Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [400,3,Mod(193,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.193");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.p (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.8992105744\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 50) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
Embedding invariants
Embedding label | 193.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 400.193 |
Dual form | 400.3.p.g.257.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(177\) | \(351\) |
\(\chi(n)\) | \(1\) | \(e\left(\frac{3}{4}\right)\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 3.00000 | + | 3.00000i | 1.00000 | + | 1.00000i | 1.00000 | \(0\) | ||
1.00000i | \(0.5\pi\) | |||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −3.00000 | + | 3.00000i | −0.428571 | + | 0.428571i | −0.888142 | − | 0.459570i | \(-0.848004\pi\) |
0.459570 | + | 0.888142i | \(0.348004\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 9.00000i | 1.00000i | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −12.0000 | −1.09091 | −0.545455 | − | 0.838140i | \(-0.683643\pi\) | ||||
−0.545455 | + | 0.838140i | \(0.683643\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 12.0000 | + | 12.0000i | 0.923077 | + | 0.923077i | 0.997246 | − | 0.0741688i | \(-0.0236304\pi\) |
−0.0741688 | + | 0.997246i | \(0.523630\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −12.0000 | + | 12.0000i | −0.705882 | + | 0.705882i | −0.965667 | − | 0.259784i | \(-0.916349\pi\) |
0.259784 | + | 0.965667i | \(0.416349\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 20.0000i | 1.05263i | 0.850289 | + | 0.526316i | \(0.176427\pi\) | ||||
−0.850289 | + | 0.526316i | \(0.823573\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −18.0000 | −0.857143 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 3.00000 | + | 3.00000i | 0.130435 | + | 0.130435i | 0.769310 | − | 0.638875i | \(-0.220600\pi\) |
−0.638875 | + | 0.769310i | \(0.720600\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 30.0000i | 1.03448i | 0.855840 | + | 0.517241i | \(0.173041\pi\) | ||||
−0.855840 | + | 0.517241i | \(0.826959\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 0.258065 | 0.129032 | − | 0.991640i | \(-0.458813\pi\) | ||||
0.129032 | + | 0.991640i | \(0.458813\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | −36.0000 | − | 36.0000i | −1.09091 | − | 1.09091i | ||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 48.0000 | − | 48.0000i | 1.29730 | − | 1.29730i | 0.367126 | − | 0.930171i | \(-0.380342\pi\) |
0.930171 | − | 0.367126i | \(-0.119658\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 72.0000i | 1.84615i | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −48.0000 | −1.17073 | −0.585366 | − | 0.810769i | \(-0.699049\pi\) | ||||
−0.585366 | + | 0.810769i | \(0.699049\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −27.0000 | − | 27.0000i | −0.627907 | − | 0.627907i | 0.319634 | − | 0.947541i | \(-0.396440\pi\) |
−0.947541 | + | 0.319634i | \(0.896440\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 27.0000 | − | 27.0000i | 0.574468 | − | 0.574468i | −0.358906 | − | 0.933374i | \(-0.616850\pi\) |
0.933374 | + | 0.358906i | \(0.116850\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 31.0000i | 0.632653i | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −72.0000 | −1.41176 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 12.0000 | + | 12.0000i | 0.226415 | + | 0.226415i | 0.811193 | − | 0.584778i | \(-0.198818\pi\) |
−0.584778 | + | 0.811193i | \(0.698818\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | −60.0000 | + | 60.0000i | −1.05263 | + | 1.05263i | ||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − | 60.0000i | − | 1.01695i | −0.861077 | − | 0.508475i | \(-0.830210\pi\) | ||
0.861077 | − | 0.508475i | \(-0.169790\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 32.0000 | 0.524590 | 0.262295 | − | 0.964988i | \(-0.415521\pi\) | ||||
0.262295 | + | 0.964988i | \(0.415521\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | −27.0000 | − | 27.0000i | −0.428571 | − | 0.428571i | ||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −3.00000 | + | 3.00000i | −0.0447761 | + | 0.0447761i | −0.729140 | − | 0.684364i | \(-0.760080\pi\) |
0.684364 | + | 0.729140i | \(0.260080\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 18.0000i | 0.260870i | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 48.0000 | 0.676056 | 0.338028 | − | 0.941136i | \(-0.390240\pi\) | ||||
0.338028 | + | 0.941136i | \(0.390240\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 12.0000 | + | 12.0000i | 0.164384 | + | 0.164384i | 0.784505 | − | 0.620122i | \(-0.212917\pi\) |
−0.620122 | + | 0.784505i | \(0.712917\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 36.0000 | − | 36.0000i | 0.467532 | − | 0.467532i | ||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 40.0000i | 0.506329i | 0.967423 | + | 0.253165i | \(0.0814714\pi\) | ||||
−0.967423 | + | 0.253165i | \(0.918529\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 81.0000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 93.0000 | + | 93.0000i | 1.12048 | + | 1.12048i | 0.991669 | + | 0.128813i | \(0.0411167\pi\) |
0.128813 | + | 0.991669i | \(0.458883\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | −90.0000 | + | 90.0000i | −1.03448 | + | 1.03448i | ||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 30.0000i | − | 0.337079i | −0.985695 | − | 0.168539i | \(-0.946095\pi\) | ||
0.985695 | − | 0.168539i | \(-0.0539050\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −72.0000 | −0.791209 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 24.0000 | + | 24.0000i | 0.258065 | + | 0.258065i | ||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −12.0000 | + | 12.0000i | −0.123711 | + | 0.123711i | −0.766252 | − | 0.642540i | \(-0.777880\pi\) |
0.642540 | + | 0.766252i | \(0.277880\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | − | 108.000i | − | 1.09091i | ||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −78.0000 | −0.772277 | −0.386139 | − | 0.922441i | \(-0.626191\pi\) | ||||
−0.386139 | + | 0.922441i | \(0.626191\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 93.0000 | + | 93.0000i | 0.902913 | + | 0.902913i | 0.995687 | − | 0.0927745i | \(-0.0295736\pi\) |
−0.0927745 | + | 0.995687i | \(0.529574\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 27.0000 | − | 27.0000i | 0.252336 | − | 0.252336i | −0.569591 | − | 0.821928i | \(-0.692899\pi\) |
0.821928 | + | 0.569591i | \(0.192899\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − | 160.000i | − | 1.46789i | −0.679209 | − | 0.733945i | \(-0.737677\pi\) | ||
0.679209 | − | 0.733945i | \(-0.262323\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 288.000 | 2.59459 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 72.0000 | + | 72.0000i | 0.637168 | + | 0.637168i | 0.949856 | − | 0.312688i | \(-0.101229\pi\) |
−0.312688 | + | 0.949856i | \(0.601229\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | −108.000 | + | 108.000i | −0.923077 | + | 0.923077i | ||||
\(118\) | 0 | 0 | ||||||||
\(119\) | − | 72.0000i | − | 0.605042i | ||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 23.0000 | 0.190083 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | −144.000 | − | 144.000i | −1.17073 | − | 1.17073i | ||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 117.000 | − | 117.000i | 0.921260 | − | 0.921260i | −0.0758587 | − | 0.997119i | \(-0.524170\pi\) |
0.997119 | + | 0.0758587i | \(0.0241698\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | − | 162.000i | − | 1.25581i | ||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −132.000 | −1.00763 | −0.503817 | − | 0.863811i | \(-0.668071\pi\) | ||||
−0.503817 | + | 0.863811i | \(0.668071\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −60.0000 | − | 60.0000i | −0.451128 | − | 0.451128i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 168.000 | − | 168.000i | 1.22628 | − | 1.22628i | 0.260916 | − | 0.965362i | \(-0.415975\pi\) |
0.965362 | − | 0.260916i | \(-0.0840245\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 100.000i | − | 0.719424i | −0.933063 | − | 0.359712i | \(-0.882875\pi\) | ||
0.933063 | − | 0.359712i | \(-0.117125\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 162.000 | 1.14894 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −144.000 | − | 144.000i | −1.00699 | − | 1.00699i | ||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | −93.0000 | + | 93.0000i | −0.632653 | + | 0.632653i | ||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 248.000 | 1.64238 | 0.821192 | − | 0.570652i | \(-0.193309\pi\) | ||||
0.821192 | + | 0.570652i | \(0.193309\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | −108.000 | − | 108.000i | −0.705882 | − | 0.705882i | ||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −72.0000 | + | 72.0000i | −0.458599 | + | 0.458599i | −0.898195 | − | 0.439597i | \(-0.855121\pi\) |
0.439597 | + | 0.898195i | \(0.355121\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 72.0000i | 0.452830i | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −18.0000 | −0.111801 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 93.0000 | + | 93.0000i | 0.570552 | + | 0.570552i | 0.932283 | − | 0.361731i | \(-0.117814\pi\) |
−0.361731 | + | 0.932283i | \(0.617814\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −3.00000 | + | 3.00000i | −0.0179641 | + | 0.0179641i | −0.716032 | − | 0.698068i | \(-0.754043\pi\) |
0.698068 | + | 0.716032i | \(0.254043\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 119.000i | 0.704142i | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −180.000 | −1.05263 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −168.000 | − | 168.000i | −0.971098 | − | 0.971098i | 0.0284957 | − | 0.999594i | \(-0.490928\pi\) |
−0.999594 | + | 0.0284957i | \(0.990928\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 180.000 | − | 180.000i | 1.01695 | − | 1.01695i | ||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − | 300.000i | − | 1.67598i | −0.545687 | − | 0.837989i | \(-0.683731\pi\) | ||
0.545687 | − | 0.837989i | \(-0.316269\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 142.000 | 0.784530 | 0.392265 | − | 0.919852i | \(-0.371692\pi\) | ||||
0.392265 | + | 0.919852i | \(0.371692\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 96.0000 | + | 96.0000i | 0.524590 | + | 0.524590i | ||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 144.000 | − | 144.000i | 0.770053 | − | 0.770053i | ||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −192.000 | −1.00524 | −0.502618 | − | 0.864509i | \(-0.667630\pi\) | ||||
−0.502618 | + | 0.864509i | \(0.667630\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 132.000 | + | 132.000i | 0.683938 | + | 0.683938i | 0.960885 | − | 0.276947i | \(-0.0893227\pi\) |
−0.276947 | + | 0.960885i | \(0.589323\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −132.000 | + | 132.000i | −0.670051 | + | 0.670051i | −0.957728 | − | 0.287677i | \(-0.907117\pi\) |
0.287677 | + | 0.957728i | \(0.407117\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 160.000i | 0.804020i | 0.915635 | + | 0.402010i | \(0.131688\pi\) | ||||
−0.915635 | + | 0.402010i | \(0.868312\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −18.0000 | −0.0895522 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −90.0000 | − | 90.0000i | −0.443350 | − | 0.443350i | ||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | −27.0000 | + | 27.0000i | −0.130435 | + | 0.130435i | ||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − | 240.000i | − | 1.14833i | ||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 28.0000 | 0.132701 | 0.0663507 | − | 0.997796i | \(-0.478864\pi\) | ||||
0.0663507 | + | 0.997796i | \(0.478864\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 144.000 | + | 144.000i | 0.676056 | + | 0.676056i | ||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −24.0000 | + | 24.0000i | −0.110599 | + | 0.110599i | ||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 72.0000i | 0.328767i | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −288.000 | −1.30317 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −117.000 | − | 117.000i | −0.524664 | − | 0.524664i | 0.394313 | − | 0.918976i | \(-0.370983\pi\) |
−0.918976 | + | 0.394313i | \(0.870983\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −93.0000 | + | 93.0000i | −0.409692 | + | 0.409692i | −0.881631 | − | 0.471939i | \(-0.843554\pi\) |
0.471939 | + | 0.881631i | \(0.343554\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 370.000i | 1.61572i | 0.589374 | + | 0.807860i | \(0.299374\pi\) | ||||
−0.589374 | + | 0.807860i | \(0.700626\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 216.000 | 0.935065 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 252.000 | + | 252.000i | 1.08155 | + | 1.08155i | 0.996366 | + | 0.0851794i | \(0.0271464\pi\) |
0.0851794 | + | 0.996366i | \(0.472854\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | −120.000 | + | 120.000i | −0.506329 | + | 0.506329i | ||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 360.000i | 1.50628i | 0.657862 | + | 0.753138i | \(0.271461\pi\) | ||||
−0.657862 | + | 0.753138i | \(0.728539\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 32.0000 | 0.132780 | 0.0663900 | − | 0.997794i | \(-0.478852\pi\) | ||||
0.0663900 | + | 0.997794i | \(0.478852\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 243.000 | + | 243.000i | 1.00000 | + | 1.00000i | ||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −240.000 | + | 240.000i | −0.971660 | + | 0.971660i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 558.000i | 2.24096i | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −252.000 | −1.00398 | −0.501992 | − | 0.864872i | \(-0.667399\pi\) | ||||
−0.501992 | + | 0.864872i | \(0.667399\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −36.0000 | − | 36.0000i | −0.142292 | − | 0.142292i | ||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −192.000 | + | 192.000i | −0.747082 | + | 0.747082i | −0.973930 | − | 0.226848i | \(-0.927158\pi\) |
0.226848 | + | 0.973930i | \(0.427158\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 288.000i | 1.11197i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −270.000 | −1.03448 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 333.000 | + | 333.000i | 1.26616 | + | 1.26616i | 0.948056 | + | 0.318104i | \(0.103046\pi\) |
0.318104 | + | 0.948056i | \(0.396954\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 90.0000 | − | 90.0000i | 0.337079 | − | 0.337079i | ||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − | 480.000i | − | 1.78439i | −0.451654 | − | 0.892193i | \(-0.649166\pi\) | ||
0.451654 | − | 0.892193i | \(-0.350834\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 88.0000 | 0.324723 | 0.162362 | − | 0.986731i | \(-0.448089\pi\) | ||||
0.162362 | + | 0.986731i | \(0.448089\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | −216.000 | − | 216.000i | −0.791209 | − | 0.791209i | ||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 288.000 | − | 288.000i | 1.03971 | − | 1.03971i | 0.0405330 | − | 0.999178i | \(-0.487094\pi\) |
0.999178 | − | 0.0405330i | \(-0.0129056\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 72.0000i | 0.258065i | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −288.000 | −1.02491 | −0.512456 | − | 0.858714i | \(-0.671264\pi\) | ||||
−0.512456 | + | 0.858714i | \(0.671264\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −117.000 | − | 117.000i | −0.413428 | − | 0.413428i | 0.469503 | − | 0.882931i | \(-0.344433\pi\) |
−0.882931 | + | 0.469503i | \(0.844433\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 144.000 | − | 144.000i | 0.501742 | − | 0.501742i | ||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 1.00000i | 0.00346021i | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −72.0000 | −0.247423 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −168.000 | − | 168.000i | −0.573379 | − | 0.573379i | 0.359692 | − | 0.933071i | \(-0.382882\pi\) |
−0.933071 | + | 0.359692i | \(0.882882\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 72.0000i | 0.240803i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 162.000 | 0.538206 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | −234.000 | − | 234.000i | −0.772277 | − | 0.772277i | ||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −243.000 | + | 243.000i | −0.791531 | + | 0.791531i | −0.981743 | − | 0.190212i | \(-0.939082\pi\) |
0.190212 | + | 0.981743i | \(0.439082\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 558.000i | 1.80583i | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −552.000 | −1.77492 | −0.887460 | − | 0.460885i | \(-0.847532\pi\) | ||||
−0.887460 | + | 0.460885i | \(0.847532\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −48.0000 | − | 48.0000i | −0.153355 | − | 0.153355i | 0.626260 | − | 0.779614i | \(-0.284585\pi\) |
−0.779614 | + | 0.626260i | \(0.784585\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 228.000 | − | 228.000i | 0.719243 | − | 0.719243i | −0.249207 | − | 0.968450i | \(-0.580170\pi\) |
0.968450 | + | 0.249207i | \(0.0801700\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | − | 360.000i | − | 1.12853i | ||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 162.000 | 0.504673 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −240.000 | − | 240.000i | −0.743034 | − | 0.743034i | ||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 480.000 | − | 480.000i | 1.46789 | − | 1.46789i | ||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 162.000i | 0.492401i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 148.000 | 0.447130 | 0.223565 | − | 0.974689i | \(-0.428231\pi\) | ||||
0.223565 | + | 0.974689i | \(0.428231\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 432.000 | + | 432.000i | 1.29730 | + | 1.29730i | ||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −192.000 | + | 192.000i | −0.569733 | + | 0.569733i | −0.932054 | − | 0.362321i | \(-0.881985\pi\) |
0.362321 | + | 0.932054i | \(0.381985\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 432.000i | 1.27434i | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −96.0000 | −0.281525 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −240.000 | − | 240.000i | −0.699708 | − | 0.699708i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 117.000 | − | 117.000i | 0.337176 | − | 0.337176i | −0.518128 | − | 0.855303i | \(-0.673371\pi\) |
0.855303 | + | 0.518128i | \(0.173371\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 130.000i | 0.372493i | 0.982503 | + | 0.186246i | \(0.0596323\pi\) | ||||
−0.982503 | + | 0.186246i | \(0.940368\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −288.000 | − | 288.000i | −0.815864 | − | 0.815864i | 0.169642 | − | 0.985506i | \(-0.445739\pi\) |
−0.985506 | + | 0.169642i | \(0.945739\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 216.000 | − | 216.000i | 0.605042 | − | 0.605042i | ||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − | 120.000i | − | 0.334262i | −0.985935 | − | 0.167131i | \(-0.946550\pi\) | ||
0.985935 | − | 0.167131i | \(-0.0534503\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −39.0000 | −0.108033 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 69.0000 | + | 69.0000i | 0.190083 | + | 0.190083i | ||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −213.000 | + | 213.000i | −0.580381 | + | 0.580381i | −0.935008 | − | 0.354627i | \(-0.884608\pi\) |
0.354627 | + | 0.935008i | \(0.384608\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | − | 432.000i | − | 1.17073i | ||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −72.0000 | −0.194070 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −168.000 | − | 168.000i | −0.450402 | − | 0.450402i | 0.445086 | − | 0.895488i | \(-0.353173\pi\) |
−0.895488 | + | 0.445086i | \(0.853173\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −360.000 | + | 360.000i | −0.954907 | + | 0.954907i | ||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 20.0000i | 0.0527704i | 0.999652 | + | 0.0263852i | \(0.00839965\pi\) | ||||
−0.999652 | + | 0.0263852i | \(0.991600\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 702.000 | 1.84252 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 123.000 | + | 123.000i | 0.321149 | + | 0.321149i | 0.849208 | − | 0.528059i | \(-0.177080\pi\) |
−0.528059 | + | 0.849208i | \(0.677080\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 243.000 | − | 243.000i | 0.627907 | − | 0.627907i | ||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −72.0000 | −0.184143 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | −396.000 | − | 396.000i | −1.00763 | − | 1.00763i | ||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 108.000 | − | 108.000i | 0.272040 | − | 0.272040i | −0.557881 | − | 0.829921i | \(-0.688385\pi\) |
0.829921 | + | 0.557881i | \(0.188385\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | − | 360.000i | − | 0.902256i | ||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −18.0000 | −0.0448878 | −0.0224439 | − | 0.999748i | \(-0.507145\pi\) | ||||
−0.0224439 | + | 0.999748i | \(0.507145\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 96.0000 | + | 96.0000i | 0.238213 | + | 0.238213i | ||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −576.000 | + | 576.000i | −1.41523 | + | 1.41523i | ||||
\(408\) | 0 | 0 | ||||||||
\(409\) | − | 80.0000i | − | 0.195599i | −0.995206 | − | 0.0977995i | \(-0.968820\pi\) | ||
0.995206 | − | 0.0977995i | \(-0.0311804\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 1008.00 | 2.45255 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 180.000 | + | 180.000i | 0.435835 | + | 0.435835i | ||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 300.000 | − | 300.000i | 0.719424 | − | 0.719424i | ||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 540.000i | − | 1.28878i | −0.764696 | − | 0.644391i | \(-0.777111\pi\) | ||
0.764696 | − | 0.644391i | \(-0.222889\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −608.000 | −1.44418 | −0.722090 | − | 0.691799i | \(-0.756818\pi\) | ||||
−0.722090 | + | 0.691799i | \(0.756818\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 243.000 | + | 243.000i | 0.574468 | + | 0.574468i | ||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −96.0000 | + | 96.0000i | −0.224824 | + | 0.224824i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | − | 864.000i | − | 2.01399i | ||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −312.000 | −0.723898 | −0.361949 | − | 0.932198i | \(-0.617889\pi\) | ||||
−0.361949 | + | 0.932198i | \(0.617889\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 252.000 | + | 252.000i | 0.581986 | + | 0.581986i | 0.935449 | − | 0.353463i | \(-0.114996\pi\) |
−0.353463 | + | 0.935449i | \(0.614996\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −60.0000 | + | 60.0000i | −0.137300 | + | 0.137300i | ||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 40.0000i | 0.0911162i | 0.998962 | + | 0.0455581i | \(0.0145066\pi\) | ||||
−0.998962 | + | 0.0455581i | \(0.985493\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −279.000 | −0.632653 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 213.000 | + | 213.000i | 0.480813 | + | 0.480813i | 0.905391 | − | 0.424578i | \(-0.139578\pi\) |
−0.424578 | + | 0.905391i | \(0.639578\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − | 480.000i | − | 1.06904i | −0.845155 | − | 0.534521i | \(-0.820492\pi\) | ||
0.845155 | − | 0.534521i | \(-0.179508\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 576.000 | 1.27716 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 744.000 | + | 744.000i | 1.64238 | + | 1.64238i | ||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −432.000 | + | 432.000i | −0.945295 | + | 0.945295i | −0.998579 | − | 0.0532840i | \(-0.983031\pi\) |
0.0532840 | + | 0.998579i | \(0.483031\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 222.000 | 0.481562 | 0.240781 | − | 0.970579i | \(-0.422596\pi\) | ||||
0.240781 | + | 0.970579i | \(0.422596\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 213.000 | + | 213.000i | 0.460043 | + | 0.460043i | 0.898670 | − | 0.438626i | \(-0.144535\pi\) |
−0.438626 | + | 0.898670i | \(0.644535\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −3.00000 | + | 3.00000i | −0.00642398 | + | 0.00642398i | −0.710311 | − | 0.703887i | \(-0.751446\pi\) |
0.703887 | + | 0.710311i | \(0.251446\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | − | 18.0000i | − | 0.0383795i | ||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −432.000 | −0.917197 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 324.000 | + | 324.000i | 0.684989 | + | 0.684989i | ||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −108.000 | + | 108.000i | −0.226415 | + | 0.226415i | ||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − | 240.000i | − | 0.501044i | −0.968111 | − | 0.250522i | \(-0.919398\pi\) | ||
0.968111 | − | 0.250522i | \(-0.0806022\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 1152.00 | 2.39501 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | −54.0000 | − | 54.0000i | −0.111801 | − | 0.111801i | ||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 627.000 | − | 627.000i | 1.28747 | − | 1.28747i | 0.351158 | − | 0.936316i | \(-0.385788\pi\) |
0.936316 | − | 0.351158i | \(-0.114212\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 558.000i | 1.14110i | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 588.000 | 1.19756 | 0.598778 | − | 0.800915i | \(-0.295653\pi\) | ||||
0.598778 | + | 0.800915i | \(0.295653\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −360.000 | − | 360.000i | −0.730223 | − | 0.730223i | ||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −144.000 | + | 144.000i | −0.289738 | + | 0.289738i | ||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 460.000i | 0.921844i | 0.887441 | + | 0.460922i | \(0.152481\pi\) | ||||
−0.887441 | + | 0.460922i | \(0.847519\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | −18.0000 | −0.0359281 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −627.000 | − | 627.000i | −1.24652 | − | 1.24652i | −0.957246 | − | 0.289275i | \(-0.906586\pi\) |
−0.289275 | − | 0.957246i | \(-0.593414\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | −357.000 | + | 357.000i | −0.704142 | + | 0.704142i | ||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − | 450.000i | − | 0.884086i | −0.896994 | − | 0.442043i | \(-0.854254\pi\) | ||
0.896994 | − | 0.442043i | \(-0.145746\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −72.0000 | −0.140900 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −324.000 | + | 324.000i | −0.626692 | + | 0.626692i | ||||
\(518\) | 0 | 0 | ||||||||
\(519\) | − | 1008.00i | − | 1.94220i | ||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −558.000 | −1.07102 | −0.535509 | − | 0.844530i | \(-0.679880\pi\) | ||||
−0.535509 | + | 0.844530i | \(0.679880\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 123.000 | + | 123.000i | 0.235182 | + | 0.235182i | 0.814851 | − | 0.579670i | \(-0.196818\pi\) |
−0.579670 | + | 0.814851i | \(0.696818\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −96.0000 | + | 96.0000i | −0.182163 | + | 0.182163i | ||||
\(528\) | 0 | 0 | ||||||||
\(529\) | − | 511.000i | − | 0.965974i | ||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 540.000 | 1.01695 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −576.000 | − | 576.000i | −1.08068 | − | 1.08068i | ||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 900.000 | − | 900.000i | 1.67598 | − | 1.67598i | ||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − | 372.000i | − | 0.690167i | ||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 542.000 | 1.00185 | 0.500924 | − | 0.865491i | \(-0.332994\pi\) | ||||
0.500924 | + | 0.865491i | \(0.332994\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 426.000 | + | 426.000i | 0.784530 | + | 0.784530i | ||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 147.000 | − | 147.000i | 0.268739 | − | 0.268739i | −0.559853 | − | 0.828592i | \(-0.689142\pi\) |
0.828592 | + | 0.559853i | \(0.189142\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 288.000i | 0.524590i | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −600.000 | −1.08893 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −120.000 | − | 120.000i | −0.216998 | − | 0.216998i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 288.000 | − | 288.000i | 0.517056 | − | 0.517056i | −0.399624 | − | 0.916679i | \(-0.630859\pi\) |
0.916679 | + | 0.399624i | \(0.130859\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | − | 648.000i | − | 1.15921i | ||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 864.000 | 1.54011 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −477.000 | − | 477.000i | −0.847247 | − | 0.847247i | 0.142542 | − | 0.989789i | \(-0.454472\pi\) |
−0.989789 | + | 0.142542i | \(0.954472\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | −243.000 | + | 243.000i | −0.428571 | + | 0.428571i | ||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 240.000i | 0.421793i | 0.977508 | + | 0.210896i | \(0.0676382\pi\) | ||||
−0.977508 | + | 0.210896i | \(0.932362\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −692.000 | −1.21191 | −0.605954 | − | 0.795499i | \(-0.707209\pi\) | ||||
−0.605954 | + | 0.795499i | \(0.707209\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | −576.000 | − | 576.000i | −1.00524 | − | 1.00524i | ||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 168.000 | − | 168.000i | 0.291161 | − | 0.291161i | −0.546378 | − | 0.837539i | \(-0.683994\pi\) |
0.837539 | + | 0.546378i | \(0.183994\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 792.000i | 1.36788i | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −558.000 | −0.960413 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −144.000 | − | 144.000i | −0.246998 | − | 0.246998i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −213.000 | + | 213.000i | −0.362862 | + | 0.362862i | −0.864866 | − | 0.502004i | \(-0.832596\pi\) |
0.502004 | + | 0.864866i | \(0.332596\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 160.000i | 0.271647i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −792.000 | −1.34010 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 312.000 | + | 312.000i | 0.526138 | + | 0.526138i | 0.919419 | − | 0.393280i | \(-0.128660\pi\) |
−0.393280 | + | 0.919419i | \(0.628660\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | −480.000 | + | 480.000i | −0.804020 | + | 0.804020i | ||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 240.000i | 0.400668i | 0.979728 | + | 0.200334i | \(0.0642027\pi\) | ||||
−0.979728 | + | 0.200334i | \(0.935797\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −608.000 | −1.01165 | −0.505824 | − | 0.862637i | \(-0.668811\pi\) | ||||
−0.505824 | + | 0.862637i | \(0.668811\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −27.0000 | − | 27.0000i | −0.0447761 | − | 0.0447761i | ||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 267.000 | − | 267.000i | 0.439868 | − | 0.439868i | −0.452099 | − | 0.891968i | \(-0.649325\pi\) |
0.891968 | + | 0.452099i | \(0.149325\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | − | 540.000i | − | 0.886700i | ||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 648.000 | 1.06056 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −228.000 | − | 228.000i | −0.371941 | − | 0.371941i | 0.496243 | − | 0.868184i | \(-0.334713\pi\) |
−0.868184 | + | 0.496243i | \(0.834713\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 348.000 | − | 348.000i | 0.564019 | − | 0.564019i | −0.366427 | − | 0.930447i | \(-0.619419\pi\) |
0.930447 | + | 0.366427i | \(0.119419\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 940.000i | 1.51858i | 0.650753 | + | 0.759289i | \(0.274453\pi\) | ||||
−0.650753 | + | 0.759289i | \(0.725547\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 90.0000 | + | 90.0000i | 0.144462 | + | 0.144462i | ||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 720.000 | − | 720.000i | 1.14833 | − | 1.14833i | ||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 1152.00i | 1.83148i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 808.000 | 1.28051 | 0.640254 | − | 0.768164i | \(-0.278829\pi\) | ||||
0.640254 | + | 0.768164i | \(0.278829\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 84.0000 | + | 84.0000i | 0.132701 | + | 0.132701i | ||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −372.000 | + | 372.000i | −0.583987 | + | 0.583987i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 432.000i | 0.676056i | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −768.000 | −1.19813 | −0.599064 | − | 0.800701i | \(-0.704460\pi\) | ||||
−0.599064 | + | 0.800701i | \(0.704460\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −477.000 | − | 477.000i | −0.741835 | − | 0.741835i | 0.231096 | − | 0.972931i | \(-0.425769\pi\) |
−0.972931 | + | 0.231096i | \(0.925769\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 627.000 | − | 627.000i | 0.969088 | − | 0.969088i | −0.0304482 | − | 0.999536i | \(-0.509693\pi\) |
0.999536 | + | 0.0304482i | \(0.00969348\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 720.000i | 1.10940i | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | −144.000 | −0.221198 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 12.0000 | + | 12.0000i | 0.0183767 | + | 0.0183767i | 0.716235 | − | 0.697859i | \(-0.245864\pi\) |
−0.697859 | + | 0.716235i | \(0.745864\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −108.000 | + | 108.000i | −0.164384 | + | 0.164384i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − | 540.000i | − | 0.819423i | −0.912215 | − | 0.409712i | \(-0.865629\pi\) | ||
0.912215 | − | 0.409712i | \(-0.134371\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 352.000 | 0.532526 | 0.266263 | − | 0.963900i | \(-0.414211\pi\) | ||||
0.266263 | + | 0.963900i | \(0.414211\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | −864.000 | − | 864.000i | −1.30317 | − | 1.30317i | ||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −90.0000 | + | 90.0000i | −0.134933 | + | 0.134933i | ||||
\(668\) | 0 | 0 | ||||||||
\(669\) | − | 702.000i | − | 1.04933i | ||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −384.000 | −0.572280 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 732.000 | + | 732.000i | 1.08767 | + | 1.08767i | 0.995768 | + | 0.0918988i | \(0.0292936\pi\) |
0.0918988 | + | 0.995768i | \(0.470706\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 108.000 | − | 108.000i | 0.159527 | − | 0.159527i | −0.622830 | − | 0.782357i | \(-0.714017\pi\) |
0.782357 | + | 0.622830i | \(0.214017\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | − | 72.0000i | − | 0.106038i | ||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −558.000 | −0.819383 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 933.000 | + | 933.000i | 1.36603 | + | 1.36603i | 0.866016 | + | 0.500016i | \(0.166673\pi\) |
0.500016 | + | 0.866016i | \(0.333327\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | −1110.00 | + | 1110.00i | −1.61572 | + | 1.61572i | ||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 288.000i | 0.417997i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 68.0000 | 0.0984081 | 0.0492041 | − | 0.998789i | \(-0.484332\pi\) | ||||
0.0492041 | + | 0.998789i | \(0.484332\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 324.000 | + | 324.000i | 0.467532 | + | 0.467532i | ||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 576.000 | − | 576.000i | 0.826399 | − | 0.826399i | ||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 1512.00i | 2.16309i | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 192.000 | 0.273894 | 0.136947 | − | 0.990578i | \(-0.456271\pi\) | ||||
0.136947 | + | 0.990578i | \(0.456271\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 960.000 | + | 960.000i | 1.36558 | + | 1.36558i | ||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 234.000 | − | 234.000i | 0.330976 | − | 0.330976i | ||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − | 50.0000i | − | 0.0705219i | −0.999378 | − | 0.0352609i | \(-0.988774\pi\) | ||
0.999378 | − | 0.0352609i | \(-0.0112262\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −360.000 | −0.506329 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 24.0000 | + | 24.0000i | 0.0336606 | + | 0.0336606i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | −1080.00 | + | 1080.00i | −1.50628 | + | 1.50628i | ||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 840.000i | 1.16829i | 0.811650 | + | 0.584145i | \(0.198570\pi\) | ||||
−0.811650 | + | 0.584145i | \(0.801430\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −558.000 | −0.773925 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 96.0000 | + | 96.0000i | 0.132780 | + | 0.132780i | ||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −963.000 | + | 963.000i | −1.32462 | + | 1.32462i | −0.414633 | + | 0.909989i | \(0.636090\pi\) |
−0.909989 | + | 0.414633i | \(0.863910\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 729.000i | 1.00000i | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 648.000 | 0.886457 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 72.0000 | + | 72.0000i | 0.0982265 | + | 0.0982265i | 0.754512 | − | 0.656286i | \(-0.227873\pi\) |
−0.656286 | + | 0.754512i | \(0.727873\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 36.0000 | − | 36.0000i | 0.0488467 | − | 0.0488467i | ||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 20.0000i | 0.0270636i | 0.999908 | + | 0.0135318i | \(0.00430744\pi\) | ||||
−0.999908 | + | 0.0135318i | \(0.995693\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | −1440.00 | −1.94332 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 243.000 | + | 243.000i | 0.327052 | + | 0.327052i | 0.851465 | − | 0.524412i | \(-0.175715\pi\) |
−0.524412 | + | 0.851465i | \(0.675715\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | −837.000 | + | 837.000i | −1.12048 | + | 1.12048i | ||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 162.000i | 0.216288i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −1072.00 | −1.42743 | −0.713715 | − | 0.700436i | \(-0.752989\pi\) | ||||
−0.713715 | + | 0.700436i | \(0.752989\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | −756.000 | − | 756.000i | −1.00398 | − | 1.00398i | ||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 408.000 | − | 408.000i | 0.538970 | − | 0.538970i | −0.384257 | − | 0.923226i | \(-0.625542\pi\) |
0.923226 | + | 0.384257i | \(0.125542\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | − | 216.000i | − | 0.284585i | ||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 1362.00 | 1.78975 | 0.894875 | − | 0.446317i | \(-0.147264\pi\) | ||||
0.894875 | + | 0.446317i | \(0.147264\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 480.000 | + | 480.000i | 0.629096 | + | 0.629096i | ||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 720.000 | − | 720.000i | 0.938722 | − | 0.938722i | ||||
\(768\) | 0 | 0 | ||||||||
\(769\) | − | 370.000i | − | 0.481144i | −0.970631 | − | 0.240572i | \(-0.922665\pi\) | ||
0.970631 | − | 0.240572i | \(-0.0773351\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −1152.00 | −1.49416 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 132.000 | + | 132.000i | 0.170763 | + | 0.170763i | 0.787315 | − | 0.616551i | \(-0.211471\pi\) |
−0.616551 | + | 0.787315i | \(0.711471\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | −864.000 | + | 864.000i | −1.11197 | + | 1.11197i | ||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − | 960.000i | − | 1.23235i | ||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −576.000 | −0.737516 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −93.0000 | + | 93.0000i | −0.118170 | + | 0.118170i | −0.763719 | − | 0.645549i | \(-0.776629\pi\) |
0.645549 | + | 0.763719i | \(0.276629\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 1998.00i | 2.53232i | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −432.000 | −0.546144 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 384.000 | + | 384.000i | 0.484237 | + | 0.484237i |