + 3.36771i 0.00426833 + 0.00426833i
\(790\) 0 0
\(791\) −734.148 −0.928126
\(792\) 0 0
\(793\) 361.447i 0.455797i
\(794\) 0 0
\(795\) −414.216 + 414.216i −0.521027 + 0.521027i
\(796\) 0 0
\(797\) −761.055 + 761.055i −0.954899 + 0.954899i −0.999026 0.0441268i \(-0.985949\pi\)
0.0441268 + 0.999026i \(0.485949\pi\)
\(798\) 0 0
\(799\) 1080.49i 1.35230i
\(800\) 0 0
\(801\) 621.657 0.776101
\(802\) 0 0
\(803\) −30.9893 30.9893i −0.0385919 0.0385919i
\(804\) 0 0
\(805\) −533.866 533.866i −0.663188 0.663188i
\(806\) 0 0
\(807\) −1011.67 −1.25362
\(808\) 0 0
\(809\) 106.311i 0.131410i 0.997839 + 0.0657052i \(0.0209297\pi\)
−0.997839 + 0.0657052i \(0.979070\pi\)
\(810\) 0 0
\(811\) −602.747 + 602.747i −0.743214 + 0.743214i −0.973195 0.229981i \(-0.926134\pi\)
0.229981 + 0.973195i \(0.426134\pi\)
\(812\) 0 0
\(813\) −852.069 + 852.069i −1.04806 + 1.04806i
\(814\) 0 0
\(815\) 24.7058i 0.0303139i
\(816\) 0 0
\(817\) −308.213 −0.377250
\(818\) 0 0
\(819\) 1149.20 + 1149.20i 1.40317 + 1.40317i
\(820\) 0 0
\(821\) −236.461 236.461i −0.288016 0.288016i 0.548280 0.836295i \(-0.315283\pi\)
−0.836295 + 0.548280i \(0.815283\pi\)
\(822\) 0 0
\(823\) 412.888 0.501687 0.250843 0.968028i \(-0.419292\pi\)
0.250843 + 0.968028i \(0.419292\pi\)
\(824\) 0 0
\(825\) 10.9215i 0.0132381i
\(826\) 0 0
\(827\) −772.140 + 772.140i −0.933664 + 0.933664i −0.997933 0.0642682i \(-0.979529\pi\)
0.0642682 + 0.997933i \(0.479529\pi\)
\(828\) 0 0
\(829\) 163.360 163.360i 0.197056 0.197056i −0.601681 0.798737i \(-0.705502\pi\)
0.798737 + 0.601681i \(0.205502\pi\)
\(830\) 0 0
\(831\) 2163.05i 2.60294i
\(832\) 0 0
\(833\) −1320.60 −1.58535
\(834\) 0 0
\(835\) 403.779 + 403.779i 0.483568 + 0.483568i
\(836\) 0 0
\(837\) −202.155 202.155i −0.241524 0.241524i
\(838\) 0 0
\(839\) −156.751 −0.186831 −0.0934154 0.995627i \(-0.529778\pi\)
−0.0934154 + 0.995627i \(0.529778\pi\)
\(840\) 0 0
\(841\) 232.237i 0.276144i
\(842\) 0 0
\(843\) 752.363 752.363i 0.892482 0.892482i
\(844\) 0 0
\(845\) −117.811 + 117.811i −0.139421 + 0.139421i
\(846\) 0 0
\(847\) 1209.23i 1.42766i
\(848\) 0 0
\(849\) 624.794 0.735917
\(850\) 0 0
\(851\) −231.085 231.085i −0.271545 0.271545i
\(852\) 0 0
\(853\) 933.500 + 933.500i 1.09437 + 1.09437i 0.995056 + 0.0993169i \(0.0316657\pi\)
0.0993169 + 0.995056i \(0.468334\pi\)
\(854\) 0 0
\(855\) 541.771 0.633650
\(856\) 0 0
\(857\) 988.694i 1.15367i −0.816861 0.576834i \(-0.804288\pi\)
0.816861 0.576834i \(-0.195712\pi\)
\(858\) 0 0
\(859\) 868.729 868.729i 1.01133 1.01133i 0.0113913 0.999935i \(-0.496374\pi\)
0.999935 0.0113913i \(-0.00362604\pi\)
\(860\) 0 0
\(861\) 2288.76 2288.76i 2.65825 2.65825i
\(862\) 0 0
\(863\) 1065.18i 1.23428i −0.786854 0.617139i \(-0.788291\pi\)
0.786854 0.617139i \(-0.211709\pi\)
\(864\) 0 0
\(865\) −85.4324 −0.0987658
\(866\) 0 0
\(867\) 1350.83 + 1350.83i 1.55805 + 1.55805i
\(868\) 0 0
\(869\) 22.2783 + 22.2783i 0.0256367 + 0.0256367i
\(870\) 0 0
\(871\) 61.5991 0.0707222
\(872\) 0 0
\(873\) 1916.80i 2.19565i
\(874\) 0 0
\(875\) 79.1280 79.1280i 0.0904320 0.0904320i
\(876\) 0 0
\(877\) 107.637 107.637i 0.122733 0.122733i −0.643072 0.765805i \(-0.722341\pi\)
0.765805 + 0.643072i \(0.222341\pi\)
\(878\) 0 0
\(879\) 1509.60i 1.71741i
\(880\) 0 0
\(881\) 1289.21 1.46334 0.731672 0.681657i \(-0.238740\pi\)
0.731672 + 0.681657i \(0.238740\pi\)
\(882\) 0 0
\(883\) −89.1493 89.1493i −0.100962 0.100962i 0.654822 0.755783i \(-0.272744\pi\)
−0.755783 + 0.654822i \(0.772744\pi\)
\(884\) 0 0
\(885\) 659.387 + 659.387i 0.745071 + 0.745071i
\(886\) 0 0
\(887\) −1235.62 −1.39303 −0.696516 0.717541i \(-0.745268\pi\)
−0.696516 + 0.717541i \(0.745268\pi\)
\(888\) 0 0
\(889\) 2131.01i 2.39708i
\(890\) 0 0
\(891\) 14.5298 14.5298i 0.0163073 0.0163073i
\(892\) 0 0
\(893\) 429.473 429.473i 0.480933 0.480933i
\(894\) 0 0
\(895\) 160.926i 0.179806i
\(896\) 0 0
\(897\) −1662.52 −1.85343
\(898\) 0 0
\(899\) −169.550 169.550i −0.188599 0.188599i
\(900\) 0 0
\(901\) −942.783 942.783i −1.04637 1.04637i
\(902\) 0 0
\(903\) −1078.30 −1.19414
\(904\) 0 0
\(905\) 43.1614i 0.0476921i
\(906\) 0 0
\(907\) 1170.07 1170.07i 1.29004 1.29004i 0.355287 0.934757i \(-0.384383\pi\)
0.934757 0.355287i \(-0.115617\pi\)
\(908\) 0 0
\(909\) 64.5101 64.5101i 0.0709682 0.0709682i
\(910\) 0 0
\(911\) 174.325i 0.191356i 0.995412 + 0.0956781i \(0.0305019\pi\)
−0.995412 + 0.0956781i \(0.969498\pi\)
\(912\) 0 0
\(913\) −24.3284 −0.0266467
\(914\) 0 0
\(915\) 298.074 + 298.074i 0.325764 + 0.325764i
\(916\) 0 0
\(917\) −346.052 346.052i −0.377374 0.377374i
\(918\) 0 0
\(919\) 1108.52 1.20622 0.603110 0.797658i \(-0.293928\pi\)
0.603110 + 0.797658i \(0.293928\pi\)
\(920\) 0 0
\(921\) 2476.08i 2.68846i
\(922\) 0 0
\(923\) 79.5075 79.5075i 0.0861403 0.0861403i
\(924\) 0 0
\(925\) 34.2507 34.2507i 0.0370278 0.0370278i
\(926\) 0 0
\(927\) 1374.89i 1.48316i
\(928\) 0 0
\(929\) −410.945 −0.442352 −0.221176 0.975234i \(-0.570990\pi\)
−0.221176 + 0.975234i \(0.570990\pi\)
\(930\) 0 0
\(931\) −524.912 524.912i −0.563816 0.563816i
\(932\) 0 0
\(933\) 357.458 + 357.458i 0.383127 + 0.383127i
\(934\) 0 0
\(935\) 24.8580 0.0265860
\(936\) 0 0
\(937\) 181.492i 0.193694i 0.995299 + 0.0968472i \(0.0308758\pi\)
−0.995299 + 0.0968472i \(0.969124\pi\)
\(938\) 0 0
\(939\) −1116.13 + 1116.13i −1.18864 + 1.18864i
\(940\) 0 0
\(941\) 363.737 363.737i 0.386543 0.386543i −0.486910 0.873452i \(-0.661876\pi\)
0.873452 + 0.486910i \(0.161876\pi\)
\(942\) 0 0
\(943\) 2151.76i 2.28183i
\(944\) 0 0
\(945\) 874.198 0.925077
\(946\) 0 0
\(947\) −616.971 616.971i −0.651500 0.651500i 0.301854 0.953354i \(-0.402395\pi\)
−0.953354 + 0.301854i \(0.902395\pi\)
\(948\) 0 0
\(949\) −699.192 699.192i −0.736767 0.736767i
\(950\) 0 0
\(951\) −137.964 −0.145072
\(952\) 0 0
\(953\) 602.419i 0.632129i 0.948738 + 0.316064i \(0.102362\pi\)
−0.948738 + 0.316064i \(0.897638\pi\)
\(954\) 0 0
\(955\) 415.870 415.870i 0.435466 0.435466i
\(956\) 0 0
\(957\) 50.5992 50.5992i 0.0528727 0.0528727i
\(958\) 0 0
\(959\) 1568.16i 1.63521i
\(960\) 0 0
\(961\) 907.429 0.944255
\(962\) 0 0
\(963\) −1831.30 1831.30i −1.90166 1.90166i
\(964\) 0 0
\(965\) −93.2012 93.2012i −0.0965815 0.0965815i
\(966\) 0 0
\(967\) −1277.51 −1.32111 −0.660553 0.750779i \(-0.729678\pi\)
−0.660553 + 0.750779i \(0.729678\pi\)
\(968\) 0 0
\(969\) 1897.48i 1.95819i
\(970\) 0 0
\(971\) 122.966 122.966i 0.126639 0.126639i −0.640947 0.767585i \(-0.721458\pi\)
0.767585 + 0.640947i \(0.221458\pi\)
\(972\) 0 0
\(973\) −1510.97 + 1510.97i −1.55289 + 1.55289i
\(974\) 0 0
\(975\) 246.414i 0.252732i
\(976\) 0 0
\(977\) 809.129 0.828177 0.414088 0.910237i \(-0.364100\pi\)
0.414088 + 0.910237i \(0.364100\pi\)
\(978\) 0 0
\(979\) 11.3375 + 11.3375i 0.0115807 + 0.0115807i
\(980\) 0 0
\(981\) 49.9844 + 49.9844i 0.0509525 + 0.0509525i
\(982\) 0 0
\(983\) 986.542 1.00360 0.501802 0.864983i \(-0.332671\pi\)
0.501802 + 0.864983i \(0.332671\pi\)
\(984\) 0 0
\(985\) 30.1827i 0.0306423i
\(986\) 0 0
\(987\) 1502.54 1502.54i 1.52233 1.52233i
\(988\) 0 0
\(989\) 506.881 506.881i 0.512519 0.512519i
\(990\) 0 0
\(991\) 674.433i 0.680558i −0.940325 0.340279i \(-0.889479\pi\)
0.940325 0.340279i \(-0.110521\pi\)
\(992\) 0 0
\(993\) 1392.51 1.40233
\(994\) 0 0
\(995\) −163.097 163.097i −0.163916 0.163916i
\(996\) 0 0
\(997\) 1315.09 + 1315.09i 1.31905 + 1.31905i 0.914530 + 0.404519i \(0.132561\pi\)
0.404519 + 0.914530i \(0.367439\pi\)
\(998\) 0 0
\(999\) 378.398 0.378777
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.3.r.b.31.15 32
4.3 odd 2 640.3.r.a.31.2 32
8.3 odd 2 80.3.r.a.11.7 32
8.5 even 2 320.3.r.a.271.2 32
16.3 odd 4 inner 640.3.r.b.351.15 32
16.5 even 4 80.3.r.a.51.7 yes 32
16.11 odd 4 320.3.r.a.111.2 32
16.13 even 4 640.3.r.a.351.2 32
40.3 even 4 400.3.k.g.299.1 32
40.19 odd 2 400.3.r.f.251.10 32
40.27 even 4 400.3.k.h.299.16 32
80.37 odd 4 400.3.k.g.99.1 32
80.53 odd 4 400.3.k.h.99.16 32
80.69 even 4 400.3.r.f.51.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.r.a.11.7 32 8.3 odd 2
80.3.r.a.51.7 yes 32 16.5 even 4
320.3.r.a.111.2 32 16.11 odd 4
320.3.r.a.271.2 32 8.5 even 2
400.3.k.g.99.1 32 80.37 odd 4
400.3.k.g.299.1 32 40.3 even 4
400.3.k.h.99.16 32 80.53 odd 4
400.3.k.h.299.16 32 40.27 even 4
400.3.r.f.51.10 32 80.69 even 4
400.3.r.f.251.10 32 40.19 odd 2
640.3.r.a.31.2 32 4.3 odd 2
640.3.r.a.351.2 32 16.13 even 4
640.3.r.b.31.15 32 1.1 even 1 trivial
640.3.r.b.351.15 32 16.3 odd 4 inner