Properties

Label 50.3.c.a.7.1
Level $50$
Weight $3$
Character 50.7
Analytic conductor $1.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,3,Mod(7,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36240132180\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 7.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 50.7
Dual form 50.3.c.a.43.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(3.00000 - 3.00000i) q^{3} +2.00000i q^{4} -6.00000 q^{6} +(-3.00000 - 3.00000i) q^{7} +(2.00000 - 2.00000i) q^{8} -9.00000i q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.00000i) q^{2} +(3.00000 - 3.00000i) q^{3} +2.00000i q^{4} -6.00000 q^{6} +(-3.00000 - 3.00000i) q^{7} +(2.00000 - 2.00000i) q^{8} -9.00000i q^{9} +12.0000 q^{11} +(6.00000 + 6.00000i) q^{12} +(-12.0000 + 12.0000i) q^{13} +6.00000i q^{14} -4.00000 q^{16} +(12.0000 + 12.0000i) q^{17} +(-9.00000 + 9.00000i) q^{18} +20.0000i q^{19} -18.0000 q^{21} +(-12.0000 - 12.0000i) q^{22} +(3.00000 - 3.00000i) q^{23} -12.0000i q^{24} +24.0000 q^{26} +(6.00000 - 6.00000i) q^{28} -30.0000i q^{29} -8.00000 q^{31} +(4.00000 + 4.00000i) q^{32} +(36.0000 - 36.0000i) q^{33} -24.0000i q^{34} +18.0000 q^{36} +(-48.0000 - 48.0000i) q^{37} +(20.0000 - 20.0000i) q^{38} +72.0000i q^{39} -48.0000 q^{41} +(18.0000 + 18.0000i) q^{42} +(-27.0000 + 27.0000i) q^{43} +24.0000i q^{44} -6.00000 q^{46} +(27.0000 + 27.0000i) q^{47} +(-12.0000 + 12.0000i) q^{48} -31.0000i q^{49} +72.0000 q^{51} +(-24.0000 - 24.0000i) q^{52} +(-12.0000 + 12.0000i) q^{53} -12.0000 q^{56} +(60.0000 + 60.0000i) q^{57} +(-30.0000 + 30.0000i) q^{58} -60.0000i q^{59} +32.0000 q^{61} +(8.00000 + 8.00000i) q^{62} +(-27.0000 + 27.0000i) q^{63} -8.00000i q^{64} -72.0000 q^{66} +(-3.00000 - 3.00000i) q^{67} +(-24.0000 + 24.0000i) q^{68} -18.0000i q^{69} -48.0000 q^{71} +(-18.0000 - 18.0000i) q^{72} +(-12.0000 + 12.0000i) q^{73} +96.0000i q^{74} -40.0000 q^{76} +(-36.0000 - 36.0000i) q^{77} +(72.0000 - 72.0000i) q^{78} +40.0000i q^{79} +81.0000 q^{81} +(48.0000 + 48.0000i) q^{82} +(93.0000 - 93.0000i) q^{83} -36.0000i q^{84} +54.0000 q^{86} +(-90.0000 - 90.0000i) q^{87} +(24.0000 - 24.0000i) q^{88} +30.0000i q^{89} +72.0000 q^{91} +(6.00000 + 6.00000i) q^{92} +(-24.0000 + 24.0000i) q^{93} -54.0000i q^{94} +24.0000 q^{96} +(12.0000 + 12.0000i) q^{97} +(-31.0000 + 31.0000i) q^{98} -108.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 6 q^{3} - 12 q^{6} - 6 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 6 q^{3} - 12 q^{6} - 6 q^{7} + 4 q^{8} + 24 q^{11} + 12 q^{12} - 24 q^{13} - 8 q^{16} + 24 q^{17} - 18 q^{18} - 36 q^{21} - 24 q^{22} + 6 q^{23} + 48 q^{26} + 12 q^{28} - 16 q^{31} + 8 q^{32} + 72 q^{33} + 36 q^{36} - 96 q^{37} + 40 q^{38} - 96 q^{41} + 36 q^{42} - 54 q^{43} - 12 q^{46} + 54 q^{47} - 24 q^{48} + 144 q^{51} - 48 q^{52} - 24 q^{53} - 24 q^{56} + 120 q^{57} - 60 q^{58} + 64 q^{61} + 16 q^{62} - 54 q^{63} - 144 q^{66} - 6 q^{67} - 48 q^{68} - 96 q^{71} - 36 q^{72} - 24 q^{73} - 80 q^{76} - 72 q^{77} + 144 q^{78} + 162 q^{81} + 96 q^{82} + 186 q^{83} + 108 q^{86} - 180 q^{87} + 48 q^{88} + 144 q^{91} + 12 q^{92} - 48 q^{93} + 48 q^{96} + 24 q^{97} - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 3.00000 3.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) −6.00000 −1.00000
\(7\) −3.00000 3.00000i −0.428571 0.428571i 0.459570 0.888142i \(-0.348004\pi\)
−0.888142 + 0.459570i \(0.848004\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 9.00000i 1.00000i
\(10\) 0 0
\(11\) 12.0000 1.09091 0.545455 0.838140i \(-0.316357\pi\)
0.545455 + 0.838140i \(0.316357\pi\)
\(12\) 6.00000 + 6.00000i 0.500000 + 0.500000i
\(13\) −12.0000 + 12.0000i −0.923077 + 0.923077i −0.997246 0.0741688i \(-0.976370\pi\)
0.0741688 + 0.997246i \(0.476370\pi\)
\(14\) 6.00000i 0.428571i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 12.0000 + 12.0000i 0.705882 + 0.705882i 0.965667 0.259784i \(-0.0836515\pi\)
−0.259784 + 0.965667i \(0.583651\pi\)
\(18\) −9.00000 + 9.00000i −0.500000 + 0.500000i
\(19\) 20.0000i 1.05263i 0.850289 + 0.526316i \(0.176427\pi\)
−0.850289 + 0.526316i \(0.823573\pi\)
\(20\) 0 0
\(21\) −18.0000 −0.857143
\(22\) −12.0000 12.0000i −0.545455 0.545455i
\(23\) 3.00000 3.00000i 0.130435 0.130435i −0.638875 0.769310i \(-0.720600\pi\)
0.769310 + 0.638875i \(0.220600\pi\)
\(24\) 12.0000i 0.500000i
\(25\) 0 0
\(26\) 24.0000 0.923077
\(27\) 0 0
\(28\) 6.00000 6.00000i 0.214286 0.214286i
\(29\) 30.0000i 1.03448i −0.855840 0.517241i \(-0.826959\pi\)
0.855840 0.517241i \(-0.173041\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.258065 −0.129032 0.991640i \(-0.541187\pi\)
−0.129032 + 0.991640i \(0.541187\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 36.0000 36.0000i 1.09091 1.09091i
\(34\) 24.0000i 0.705882i
\(35\) 0 0
\(36\) 18.0000 0.500000
\(37\) −48.0000 48.0000i −1.29730 1.29730i −0.930171 0.367126i \(-0.880342\pi\)
−0.367126 0.930171i \(-0.619658\pi\)
\(38\) 20.0000 20.0000i 0.526316 0.526316i
\(39\) 72.0000i 1.84615i
\(40\) 0 0
\(41\) −48.0000 −1.17073 −0.585366 0.810769i \(-0.699049\pi\)
−0.585366 + 0.810769i \(0.699049\pi\)
\(42\) 18.0000 + 18.0000i 0.428571 + 0.428571i
\(43\) −27.0000 + 27.0000i −0.627907 + 0.627907i −0.947541 0.319634i \(-0.896440\pi\)
0.319634 + 0.947541i \(0.396440\pi\)
\(44\) 24.0000i 0.545455i
\(45\) 0 0
\(46\) −6.00000 −0.130435
\(47\) 27.0000 + 27.0000i 0.574468 + 0.574468i 0.933374 0.358906i \(-0.116850\pi\)
−0.358906 + 0.933374i \(0.616850\pi\)
\(48\) −12.0000 + 12.0000i −0.250000 + 0.250000i
\(49\) 31.0000i 0.632653i
\(50\) 0 0
\(51\) 72.0000 1.41176
\(52\) −24.0000 24.0000i −0.461538 0.461538i
\(53\) −12.0000 + 12.0000i −0.226415 + 0.226415i −0.811193 0.584778i \(-0.801182\pi\)
0.584778 + 0.811193i \(0.301182\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.0000 −0.214286
\(57\) 60.0000 + 60.0000i 1.05263 + 1.05263i
\(58\) −30.0000 + 30.0000i −0.517241 + 0.517241i
\(59\) 60.0000i 1.01695i −0.861077 0.508475i \(-0.830210\pi\)
0.861077 0.508475i \(-0.169790\pi\)
\(60\) 0 0
\(61\) 32.0000 0.524590 0.262295 0.964988i \(-0.415521\pi\)
0.262295 + 0.964988i \(0.415521\pi\)
\(62\) 8.00000 + 8.00000i 0.129032 + 0.129032i
\(63\) −27.0000 + 27.0000i −0.428571 + 0.428571i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −72.0000 −1.09091
\(67\) −3.00000 3.00000i −0.0447761 0.0447761i 0.684364 0.729140i \(-0.260080\pi\)
−0.729140 + 0.684364i \(0.760080\pi\)
\(68\) −24.0000 + 24.0000i −0.352941 + 0.352941i
\(69\) 18.0000i 0.260870i
\(70\) 0 0
\(71\) −48.0000 −0.676056 −0.338028 0.941136i \(-0.609760\pi\)
−0.338028 + 0.941136i \(0.609760\pi\)
\(72\) −18.0000 18.0000i −0.250000 0.250000i
\(73\) −12.0000 + 12.0000i −0.164384 + 0.164384i −0.784505 0.620122i \(-0.787083\pi\)
0.620122 + 0.784505i \(0.287083\pi\)
\(74\) 96.0000i 1.29730i
\(75\) 0 0
\(76\) −40.0000 −0.526316
\(77\) −36.0000 36.0000i −0.467532 0.467532i
\(78\) 72.0000 72.0000i 0.923077 0.923077i
\(79\) 40.0000i 0.506329i 0.967423 + 0.253165i \(0.0814714\pi\)
−0.967423 + 0.253165i \(0.918529\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 48.0000 + 48.0000i 0.585366 + 0.585366i
\(83\) 93.0000 93.0000i 1.12048 1.12048i 0.128813 0.991669i \(-0.458883\pi\)
0.991669 0.128813i \(-0.0411167\pi\)
\(84\) 36.0000i 0.428571i
\(85\) 0 0
\(86\) 54.0000 0.627907
\(87\) −90.0000 90.0000i −1.03448 1.03448i
\(88\) 24.0000 24.0000i 0.272727 0.272727i
\(89\) 30.0000i 0.337079i 0.985695 + 0.168539i \(0.0539050\pi\)
−0.985695 + 0.168539i \(0.946095\pi\)
\(90\) 0 0
\(91\) 72.0000 0.791209
\(92\) 6.00000 + 6.00000i 0.0652174 + 0.0652174i
\(93\) −24.0000 + 24.0000i −0.258065 + 0.258065i
\(94\) 54.0000i 0.574468i
\(95\) 0 0
\(96\) 24.0000 0.250000
\(97\) 12.0000 + 12.0000i 0.123711 + 0.123711i 0.766252 0.642540i \(-0.222120\pi\)
−0.642540 + 0.766252i \(0.722120\pi\)
\(98\) −31.0000 + 31.0000i −0.316327 + 0.316327i
\(99\) 108.000i 1.09091i
\(100\) 0 0
\(101\) −78.0000 −0.772277 −0.386139 0.922441i \(-0.626191\pi\)
−0.386139 + 0.922441i \(0.626191\pi\)
\(102\) −72.0000 72.0000i −0.705882 0.705882i
\(103\) 93.0000 93.0000i 0.902913 0.902913i −0.0927745 0.995687i \(-0.529574\pi\)
0.995687 + 0.0927745i \(0.0295736\pi\)
\(104\) 48.0000i 0.461538i
\(105\) 0 0
\(106\) 24.0000 0.226415
\(107\) 27.0000 + 27.0000i 0.252336 + 0.252336i 0.821928 0.569591i \(-0.192899\pi\)
−0.569591 + 0.821928i \(0.692899\pi\)
\(108\) 0 0
\(109\) 160.000i 1.46789i 0.679209 + 0.733945i \(0.262323\pi\)
−0.679209 + 0.733945i \(0.737677\pi\)
\(110\) 0 0
\(111\) −288.000 −2.59459
\(112\) 12.0000 + 12.0000i 0.107143 + 0.107143i
\(113\) −72.0000 + 72.0000i −0.637168 + 0.637168i −0.949856 0.312688i \(-0.898771\pi\)
0.312688 + 0.949856i \(0.398771\pi\)
\(114\) 120.000i 1.05263i
\(115\) 0 0
\(116\) 60.0000 0.517241
\(117\) 108.000 + 108.000i 0.923077 + 0.923077i
\(118\) −60.0000 + 60.0000i −0.508475 + 0.508475i
\(119\) 72.0000i 0.605042i
\(120\) 0 0
\(121\) 23.0000 0.190083
\(122\) −32.0000 32.0000i −0.262295 0.262295i
\(123\) −144.000 + 144.000i −1.17073 + 1.17073i
\(124\) 16.0000i 0.129032i
\(125\) 0 0
\(126\) 54.0000 0.428571
\(127\) 117.000 + 117.000i 0.921260 + 0.921260i 0.997119 0.0758587i \(-0.0241698\pi\)
−0.0758587 + 0.997119i \(0.524170\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 162.000i 1.25581i
\(130\) 0 0
\(131\) 132.000 1.00763 0.503817 0.863811i \(-0.331929\pi\)
0.503817 + 0.863811i \(0.331929\pi\)
\(132\) 72.0000 + 72.0000i 0.545455 + 0.545455i
\(133\) 60.0000 60.0000i 0.451128 0.451128i
\(134\) 6.00000i 0.0447761i
\(135\) 0 0
\(136\) 48.0000 0.352941
\(137\) −168.000 168.000i −1.22628 1.22628i −0.965362 0.260916i \(-0.915975\pi\)
−0.260916 0.965362i \(-0.584025\pi\)
\(138\) −18.0000 + 18.0000i −0.130435 + 0.130435i
\(139\) 100.000i 0.719424i −0.933063 0.359712i \(-0.882875\pi\)
0.933063 0.359712i \(-0.117125\pi\)
\(140\) 0 0
\(141\) 162.000 1.14894
\(142\) 48.0000 + 48.0000i 0.338028 + 0.338028i
\(143\) −144.000 + 144.000i −1.00699 + 1.00699i
\(144\) 36.0000i 0.250000i
\(145\) 0 0
\(146\) 24.0000 0.164384
\(147\) −93.0000 93.0000i −0.632653 0.632653i
\(148\) 96.0000 96.0000i 0.648649 0.648649i
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −248.000 −1.64238 −0.821192 0.570652i \(-0.806691\pi\)
−0.821192 + 0.570652i \(0.806691\pi\)
\(152\) 40.0000 + 40.0000i 0.263158 + 0.263158i
\(153\) 108.000 108.000i 0.705882 0.705882i
\(154\) 72.0000i 0.467532i
\(155\) 0 0
\(156\) −144.000 −0.923077
\(157\) 72.0000 + 72.0000i 0.458599 + 0.458599i 0.898195 0.439597i \(-0.144879\pi\)
−0.439597 + 0.898195i \(0.644879\pi\)
\(158\) 40.0000 40.0000i 0.253165 0.253165i
\(159\) 72.0000i 0.452830i
\(160\) 0 0
\(161\) −18.0000 −0.111801
\(162\) −81.0000 81.0000i −0.500000 0.500000i
\(163\) 93.0000 93.0000i 0.570552 0.570552i −0.361731 0.932283i \(-0.617814\pi\)
0.932283 + 0.361731i \(0.117814\pi\)
\(164\) 96.0000i 0.585366i
\(165\) 0 0
\(166\) −186.000 −1.12048
\(167\) −3.00000 3.00000i −0.0179641 0.0179641i 0.698068 0.716032i \(-0.254043\pi\)
−0.716032 + 0.698068i \(0.754043\pi\)
\(168\) −36.0000 + 36.0000i −0.214286 + 0.214286i
\(169\) 119.000i 0.704142i
\(170\) 0 0
\(171\) 180.000 1.05263
\(172\) −54.0000 54.0000i −0.313953 0.313953i
\(173\) 168.000 168.000i 0.971098 0.971098i −0.0284957 0.999594i \(-0.509072\pi\)
0.999594 + 0.0284957i \(0.00907168\pi\)
\(174\) 180.000i 1.03448i
\(175\) 0 0
\(176\) −48.0000 −0.272727
\(177\) −180.000 180.000i −1.01695 1.01695i
\(178\) 30.0000 30.0000i 0.168539 0.168539i
\(179\) 300.000i 1.67598i −0.545687 0.837989i \(-0.683731\pi\)
0.545687 0.837989i \(-0.316269\pi\)
\(180\) 0 0
\(181\) 142.000 0.784530 0.392265 0.919852i \(-0.371692\pi\)
0.392265 + 0.919852i \(0.371692\pi\)
\(182\) −72.0000 72.0000i −0.395604 0.395604i
\(183\) 96.0000 96.0000i 0.524590 0.524590i
\(184\) 12.0000i 0.0652174i
\(185\) 0 0
\(186\) 48.0000 0.258065
\(187\) 144.000 + 144.000i 0.770053 + 0.770053i
\(188\) −54.0000 + 54.0000i −0.287234 + 0.287234i
\(189\) 0 0
\(190\) 0 0
\(191\) 192.000 1.00524 0.502618 0.864509i \(-0.332370\pi\)
0.502618 + 0.864509i \(0.332370\pi\)
\(192\) −24.0000 24.0000i −0.125000 0.125000i
\(193\) −132.000 + 132.000i −0.683938 + 0.683938i −0.960885 0.276947i \(-0.910677\pi\)
0.276947 + 0.960885i \(0.410677\pi\)
\(194\) 24.0000i 0.123711i
\(195\) 0 0
\(196\) 62.0000 0.316327
\(197\) 132.000 + 132.000i 0.670051 + 0.670051i 0.957728 0.287677i \(-0.0928829\pi\)
−0.287677 + 0.957728i \(0.592883\pi\)
\(198\) −108.000 + 108.000i −0.545455 + 0.545455i
\(199\) 160.000i 0.804020i 0.915635 + 0.402010i \(0.131688\pi\)
−0.915635 + 0.402010i \(0.868312\pi\)
\(200\) 0 0
\(201\) −18.0000 −0.0895522
\(202\) 78.0000 + 78.0000i 0.386139 + 0.386139i
\(203\) −90.0000 + 90.0000i −0.443350 + 0.443350i
\(204\) 144.000i 0.705882i
\(205\) 0 0
\(206\) −186.000 −0.902913
\(207\) −27.0000 27.0000i −0.130435 0.130435i
\(208\) 48.0000 48.0000i 0.230769 0.230769i
\(209\) 240.000i 1.14833i
\(210\) 0 0
\(211\) −28.0000 −0.132701 −0.0663507 0.997796i \(-0.521136\pi\)
−0.0663507 + 0.997796i \(0.521136\pi\)
\(212\) −24.0000 24.0000i −0.113208 0.113208i
\(213\) −144.000 + 144.000i −0.676056 + 0.676056i
\(214\) 54.0000i 0.252336i
\(215\) 0 0
\(216\) 0 0
\(217\) 24.0000 + 24.0000i 0.110599 + 0.110599i
\(218\) 160.000 160.000i 0.733945 0.733945i
\(219\) 72.0000i 0.328767i
\(220\) 0 0
\(221\) −288.000 −1.30317
\(222\) 288.000 + 288.000i 1.29730 + 1.29730i
\(223\) −117.000 + 117.000i −0.524664 + 0.524664i −0.918976 0.394313i \(-0.870983\pi\)
0.394313 + 0.918976i \(0.370983\pi\)
\(224\) 24.0000i 0.107143i
\(225\) 0 0
\(226\) 144.000 0.637168
\(227\) −93.0000 93.0000i −0.409692 0.409692i 0.471939 0.881631i \(-0.343554\pi\)
−0.881631 + 0.471939i \(0.843554\pi\)
\(228\) −120.000 + 120.000i −0.526316 + 0.526316i
\(229\) 370.000i 1.61572i −0.589374 0.807860i \(-0.700626\pi\)
0.589374 0.807860i \(-0.299374\pi\)
\(230\) 0 0
\(231\) −216.000 −0.935065
\(232\) −60.0000 60.0000i −0.258621 0.258621i
\(233\) −252.000 + 252.000i −1.08155 + 1.08155i −0.0851794 + 0.996366i \(0.527146\pi\)
−0.996366 + 0.0851794i \(0.972854\pi\)
\(234\) 216.000i 0.923077i
\(235\) 0 0
\(236\) 120.000 0.508475
\(237\) 120.000 + 120.000i 0.506329 + 0.506329i
\(238\) −72.0000 + 72.0000i −0.302521 + 0.302521i
\(239\) 360.000i 1.50628i 0.657862 + 0.753138i \(0.271461\pi\)
−0.657862 + 0.753138i \(0.728539\pi\)
\(240\) 0 0
\(241\) 32.0000 0.132780 0.0663900 0.997794i \(-0.478852\pi\)
0.0663900 + 0.997794i \(0.478852\pi\)
\(242\) −23.0000 23.0000i −0.0950413 0.0950413i
\(243\) 243.000 243.000i 1.00000 1.00000i
\(244\) 64.0000i 0.262295i
\(245\) 0 0
\(246\) 288.000 1.17073
\(247\) −240.000 240.000i −0.971660 0.971660i
\(248\) −16.0000 + 16.0000i −0.0645161 + 0.0645161i
\(249\) 558.000i 2.24096i
\(250\) 0 0
\(251\) 252.000 1.00398 0.501992 0.864872i \(-0.332601\pi\)
0.501992 + 0.864872i \(0.332601\pi\)
\(252\) −54.0000 54.0000i −0.214286 0.214286i
\(253\) 36.0000 36.0000i 0.142292 0.142292i
\(254\) 234.000i 0.921260i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 192.000 + 192.000i 0.747082 + 0.747082i 0.973930 0.226848i \(-0.0728422\pi\)
−0.226848 + 0.973930i \(0.572842\pi\)
\(258\) 162.000 162.000i 0.627907 0.627907i
\(259\) 288.000i 1.11197i
\(260\) 0 0
\(261\) −270.000 −1.03448
\(262\) −132.000 132.000i −0.503817 0.503817i
\(263\) 333.000 333.000i 1.26616 1.26616i 0.318104 0.948056i \(-0.396954\pi\)
0.948056 0.318104i \(-0.103046\pi\)
\(264\) 144.000i 0.545455i
\(265\) 0 0
\(266\) −120.000 −0.451128
\(267\) 90.0000 + 90.0000i 0.337079 + 0.337079i
\(268\) 6.00000 6.00000i 0.0223881 0.0223881i
\(269\) 480.000i 1.78439i 0.451654 + 0.892193i \(0.350834\pi\)
−0.451654 + 0.892193i \(0.649166\pi\)
\(270\) 0 0
\(271\) −88.0000 −0.324723 −0.162362 0.986731i \(-0.551911\pi\)
−0.162362 + 0.986731i \(0.551911\pi\)
\(272\) −48.0000 48.0000i −0.176471 0.176471i
\(273\) 216.000 216.000i 0.791209 0.791209i
\(274\) 336.000i 1.22628i
\(275\) 0 0
\(276\) 36.0000 0.130435
\(277\) −288.000 288.000i −1.03971 1.03971i −0.999178 0.0405330i \(-0.987094\pi\)
−0.0405330 0.999178i \(-0.512906\pi\)
\(278\) −100.000 + 100.000i −0.359712 + 0.359712i
\(279\) 72.0000i 0.258065i
\(280\) 0 0
\(281\) −288.000 −1.02491 −0.512456 0.858714i \(-0.671264\pi\)
−0.512456 + 0.858714i \(0.671264\pi\)
\(282\) −162.000 162.000i −0.574468 0.574468i
\(283\) −117.000 + 117.000i −0.413428 + 0.413428i −0.882931 0.469503i \(-0.844433\pi\)
0.469503 + 0.882931i \(0.344433\pi\)
\(284\) 96.0000i 0.338028i
\(285\) 0 0
\(286\) 288.000 1.00699
\(287\) 144.000 + 144.000i 0.501742 + 0.501742i
\(288\) 36.0000 36.0000i 0.125000 0.125000i
\(289\) 1.00000i 0.00346021i
\(290\) 0 0
\(291\) 72.0000 0.247423
\(292\) −24.0000 24.0000i −0.0821918 0.0821918i
\(293\) 168.000 168.000i 0.573379 0.573379i −0.359692 0.933071i \(-0.617118\pi\)
0.933071 + 0.359692i \(0.117118\pi\)
\(294\) 186.000i 0.632653i
\(295\) 0 0
\(296\) −192.000 −0.648649
\(297\) 0 0
\(298\) 0 0
\(299\) 72.0000i 0.240803i
\(300\) 0 0
\(301\) 162.000 0.538206
\(302\) 248.000 + 248.000i 0.821192 + 0.821192i
\(303\) −234.000 + 234.000i −0.772277 + 0.772277i
\(304\) 80.0000i 0.263158i
\(305\) 0 0
\(306\) −216.000 −0.705882
\(307\) −243.000 243.000i −0.791531 0.791531i 0.190212 0.981743i \(-0.439082\pi\)
−0.981743 + 0.190212i \(0.939082\pi\)
\(308\) 72.0000 72.0000i 0.233766 0.233766i
\(309\) 558.000i 1.80583i
\(310\) 0 0
\(311\) 552.000 1.77492 0.887460 0.460885i \(-0.152468\pi\)
0.887460 + 0.460885i \(0.152468\pi\)
\(312\) 144.000 + 144.000i 0.461538 + 0.461538i
\(313\) 48.0000 48.0000i 0.153355 0.153355i −0.626260 0.779614i \(-0.715415\pi\)
0.779614 + 0.626260i \(0.215415\pi\)
\(314\) 144.000i 0.458599i
\(315\) 0 0
\(316\) −80.0000 −0.253165
\(317\) −228.000 228.000i −0.719243 0.719243i 0.249207 0.968450i \(-0.419830\pi\)
−0.968450 + 0.249207i \(0.919830\pi\)
\(318\) 72.0000 72.0000i 0.226415 0.226415i
\(319\) 360.000i 1.12853i
\(320\) 0 0
\(321\) 162.000 0.504673
\(322\) 18.0000 + 18.0000i 0.0559006 + 0.0559006i
\(323\) −240.000 + 240.000i −0.743034 + 0.743034i
\(324\) 162.000i 0.500000i
\(325\) 0 0
\(326\) −186.000 −0.570552
\(327\) 480.000 + 480.000i 1.46789 + 1.46789i
\(328\) −96.0000 + 96.0000i −0.292683 + 0.292683i
\(329\) 162.000i 0.492401i
\(330\) 0 0
\(331\) −148.000 −0.447130 −0.223565 0.974689i \(-0.571769\pi\)
−0.223565 + 0.974689i \(0.571769\pi\)
\(332\) 186.000 + 186.000i 0.560241 + 0.560241i
\(333\) −432.000 + 432.000i −1.29730 + 1.29730i
\(334\) 6.00000i 0.0179641i
\(335\) 0 0
\(336\) 72.0000 0.214286
\(337\) 192.000 + 192.000i 0.569733 + 0.569733i 0.932054 0.362321i \(-0.118015\pi\)
−0.362321 + 0.932054i \(0.618015\pi\)
\(338\) −119.000 + 119.000i −0.352071 + 0.352071i
\(339\) 432.000i 1.27434i
\(340\) 0 0
\(341\) −96.0000 −0.281525
\(342\) −180.000 180.000i −0.526316 0.526316i
\(343\) −240.000 + 240.000i −0.699708 + 0.699708i
\(344\) 108.000i 0.313953i
\(345\) 0 0
\(346\) −336.000 −0.971098
\(347\) 117.000 + 117.000i 0.337176 + 0.337176i 0.855303 0.518128i \(-0.173371\pi\)
−0.518128 + 0.855303i \(0.673371\pi\)
\(348\) 180.000 180.000i 0.517241 0.517241i
\(349\) 130.000i 0.372493i −0.982503 0.186246i \(-0.940368\pi\)
0.982503 0.186246i \(-0.0596323\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 48.0000 + 48.0000i 0.136364 + 0.136364i
\(353\) 288.000 288.000i 0.815864 0.815864i −0.169642 0.985506i \(-0.554261\pi\)
0.985506 + 0.169642i \(0.0542611\pi\)
\(354\) 360.000i 1.01695i
\(355\) 0 0
\(356\) −60.0000 −0.168539
\(357\) −216.000 216.000i −0.605042 0.605042i
\(358\) −300.000 + 300.000i −0.837989 + 0.837989i
\(359\) 120.000i 0.334262i −0.985935 0.167131i \(-0.946550\pi\)
0.985935 0.167131i \(-0.0534503\pi\)
\(360\) 0 0
\(361\) −39.0000 −0.108033
\(362\) −142.000 142.000i −0.392265 0.392265i
\(363\) 69.0000 69.0000i 0.190083 0.190083i
\(364\) 144.000i 0.395604i
\(365\) 0 0
\(366\) −192.000 −0.524590
\(367\) −213.000 213.000i −0.580381 0.580381i 0.354627 0.935008i \(-0.384608\pi\)
−0.935008 + 0.354627i \(0.884608\pi\)
\(368\) −12.0000 + 12.0000i −0.0326087 + 0.0326087i
\(369\) 432.000i 1.17073i
\(370\) 0 0
\(371\) 72.0000 0.194070
\(372\) −48.0000 48.0000i −0.129032 0.129032i
\(373\) 168.000 168.000i 0.450402 0.450402i −0.445086 0.895488i \(-0.646827\pi\)
0.895488 + 0.445086i \(0.146827\pi\)
\(374\) 288.000i 0.770053i
\(375\) 0 0
\(376\) 108.000 0.287234
\(377\) 360.000 + 360.000i 0.954907 + 0.954907i
\(378\) 0 0
\(379\) 20.0000i 0.0527704i 0.999652 + 0.0263852i \(0.00839965\pi\)
−0.999652 + 0.0263852i \(0.991600\pi\)
\(380\) 0 0
\(381\) 702.000 1.84252
\(382\) −192.000 192.000i −0.502618 0.502618i
\(383\) 123.000 123.000i 0.321149 0.321149i −0.528059 0.849208i \(-0.677080\pi\)
0.849208 + 0.528059i \(0.177080\pi\)
\(384\) 48.0000i 0.125000i
\(385\) 0 0
\(386\) 264.000 0.683938
\(387\) 243.000 + 243.000i 0.627907 + 0.627907i
\(388\) −24.0000 + 24.0000i −0.0618557 + 0.0618557i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 72.0000 0.184143
\(392\) −62.0000 62.0000i −0.158163 0.158163i
\(393\) 396.000 396.000i 1.00763 1.00763i
\(394\) 264.000i 0.670051i
\(395\) 0 0
\(396\) 216.000 0.545455
\(397\) −108.000 108.000i −0.272040 0.272040i 0.557881 0.829921i \(-0.311615\pi\)
−0.829921 + 0.557881i \(0.811615\pi\)
\(398\) 160.000 160.000i 0.402010 0.402010i
\(399\) 360.000i 0.902256i
\(400\) 0 0
\(401\) −18.0000 −0.0448878 −0.0224439 0.999748i \(-0.507145\pi\)
−0.0224439 + 0.999748i \(0.507145\pi\)
\(402\) 18.0000 + 18.0000i 0.0447761 + 0.0447761i
\(403\) 96.0000 96.0000i 0.238213 0.238213i
\(404\) 156.000i 0.386139i
\(405\) 0 0
\(406\) 180.000 0.443350
\(407\) −576.000 576.000i −1.41523 1.41523i
\(408\) 144.000 144.000i 0.352941 0.352941i
\(409\) 80.0000i 0.195599i 0.995206 + 0.0977995i \(0.0311804\pi\)
−0.995206 + 0.0977995i \(0.968820\pi\)
\(410\) 0 0
\(411\) −1008.00 −2.45255
\(412\) 186.000 + 186.000i 0.451456 + 0.451456i
\(413\) −180.000 + 180.000i −0.435835 + 0.435835i
\(414\) 54.0000i 0.130435i
\(415\) 0 0
\(416\) −96.0000 −0.230769
\(417\) −300.000 300.000i −0.719424 0.719424i
\(418\) 240.000 240.000i 0.574163 0.574163i
\(419\) 540.000i 1.28878i −0.764696 0.644391i \(-0.777111\pi\)
0.764696 0.644391i \(-0.222889\pi\)
\(420\) 0 0
\(421\) −608.000 −1.44418 −0.722090 0.691799i \(-0.756818\pi\)
−0.722090 + 0.691799i \(0.756818\pi\)
\(422\) 28.0000 + 28.0000i 0.0663507 + 0.0663507i
\(423\) 243.000 243.000i 0.574468 0.574468i
\(424\) 48.0000i 0.113208i
\(425\) 0 0
\(426\) 288.000 0.676056
\(427\) −96.0000 96.0000i −0.224824 0.224824i
\(428\) −54.0000 + 54.0000i −0.126168 + 0.126168i
\(429\) 864.000i 2.01399i
\(430\) 0 0
\(431\) 312.000 0.723898 0.361949 0.932198i \(-0.382111\pi\)
0.361949 + 0.932198i \(0.382111\pi\)
\(432\) 0 0
\(433\) −252.000 + 252.000i −0.581986 + 0.581986i −0.935449 0.353463i \(-0.885004\pi\)
0.353463 + 0.935449i \(0.385004\pi\)
\(434\) 48.0000i 0.110599i
\(435\) 0 0
\(436\) −320.000 −0.733945
\(437\) 60.0000 + 60.0000i 0.137300 + 0.137300i
\(438\) 72.0000 72.0000i 0.164384 0.164384i
\(439\) 40.0000i 0.0911162i 0.998962 + 0.0455581i \(0.0145066\pi\)
−0.998962 + 0.0455581i \(0.985493\pi\)
\(440\) 0 0
\(441\) −279.000 −0.632653
\(442\) 288.000 + 288.000i 0.651584 + 0.651584i
\(443\) 213.000 213.000i 0.480813 0.480813i −0.424578 0.905391i \(-0.639578\pi\)
0.905391 + 0.424578i \(0.139578\pi\)
\(444\) 576.000i 1.29730i
\(445\) 0 0
\(446\) 234.000 0.524664
\(447\) 0 0
\(448\) −24.0000 + 24.0000i −0.0535714 + 0.0535714i
\(449\) 480.000i 1.06904i 0.845155 + 0.534521i \(0.179508\pi\)
−0.845155 + 0.534521i \(0.820492\pi\)
\(450\) 0 0
\(451\) −576.000 −1.27716
\(452\) −144.000 144.000i −0.318584 0.318584i
\(453\) −744.000 + 744.000i −1.64238 + 1.64238i
\(454\) 186.000i 0.409692i
\(455\) 0 0
\(456\) 240.000 0.526316
\(457\) 432.000 + 432.000i 0.945295 + 0.945295i 0.998579 0.0532840i \(-0.0169689\pi\)
−0.0532840 + 0.998579i \(0.516969\pi\)
\(458\) −370.000 + 370.000i −0.807860 + 0.807860i
\(459\) 0 0
\(460\) 0 0
\(461\) 222.000 0.481562 0.240781 0.970579i \(-0.422596\pi\)
0.240781 + 0.970579i \(0.422596\pi\)
\(462\) 216.000 + 216.000i 0.467532 + 0.467532i
\(463\) 213.000 213.000i 0.460043 0.460043i −0.438626 0.898670i \(-0.644535\pi\)
0.898670 + 0.438626i \(0.144535\pi\)
\(464\) 120.000i 0.258621i
\(465\) 0 0
\(466\) 504.000 1.08155
\(467\) −3.00000 3.00000i −0.00642398 0.00642398i 0.703887 0.710311i \(-0.251446\pi\)
−0.710311 + 0.703887i \(0.751446\pi\)
\(468\) −216.000 + 216.000i −0.461538 + 0.461538i
\(469\) 18.0000i 0.0383795i
\(470\) 0 0
\(471\) 432.000 0.917197
\(472\) −120.000 120.000i −0.254237 0.254237i
\(473\) −324.000 + 324.000i −0.684989 + 0.684989i
\(474\) 240.000i 0.506329i
\(475\) 0 0
\(476\) 144.000 0.302521
\(477\) 108.000 + 108.000i 0.226415 + 0.226415i
\(478\) 360.000 360.000i 0.753138 0.753138i
\(479\) 240.000i 0.501044i −0.968111 0.250522i \(-0.919398\pi\)
0.968111 0.250522i \(-0.0806022\pi\)
\(480\) 0 0
\(481\) 1152.00 2.39501
\(482\) −32.0000 32.0000i −0.0663900 0.0663900i
\(483\) −54.0000 + 54.0000i −0.111801 + 0.111801i
\(484\) 46.0000i 0.0950413i
\(485\) 0 0
\(486\) −486.000 −1.00000
\(487\) 627.000 + 627.000i 1.28747 + 1.28747i 0.936316 + 0.351158i \(0.114212\pi\)
0.351158 + 0.936316i \(0.385788\pi\)
\(488\) 64.0000 64.0000i 0.131148 0.131148i
\(489\) 558.000i 1.14110i
\(490\) 0 0
\(491\) −588.000 −1.19756 −0.598778 0.800915i \(-0.704347\pi\)
−0.598778 + 0.800915i \(0.704347\pi\)
\(492\) −288.000 288.000i −0.585366 0.585366i
\(493\) 360.000 360.000i 0.730223 0.730223i
\(494\) 480.000i 0.971660i
\(495\) 0 0
\(496\) 32.0000 0.0645161
\(497\) 144.000 + 144.000i 0.289738 + 0.289738i
\(498\) −558.000 + 558.000i −1.12048 + 1.12048i
\(499\) 460.000i 0.921844i 0.887441 + 0.460922i \(0.152481\pi\)
−0.887441 + 0.460922i \(0.847519\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.0359281
\(502\) −252.000 252.000i −0.501992 0.501992i
\(503\) −627.000 + 627.000i −1.24652 + 1.24652i −0.289275 + 0.957246i \(0.593414\pi\)
−0.957246 + 0.289275i \(0.906586\pi\)
\(504\) 108.000i 0.214286i
\(505\) 0 0
\(506\) −72.0000 −0.142292
\(507\) −357.000 357.000i −0.704142 0.704142i
\(508\) −234.000 + 234.000i −0.460630 + 0.460630i
\(509\) 450.000i 0.884086i 0.896994 + 0.442043i \(0.145746\pi\)
−0.896994 + 0.442043i \(0.854254\pi\)
\(510\) 0 0
\(511\) 72.0000 0.140900
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 384.000i 0.747082i
\(515\) 0 0
\(516\) −324.000 −0.627907
\(517\) 324.000 + 324.000i 0.626692 + 0.626692i
\(518\) 288.000 288.000i 0.555985 0.555985i
\(519\) 1008.00i 1.94220i
\(520\) 0 0
\(521\) −558.000 −1.07102 −0.535509 0.844530i \(-0.679880\pi\)
−0.535509 + 0.844530i \(0.679880\pi\)
\(522\) 270.000 + 270.000i 0.517241 + 0.517241i
\(523\) 123.000 123.000i 0.235182 0.235182i −0.579670 0.814851i \(-0.696818\pi\)
0.814851 + 0.579670i \(0.196818\pi\)
\(524\) 264.000i 0.503817i
\(525\) 0 0
\(526\) −666.000 −1.26616
\(527\) −96.0000 96.0000i −0.182163 0.182163i
\(528\) −144.000 + 144.000i −0.272727 + 0.272727i
\(529\) 511.000i 0.965974i
\(530\) 0 0
\(531\) −540.000 −1.01695
\(532\) 120.000 + 120.000i 0.225564 + 0.225564i
\(533\) 576.000 576.000i 1.08068 1.08068i
\(534\) 180.000i 0.337079i
\(535\) 0 0
\(536\) −12.0000 −0.0223881
\(537\) −900.000 900.000i −1.67598 1.67598i
\(538\) 480.000 480.000i 0.892193 0.892193i
\(539\) 372.000i 0.690167i
\(540\) 0 0
\(541\) 542.000 1.00185 0.500924 0.865491i \(-0.332994\pi\)
0.500924 + 0.865491i \(0.332994\pi\)
\(542\) 88.0000 + 88.0000i 0.162362 + 0.162362i
\(543\) 426.000 426.000i 0.784530 0.784530i
\(544\) 96.0000i 0.176471i
\(545\) 0 0
\(546\) −432.000 −0.791209
\(547\) 147.000 + 147.000i 0.268739 + 0.268739i 0.828592 0.559853i \(-0.189142\pi\)
−0.559853 + 0.828592i \(0.689142\pi\)
\(548\) 336.000 336.000i 0.613139 0.613139i
\(549\) 288.000i 0.524590i
\(550\) 0 0
\(551\) 600.000 1.08893
\(552\) −36.0000 36.0000i −0.0652174 0.0652174i
\(553\) 120.000 120.000i 0.216998 0.216998i
\(554\) 576.000i 1.03971i
\(555\) 0 0
\(556\) 200.000 0.359712
\(557\) −288.000 288.000i −0.517056 0.517056i 0.399624 0.916679i \(-0.369141\pi\)
−0.916679 + 0.399624i \(0.869141\pi\)
\(558\) 72.0000 72.0000i 0.129032 0.129032i
\(559\) 648.000i 1.15921i
\(560\) 0 0
\(561\) 864.000 1.54011
\(562\) 288.000 + 288.000i 0.512456 + 0.512456i
\(563\) −477.000 + 477.000i −0.847247 + 0.847247i −0.989789 0.142542i \(-0.954472\pi\)
0.142542 + 0.989789i \(0.454472\pi\)
\(564\) 324.000i 0.574468i
\(565\) 0 0
\(566\) 234.000 0.413428
\(567\) −243.000 243.000i −0.428571 0.428571i
\(568\) −96.0000 + 96.0000i −0.169014 + 0.169014i
\(569\) 240.000i 0.421793i −0.977508 0.210896i \(-0.932362\pi\)
0.977508 0.210896i \(-0.0676382\pi\)
\(570\) 0 0
\(571\) 692.000 1.21191 0.605954 0.795499i \(-0.292791\pi\)
0.605954 + 0.795499i \(0.292791\pi\)
\(572\) −288.000 288.000i −0.503497 0.503497i
\(573\) 576.000 576.000i 1.00524 1.00524i
\(574\) 288.000i 0.501742i
\(575\) 0 0
\(576\) −72.0000 −0.125000
\(577\) −168.000 168.000i −0.291161 0.291161i 0.546378 0.837539i \(-0.316006\pi\)
−0.837539 + 0.546378i \(0.816006\pi\)
\(578\) −1.00000 + 1.00000i −0.00173010 + 0.00173010i
\(579\) 792.000i 1.36788i
\(580\) 0 0
\(581\) −558.000 −0.960413
\(582\) −72.0000 72.0000i −0.123711 0.123711i
\(583\) −144.000 + 144.000i −0.246998 + 0.246998i
\(584\) 48.0000i 0.0821918i
\(585\) 0 0
\(586\) −336.000 −0.573379
\(587\) −213.000 213.000i −0.362862 0.362862i 0.502004 0.864866i \(-0.332596\pi\)
−0.864866 + 0.502004i \(0.832596\pi\)
\(588\) 186.000 186.000i 0.316327 0.316327i
\(589\) 160.000i 0.271647i
\(590\) 0 0
\(591\) 792.000 1.34010
\(592\) 192.000 + 192.000i 0.324324 + 0.324324i
\(593\) −312.000 + 312.000i −0.526138 + 0.526138i −0.919419 0.393280i \(-0.871340\pi\)
0.393280 + 0.919419i \(0.371340\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 480.000 + 480.000i 0.804020 + 0.804020i
\(598\) 72.0000 72.0000i 0.120401 0.120401i
\(599\) 240.000i 0.400668i 0.979728 + 0.200334i \(0.0642027\pi\)
−0.979728 + 0.200334i \(0.935797\pi\)
\(600\) 0 0
\(601\) −608.000 −1.01165 −0.505824 0.862637i \(-0.668811\pi\)
−0.505824 + 0.862637i \(0.668811\pi\)
\(602\) −162.000 162.000i −0.269103 0.269103i
\(603\) −27.0000 + 27.0000i −0.0447761 + 0.0447761i
\(604\) 496.000i 0.821192i
\(605\) 0 0
\(606\) 468.000 0.772277
\(607\) 267.000 + 267.000i 0.439868 + 0.439868i 0.891968 0.452099i \(-0.149325\pi\)
−0.452099 + 0.891968i \(0.649325\pi\)
\(608\) −80.0000 + 80.0000i −0.131579 + 0.131579i
\(609\) 540.000i 0.886700i
\(610\) 0 0
\(611\) −648.000 −1.06056
\(612\) 216.000 + 216.000i 0.352941 + 0.352941i
\(613\) 228.000 228.000i 0.371941 0.371941i −0.496243 0.868184i \(-0.665287\pi\)
0.868184 + 0.496243i \(0.165287\pi\)
\(614\) 486.000i 0.791531i
\(615\) 0 0
\(616\) −144.000 −0.233766
\(617\) −348.000 348.000i −0.564019 0.564019i 0.366427 0.930447i \(-0.380581\pi\)
−0.930447 + 0.366427i \(0.880581\pi\)
\(618\) −558.000 + 558.000i −0.902913 + 0.902913i
\(619\) 940.000i 1.51858i 0.650753 + 0.759289i \(0.274453\pi\)
−0.650753 + 0.759289i \(0.725547\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −552.000 552.000i −0.887460 0.887460i
\(623\) 90.0000 90.0000i 0.144462 0.144462i
\(624\) 288.000i 0.461538i
\(625\) 0 0
\(626\) −96.0000 −0.153355
\(627\) 720.000 + 720.000i 1.14833 + 1.14833i
\(628\) −144.000 + 144.000i −0.229299 + 0.229299i
\(629\) 1152.00i 1.83148i
\(630\) 0 0
\(631\) −808.000 −1.28051 −0.640254 0.768164i \(-0.721171\pi\)
−0.640254 + 0.768164i \(0.721171\pi\)
\(632\) 80.0000 + 80.0000i 0.126582 + 0.126582i
\(633\) −84.0000 + 84.0000i −0.132701 + 0.132701i
\(634\) 456.000i 0.719243i
\(635\) 0 0
\(636\) −144.000 −0.226415
\(637\) 372.000 + 372.000i 0.583987 + 0.583987i
\(638\) −360.000 + 360.000i −0.564263 + 0.564263i
\(639\) 432.000i 0.676056i
\(640\) 0 0
\(641\) −768.000 −1.19813 −0.599064 0.800701i \(-0.704460\pi\)
−0.599064 + 0.800701i \(0.704460\pi\)
\(642\) −162.000 162.000i −0.252336 0.252336i
\(643\) −477.000 + 477.000i −0.741835 + 0.741835i −0.972931 0.231096i \(-0.925769\pi\)
0.231096 + 0.972931i \(0.425769\pi\)
\(644\) 36.0000i 0.0559006i
\(645\) 0 0
\(646\) 480.000 0.743034
\(647\) 627.000 + 627.000i 0.969088 + 0.969088i 0.999536 0.0304482i \(-0.00969348\pi\)
−0.0304482 + 0.999536i \(0.509693\pi\)
\(648\) 162.000 162.000i 0.250000 0.250000i
\(649\) 720.000i 1.10940i
\(650\) 0 0
\(651\) 144.000 0.221198
\(652\) 186.000 + 186.000i 0.285276 + 0.285276i
\(653\) −12.0000 + 12.0000i −0.0183767 + 0.0183767i −0.716235 0.697859i \(-0.754136\pi\)
0.697859 + 0.716235i \(0.254136\pi\)
\(654\) 960.000i 1.46789i
\(655\) 0 0
\(656\) 192.000 0.292683
\(657\) 108.000 + 108.000i 0.164384 + 0.164384i
\(658\) −162.000 + 162.000i −0.246201 + 0.246201i
\(659\) 540.000i 0.819423i −0.912215 0.409712i \(-0.865629\pi\)
0.912215 0.409712i \(-0.134371\pi\)
\(660\) 0 0
\(661\) 352.000 0.532526 0.266263 0.963900i \(-0.414211\pi\)
0.266263 + 0.963900i \(0.414211\pi\)
\(662\) 148.000 + 148.000i 0.223565 + 0.223565i
\(663\) −864.000 + 864.000i −1.30317 + 1.30317i
\(664\) 372.000i 0.560241i
\(665\) 0 0
\(666\) 864.000 1.29730
\(667\) −90.0000 90.0000i −0.134933 0.134933i
\(668\) 6.00000 6.00000i 0.00898204 0.00898204i
\(669\) 702.000i 1.04933i
\(670\) 0 0
\(671\) 384.000 0.572280
\(672\) −72.0000 72.0000i −0.107143 0.107143i
\(673\) −732.000 + 732.000i −1.08767 + 1.08767i −0.0918988 + 0.995768i \(0.529294\pi\)
−0.995768 + 0.0918988i \(0.970706\pi\)
\(674\) 384.000i 0.569733i
\(675\) 0 0
\(676\) 238.000 0.352071
\(677\) −108.000 108.000i −0.159527 0.159527i 0.622830 0.782357i \(-0.285983\pi\)
−0.782357 + 0.622830i \(0.785983\pi\)
\(678\) 432.000 432.000i 0.637168 0.637168i
\(679\) 72.0000i 0.106038i
\(680\) 0 0
\(681\) −558.000 −0.819383
\(682\) 96.0000 + 96.0000i 0.140762 + 0.140762i
\(683\) 933.000 933.000i 1.36603 1.36603i 0.500016 0.866016i \(-0.333327\pi\)
0.866016 0.500016i \(-0.166673\pi\)
\(684\) 360.000i 0.526316i
\(685\) 0 0
\(686\) 480.000 0.699708
\(687\) −1110.00 1110.00i −1.61572 1.61572i
\(688\) 108.000 108.000i 0.156977 0.156977i
\(689\) 288.000i 0.417997i
\(690\) 0 0
\(691\) −68.0000 −0.0984081 −0.0492041 0.998789i \(-0.515668\pi\)
−0.0492041 + 0.998789i \(0.515668\pi\)
\(692\) 336.000 + 336.000i 0.485549 + 0.485549i
\(693\) −324.000 + 324.000i −0.467532 + 0.467532i
\(694\) 234.000i 0.337176i
\(695\) 0 0
\(696\) −360.000 −0.517241
\(697\) −576.000 576.000i −0.826399 0.826399i
\(698\) −130.000 + 130.000i −0.186246 + 0.186246i
\(699\) 1512.00i 2.16309i
\(700\) 0 0
\(701\) 192.000 0.273894 0.136947 0.990578i \(-0.456271\pi\)
0.136947 + 0.990578i \(0.456271\pi\)
\(702\) 0 0
\(703\) 960.000 960.000i 1.36558 1.36558i
\(704\) 96.0000i 0.136364i
\(705\) 0 0
\(706\) −576.000 −0.815864
\(707\) 234.000 + 234.000i 0.330976 + 0.330976i
\(708\) 360.000 360.000i 0.508475 0.508475i
\(709\) 50.0000i 0.0705219i 0.999378 + 0.0352609i \(0.0112262\pi\)
−0.999378 + 0.0352609i \(0.988774\pi\)
\(710\) 0 0
\(711\) 360.000 0.506329
\(712\) 60.0000 + 60.0000i 0.0842697 + 0.0842697i
\(713\) −24.0000 + 24.0000i −0.0336606 + 0.0336606i
\(714\) 432.000i 0.605042i
\(715\) 0 0
\(716\) 600.000 0.837989
\(717\) 1080.00 + 1080.00i 1.50628 + 1.50628i
\(718\) −120.000 + 120.000i −0.167131 + 0.167131i
\(719\) 840.000i 1.16829i 0.811650 + 0.584145i \(0.198570\pi\)
−0.811650 + 0.584145i \(0.801430\pi\)
\(720\) 0 0
\(721\) −558.000 −0.773925
\(722\) 39.0000 + 39.0000i 0.0540166 + 0.0540166i
\(723\) 96.0000 96.0000i 0.132780 0.132780i
\(724\) 284.000i 0.392265i
\(725\) 0 0
\(726\) −138.000 −0.190083
\(727\) −963.000 963.000i −1.32462 1.32462i −0.909989 0.414633i \(-0.863910\pi\)
−0.414633 0.909989i \(-0.636090\pi\)
\(728\) 144.000 144.000i 0.197802 0.197802i
\(729\) 729.000i 1.00000i
\(730\) 0 0
\(731\) −648.000 −0.886457
\(732\) 192.000 + 192.000i 0.262295 + 0.262295i
\(733\) −72.0000 + 72.0000i −0.0982265 + 0.0982265i −0.754512 0.656286i \(-0.772127\pi\)
0.656286 + 0.754512i \(0.272127\pi\)
\(734\) 426.000i 0.580381i
\(735\) 0 0
\(736\) 24.0000 0.0326087
\(737\) −36.0000 36.0000i −0.0488467 0.0488467i
\(738\) 432.000 432.000i 0.585366 0.585366i
\(739\) 20.0000i 0.0270636i 0.999908 + 0.0135318i \(0.00430744\pi\)
−0.999908 + 0.0135318i \(0.995693\pi\)
\(740\) 0 0
\(741\) −1440.00 −1.94332
\(742\) −72.0000 72.0000i −0.0970350 0.0970350i
\(743\) 243.000 243.000i 0.327052 0.327052i −0.524412 0.851465i \(-0.675715\pi\)
0.851465 + 0.524412i \(0.175715\pi\)
\(744\) 96.0000i 0.129032i
\(745\) 0 0
\(746\) −336.000 −0.450402
\(747\) −837.000 837.000i −1.12048 1.12048i
\(748\) −288.000 + 288.000i −0.385027 + 0.385027i
\(749\) 162.000i 0.216288i
\(750\) 0 0
\(751\) 1072.00 1.42743 0.713715 0.700436i \(-0.247011\pi\)
0.713715 + 0.700436i \(0.247011\pi\)
\(752\) −108.000 108.000i −0.143617 0.143617i
\(753\) 756.000 756.000i 1.00398 1.00398i
\(754\) 720.000i 0.954907i
\(755\) 0 0
\(756\) 0 0
\(757\) −408.000 408.000i −0.538970 0.538970i 0.384257 0.923226i \(-0.374458\pi\)
−0.923226 + 0.384257i \(0.874458\pi\)
\(758\) 20.0000 20.0000i 0.0263852 0.0263852i
\(759\) 216.000i 0.284585i
\(760\) 0 0
\(761\) 1362.00 1.78975 0.894875 0.446317i \(-0.147264\pi\)
0.894875 + 0.446317i \(0.147264\pi\)
\(762\) −702.000 702.000i −0.921260 0.921260i
\(763\) 480.000 480.000i 0.629096 0.629096i
\(764\) 384.000i 0.502618i
\(765\) 0 0
\(766\) −246.000 −0.321149
\(767\) 720.000 + 720.000i 0.938722 + 0.938722i
\(768\) 48.0000 48.0000i 0.0625000 0.0625000i
\(769\) 370.000i 0.481144i 0.970631 + 0.240572i \(0.0773351\pi\)
−0.970631 + 0.240572i \(0.922665\pi\)
\(770\) 0 0
\(771\) 1152.00 1.49416
\(772\) −264.000 264.000i −0.341969 0.341969i
\(773\) −132.000 + 132.000i −0.170763 + 0.170763i −0.787315 0.616551i \(-0.788529\pi\)
0.616551 + 0.787315i \(0.288529\pi\)
\(774\) 486.000i 0.627907i
\(775\) 0 0
\(776\) 48.0000 0.0618557
\(777\) 864.000 + 864.000i 1.11197 + 1.11197i
\(778\) 0 0
\(779\) 960.000i 1.23235i
\(780\) 0 0
\(781\) −576.000 &minu