Defining parameters
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.p (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 276 | 38 | 238 |
Cusp forms | 204 | 34 | 170 |
Eisenstein series | 72 | 4 | 68 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(400, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(400, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(400, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)