Properties

Label 400.3.bg.f.97.1
Level $400$
Weight $3$
Character 400.97
Analytic conductor $10.899$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,3,Mod(17,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.17"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.bg (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 97.1
Character \(\chi\) \(=\) 400.97
Dual form 400.3.bg.f.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.60705 + 0.888069i) q^{3} +(-0.904406 + 4.91752i) q^{5} +(3.60781 + 3.60781i) q^{7} +(22.0908 - 7.17774i) q^{9} +(-0.881114 + 2.71179i) q^{11} +(21.0390 + 10.7199i) q^{13} +(0.703948 - 28.3760i) q^{15} +(-11.7819 - 1.86607i) q^{17} +(-0.670318 - 0.922614i) q^{19} +(-23.4331 - 17.0252i) q^{21} +(14.1584 + 27.7875i) q^{23} +(-23.3641 - 8.89488i) q^{25} +(-71.9662 + 36.6686i) q^{27} +(-22.9319 + 31.5630i) q^{29} +(28.8267 - 20.9438i) q^{31} +(2.53219 - 15.9876i) q^{33} +(-21.0044 + 14.4786i) q^{35} +(-17.1799 + 33.7175i) q^{37} +(-127.487 - 41.4230i) q^{39} +(-15.8966 - 48.9249i) q^{41} +(-7.81270 + 7.81270i) q^{43} +(15.3176 + 115.124i) q^{45} +(6.62783 + 41.8465i) q^{47} -22.9674i q^{49} +67.7189 q^{51} +(-38.0300 + 6.02336i) q^{53} +(-12.5384 - 6.78546i) q^{55} +(4.57785 + 4.57785i) q^{57} +(4.45355 - 1.44705i) q^{59} +(1.23832 - 3.81117i) q^{61} +(105.595 + 53.8035i) q^{63} +(-71.7433 + 93.7648i) q^{65} +(-35.0328 - 5.54865i) q^{67} +(-104.064 - 143.232i) q^{69} +(3.51757 + 2.55566i) q^{71} +(8.42727 + 16.5395i) q^{73} +(138.903 + 29.1251i) q^{75} +(-12.9625 + 6.60473i) q^{77} +(-49.2221 + 67.7484i) q^{79} +(201.830 - 146.638i) q^{81} +(23.5721 - 148.828i) q^{83} +(19.8321 - 56.2501i) q^{85} +(100.550 - 197.340i) q^{87} +(-102.308 - 33.2420i) q^{89} +(37.2294 + 114.580i) q^{91} +(-143.033 + 143.033i) q^{93} +(5.14322 - 2.46189i) q^{95} +(13.1205 + 82.8397i) q^{97} +66.2301i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 6 q^{5} + 4 q^{7} - 40 q^{9} - 16 q^{11} + 24 q^{13} - 82 q^{15} - 8 q^{17} + 50 q^{19} - 100 q^{21} + 48 q^{23} - 200 q^{25} - 90 q^{27} - 108 q^{31} + 260 q^{33} - 2 q^{35} - 94 q^{37} - 320 q^{39}+ \cdots - 544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{17}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.60705 + 0.888069i −1.86902 + 0.296023i −0.985147 0.171712i \(-0.945070\pi\)
−0.883869 + 0.467735i \(0.845070\pi\)
\(4\) 0 0
\(5\) −0.904406 + 4.91752i −0.180881 + 0.983505i
\(6\) 0 0
\(7\) 3.60781 + 3.60781i 0.515401 + 0.515401i 0.916176 0.400775i \(-0.131259\pi\)
−0.400775 + 0.916176i \(0.631259\pi\)
\(8\) 0 0
\(9\) 22.0908 7.17774i 2.45453 0.797527i
\(10\) 0 0
\(11\) −0.881114 + 2.71179i −0.0801013 + 0.246526i −0.983085 0.183147i \(-0.941371\pi\)
0.902984 + 0.429674i \(0.141371\pi\)
\(12\) 0 0
\(13\) 21.0390 + 10.7199i 1.61839 + 0.824609i 0.999226 + 0.0393455i \(0.0125273\pi\)
0.619161 + 0.785264i \(0.287473\pi\)
\(14\) 0 0
\(15\) 0.703948 28.3760i 0.0469298 1.89173i
\(16\) 0 0
\(17\) −11.7819 1.86607i −0.693053 0.109769i −0.200036 0.979789i \(-0.564106\pi\)
−0.493017 + 0.870020i \(0.664106\pi\)
\(18\) 0 0
\(19\) −0.670318 0.922614i −0.0352799 0.0485586i 0.791013 0.611800i \(-0.209554\pi\)
−0.826293 + 0.563241i \(0.809554\pi\)
\(20\) 0 0
\(21\) −23.4331 17.0252i −1.11586 0.810722i
\(22\) 0 0
\(23\) 14.1584 + 27.7875i 0.615583 + 1.20815i 0.962762 + 0.270351i \(0.0871399\pi\)
−0.347178 + 0.937799i \(0.612860\pi\)
\(24\) 0 0
\(25\) −23.3641 8.89488i −0.934564 0.355795i
\(26\) 0 0
\(27\) −71.9662 + 36.6686i −2.66541 + 1.35810i
\(28\) 0 0
\(29\) −22.9319 + 31.5630i −0.790754 + 1.08838i 0.203260 + 0.979125i \(0.434846\pi\)
−0.994014 + 0.109254i \(0.965154\pi\)
\(30\) 0 0
\(31\) 28.8267 20.9438i 0.929894 0.675607i −0.0160731 0.999871i \(-0.505116\pi\)
0.945967 + 0.324264i \(0.105116\pi\)
\(32\) 0 0
\(33\) 2.53219 15.9876i 0.0767331 0.484474i
\(34\) 0 0
\(35\) −21.0044 + 14.4786i −0.600126 + 0.413673i
\(36\) 0 0
\(37\) −17.1799 + 33.7175i −0.464323 + 0.911285i 0.533530 + 0.845781i \(0.320865\pi\)
−0.997852 + 0.0655032i \(0.979135\pi\)
\(38\) 0 0
\(39\) −127.487 41.4230i −3.26889 1.06213i
\(40\) 0 0
\(41\) −15.8966 48.9249i −0.387723 1.19329i −0.934485 0.356001i \(-0.884140\pi\)
0.546762 0.837288i \(-0.315860\pi\)
\(42\) 0 0
\(43\) −7.81270 + 7.81270i −0.181691 + 0.181691i −0.792092 0.610401i \(-0.791008\pi\)
0.610401 + 0.792092i \(0.291008\pi\)
\(44\) 0 0
\(45\) 15.3176 + 115.124i 0.340392 + 2.55830i
\(46\) 0 0
\(47\) 6.62783 + 41.8465i 0.141018 + 0.890350i 0.952182 + 0.305532i \(0.0988343\pi\)
−0.811164 + 0.584818i \(0.801166\pi\)
\(48\) 0 0
\(49\) 22.9674i 0.468723i
\(50\) 0 0
\(51\) 67.7189 1.32782
\(52\) 0 0
\(53\) −38.0300 + 6.02336i −0.717547 + 0.113648i −0.504522 0.863399i \(-0.668331\pi\)
−0.213024 + 0.977047i \(0.568331\pi\)
\(54\) 0 0
\(55\) −12.5384 6.78546i −0.227971 0.123372i
\(56\) 0 0
\(57\) 4.57785 + 4.57785i 0.0803132 + 0.0803132i
\(58\) 0 0
\(59\) 4.45355 1.44705i 0.0754840 0.0245262i −0.271032 0.962570i \(-0.587365\pi\)
0.346516 + 0.938044i \(0.387365\pi\)
\(60\) 0 0
\(61\) 1.23832 3.81117i 0.0203004 0.0624782i −0.940393 0.340089i \(-0.889543\pi\)
0.960694 + 0.277611i \(0.0895427\pi\)
\(62\) 0 0
\(63\) 105.595 + 53.8035i 1.67612 + 0.854024i
\(64\) 0 0
\(65\) −71.7433 + 93.7648i −1.10374 + 1.44254i
\(66\) 0 0
\(67\) −35.0328 5.54865i −0.522878 0.0828157i −0.110584 0.993867i \(-0.535272\pi\)
−0.412294 + 0.911051i \(0.635272\pi\)
\(68\) 0 0
\(69\) −104.064 143.232i −1.50818 2.07583i
\(70\) 0 0
\(71\) 3.51757 + 2.55566i 0.0495432 + 0.0359952i 0.612281 0.790640i \(-0.290252\pi\)
−0.562738 + 0.826635i \(0.690252\pi\)
\(72\) 0 0
\(73\) 8.42727 + 16.5395i 0.115442 + 0.226568i 0.941497 0.337022i \(-0.109420\pi\)
−0.826055 + 0.563590i \(0.809420\pi\)
\(74\) 0 0
\(75\) 138.903 + 29.1251i 1.85204 + 0.388335i
\(76\) 0 0
\(77\) −12.9625 + 6.60473i −0.168344 + 0.0857757i
\(78\) 0 0
\(79\) −49.2221 + 67.7484i −0.623065 + 0.857575i −0.997572 0.0696491i \(-0.977812\pi\)
0.374507 + 0.927224i \(0.377812\pi\)
\(80\) 0 0
\(81\) 201.830 146.638i 2.49172 1.81034i
\(82\) 0 0
\(83\) 23.5721 148.828i 0.284001 1.79311i −0.272388 0.962187i \(-0.587814\pi\)
0.556389 0.830922i \(-0.312186\pi\)
\(84\) 0 0
\(85\) 19.8321 56.2501i 0.233319 0.661766i
\(86\) 0 0
\(87\) 100.550 197.340i 1.15575 2.26828i
\(88\) 0 0
\(89\) −102.308 33.2420i −1.14953 0.373505i −0.328564 0.944482i \(-0.606565\pi\)
−0.820967 + 0.570976i \(0.806565\pi\)
\(90\) 0 0
\(91\) 37.2294 + 114.580i 0.409114 + 1.25912i
\(92\) 0 0
\(93\) −143.033 + 143.033i −1.53799 + 1.53799i
\(94\) 0 0
\(95\) 5.14322 2.46189i 0.0541391 0.0259146i
\(96\) 0 0
\(97\) 13.1205 + 82.8397i 0.135263 + 0.854018i 0.958245 + 0.285950i \(0.0923090\pi\)
−0.822982 + 0.568068i \(0.807691\pi\)
\(98\) 0 0
\(99\) 66.2301i 0.668990i
\(100\) 0 0
\(101\) −22.5839 −0.223603 −0.111801 0.993731i \(-0.535662\pi\)
−0.111801 + 0.993731i \(0.535662\pi\)
\(102\) 0 0
\(103\) 55.9724 8.86515i 0.543421 0.0860694i 0.121312 0.992614i \(-0.461290\pi\)
0.422109 + 0.906545i \(0.361290\pi\)
\(104\) 0 0
\(105\) 104.915 99.8354i 0.999188 0.950813i
\(106\) 0 0
\(107\) −34.6629 34.6629i −0.323952 0.323952i 0.526329 0.850281i \(-0.323568\pi\)
−0.850281 + 0.526329i \(0.823568\pi\)
\(108\) 0 0
\(109\) 144.123 46.8285i 1.32223 0.429619i 0.438971 0.898501i \(-0.355343\pi\)
0.883261 + 0.468882i \(0.155343\pi\)
\(110\) 0 0
\(111\) 66.3852 204.313i 0.598065 1.84066i
\(112\) 0 0
\(113\) 53.3172 + 27.1665i 0.471834 + 0.240411i 0.673704 0.739001i \(-0.264702\pi\)
−0.201871 + 0.979412i \(0.564702\pi\)
\(114\) 0 0
\(115\) −149.450 + 44.4932i −1.29957 + 0.386898i
\(116\) 0 0
\(117\) 541.714 + 85.7991i 4.63003 + 0.733325i
\(118\) 0 0
\(119\) −35.7744 49.2393i −0.300625 0.413775i
\(120\) 0 0
\(121\) 91.3136 + 66.3432i 0.754658 + 0.548291i
\(122\) 0 0
\(123\) 132.582 + 260.207i 1.07790 + 2.11550i
\(124\) 0 0
\(125\) 64.8714 106.849i 0.518971 0.854792i
\(126\) 0 0
\(127\) −91.5268 + 46.6352i −0.720683 + 0.367207i −0.775549 0.631287i \(-0.782527\pi\)
0.0548657 + 0.998494i \(0.482527\pi\)
\(128\) 0 0
\(129\) 36.8680 50.7444i 0.285798 0.393368i
\(130\) 0 0
\(131\) −100.462 + 72.9901i −0.766887 + 0.557176i −0.901015 0.433788i \(-0.857177\pi\)
0.134128 + 0.990964i \(0.457177\pi\)
\(132\) 0 0
\(133\) 0.910234 5.74699i 0.00684387 0.0432105i
\(134\) 0 0
\(135\) −115.232 387.059i −0.853571 2.86710i
\(136\) 0 0
\(137\) −111.947 + 219.709i −0.817132 + 1.60371i −0.0200833 + 0.999798i \(0.506393\pi\)
−0.797049 + 0.603914i \(0.793607\pi\)
\(138\) 0 0
\(139\) −47.8827 15.5580i −0.344480 0.111928i 0.131667 0.991294i \(-0.457967\pi\)
−0.476147 + 0.879366i \(0.657967\pi\)
\(140\) 0 0
\(141\) −74.3251 228.749i −0.527128 1.62233i
\(142\) 0 0
\(143\) −47.6080 + 47.6080i −0.332923 + 0.332923i
\(144\) 0 0
\(145\) −134.472 141.314i −0.927394 0.974578i
\(146\) 0 0
\(147\) 20.3967 + 128.780i 0.138753 + 0.876051i
\(148\) 0 0
\(149\) 5.80459i 0.0389570i 0.999810 + 0.0194785i \(0.00620058\pi\)
−0.999810 + 0.0194785i \(0.993799\pi\)
\(150\) 0 0
\(151\) −28.1784 −0.186612 −0.0933059 0.995637i \(-0.529743\pi\)
−0.0933059 + 0.995637i \(0.529743\pi\)
\(152\) 0 0
\(153\) −273.666 + 43.3444i −1.78867 + 0.283297i
\(154\) 0 0
\(155\) 76.9207 + 160.698i 0.496263 + 1.03676i
\(156\) 0 0
\(157\) −186.688 186.688i −1.18910 1.18910i −0.977318 0.211778i \(-0.932075\pi\)
−0.211778 0.977318i \(-0.567925\pi\)
\(158\) 0 0
\(159\) 207.887 67.5465i 1.30746 0.424821i
\(160\) 0 0
\(161\) −49.1710 + 151.333i −0.305410 + 0.939955i
\(162\) 0 0
\(163\) −90.3109 46.0157i −0.554054 0.282305i 0.154462 0.987999i \(-0.450635\pi\)
−0.708517 + 0.705694i \(0.750635\pi\)
\(164\) 0 0
\(165\) 76.3294 + 26.9114i 0.462603 + 0.163100i
\(166\) 0 0
\(167\) −49.9612 7.91307i −0.299169 0.0473837i 0.00504565 0.999987i \(-0.498394\pi\)
−0.304214 + 0.952604i \(0.598394\pi\)
\(168\) 0 0
\(169\) 228.388 + 314.350i 1.35141 + 1.86006i
\(170\) 0 0
\(171\) −21.4302 15.5699i −0.125323 0.0910522i
\(172\) 0 0
\(173\) 82.8886 + 162.678i 0.479125 + 0.940335i 0.996421 + 0.0845288i \(0.0269385\pi\)
−0.517296 + 0.855806i \(0.673061\pi\)
\(174\) 0 0
\(175\) −52.2022 116.384i −0.298298 0.665053i
\(176\) 0 0
\(177\) −23.6862 + 12.0687i −0.133820 + 0.0681849i
\(178\) 0 0
\(179\) −156.233 + 215.036i −0.872809 + 1.20132i 0.105552 + 0.994414i \(0.466339\pi\)
−0.978361 + 0.206905i \(0.933661\pi\)
\(180\) 0 0
\(181\) 16.6491 12.0963i 0.0919839 0.0668302i −0.540843 0.841124i \(-0.681895\pi\)
0.632827 + 0.774294i \(0.281895\pi\)
\(182\) 0 0
\(183\) −3.55876 + 22.4691i −0.0194468 + 0.122782i
\(184\) 0 0
\(185\) −150.269 114.977i −0.812266 0.621498i
\(186\) 0 0
\(187\) 15.4416 30.3058i 0.0825753 0.162063i
\(188\) 0 0
\(189\) −391.934 127.347i −2.07372 0.673793i
\(190\) 0 0
\(191\) 65.7335 + 202.307i 0.344154 + 1.05920i 0.962035 + 0.272926i \(0.0879916\pi\)
−0.617880 + 0.786272i \(0.712008\pi\)
\(192\) 0 0
\(193\) 179.125 179.125i 0.928109 0.928109i −0.0694751 0.997584i \(-0.522132\pi\)
0.997584 + 0.0694751i \(0.0221324\pi\)
\(194\) 0 0
\(195\) 318.999 589.457i 1.63589 3.02285i
\(196\) 0 0
\(197\) 9.35053 + 59.0369i 0.0474646 + 0.299680i 0.999989 0.00478389i \(-0.00152277\pi\)
−0.952524 + 0.304464i \(0.901523\pi\)
\(198\) 0 0
\(199\) 104.287i 0.524055i 0.965060 + 0.262028i \(0.0843912\pi\)
−0.965060 + 0.262028i \(0.915609\pi\)
\(200\) 0 0
\(201\) 201.358 1.00178
\(202\) 0 0
\(203\) −196.607 + 31.1395i −0.968507 + 0.153396i
\(204\) 0 0
\(205\) 254.966 33.9242i 1.24374 0.165484i
\(206\) 0 0
\(207\) 512.222 + 512.222i 2.47450 + 2.47450i
\(208\) 0 0
\(209\) 3.09256 1.00483i 0.0147969 0.00480782i
\(210\) 0 0
\(211\) 45.9934 141.553i 0.217978 0.670868i −0.780950 0.624593i \(-0.785265\pi\)
0.998929 0.0462753i \(-0.0147351\pi\)
\(212\) 0 0
\(213\) −21.9928 11.2059i −0.103252 0.0526097i
\(214\) 0 0
\(215\) −31.3533 45.4850i −0.145829 0.211558i
\(216\) 0 0
\(217\) 179.563 + 28.4399i 0.827477 + 0.131059i
\(218\) 0 0
\(219\) −61.9403 85.2535i −0.282832 0.389285i
\(220\) 0 0
\(221\) −227.876 165.561i −1.03111 0.749147i
\(222\) 0 0
\(223\) −170.790 335.194i −0.765875 1.50311i −0.861534 0.507700i \(-0.830496\pi\)
0.0956594 0.995414i \(-0.469504\pi\)
\(224\) 0 0
\(225\) −579.977 28.7937i −2.57768 0.127972i
\(226\) 0 0
\(227\) 226.994 115.659i 0.999973 0.509512i 0.124212 0.992256i \(-0.460360\pi\)
0.875762 + 0.482744i \(0.160360\pi\)
\(228\) 0 0
\(229\) 100.528 138.365i 0.438987 0.604214i −0.531000 0.847372i \(-0.678183\pi\)
0.969987 + 0.243158i \(0.0781834\pi\)
\(230\) 0 0
\(231\) 66.8160 48.5446i 0.289247 0.210150i
\(232\) 0 0
\(233\) −18.4276 + 116.347i −0.0790883 + 0.499344i 0.916067 + 0.401026i \(0.131346\pi\)
−0.995155 + 0.0983181i \(0.968654\pi\)
\(234\) 0 0
\(235\) −211.775 5.25370i −0.901171 0.0223562i
\(236\) 0 0
\(237\) 215.825 423.581i 0.910656 1.78726i
\(238\) 0 0
\(239\) −215.408 69.9902i −0.901287 0.292846i −0.178519 0.983936i \(-0.557131\pi\)
−0.722768 + 0.691091i \(0.757131\pi\)
\(240\) 0 0
\(241\) 21.5879 + 66.4407i 0.0895763 + 0.275688i 0.985802 0.167910i \(-0.0537019\pi\)
−0.896226 + 0.443598i \(0.853702\pi\)
\(242\) 0 0
\(243\) −487.429 + 487.429i −2.00588 + 2.00588i
\(244\) 0 0
\(245\) 112.943 + 20.7719i 0.460992 + 0.0847833i
\(246\) 0 0
\(247\) −4.21250 26.5967i −0.0170546 0.107679i
\(248\) 0 0
\(249\) 855.420i 3.43542i
\(250\) 0 0
\(251\) 422.980 1.68518 0.842589 0.538557i \(-0.181030\pi\)
0.842589 + 0.538557i \(0.181030\pi\)
\(252\) 0 0
\(253\) −87.8289 + 13.9107i −0.347150 + 0.0549832i
\(254\) 0 0
\(255\) −61.2454 + 333.009i −0.240178 + 1.30592i
\(256\) 0 0
\(257\) −76.5969 76.5969i −0.298042 0.298042i 0.542204 0.840247i \(-0.317590\pi\)
−0.840247 + 0.542204i \(0.817590\pi\)
\(258\) 0 0
\(259\) −183.628 + 59.6644i −0.708990 + 0.230365i
\(260\) 0 0
\(261\) −280.032 + 861.851i −1.07292 + 3.30211i
\(262\) 0 0
\(263\) −321.922 164.027i −1.22404 0.623678i −0.282073 0.959393i \(-0.591022\pi\)
−0.941964 + 0.335715i \(0.891022\pi\)
\(264\) 0 0
\(265\) 4.77455 192.461i 0.0180172 0.726268i
\(266\) 0 0
\(267\) 603.168 + 95.5325i 2.25906 + 0.357800i
\(268\) 0 0
\(269\) 4.51084 + 6.20864i 0.0167689 + 0.0230805i 0.817319 0.576185i \(-0.195459\pi\)
−0.800550 + 0.599266i \(0.795459\pi\)
\(270\) 0 0
\(271\) 373.379 + 271.276i 1.37778 + 1.00102i 0.997084 + 0.0763181i \(0.0243165\pi\)
0.380699 + 0.924699i \(0.375684\pi\)
\(272\) 0 0
\(273\) −310.502 609.394i −1.13737 2.23221i
\(274\) 0 0
\(275\) 44.7075 55.5211i 0.162573 0.201895i
\(276\) 0 0
\(277\) 134.744 68.6553i 0.486439 0.247853i −0.193529 0.981094i \(-0.561993\pi\)
0.679968 + 0.733241i \(0.261993\pi\)
\(278\) 0 0
\(279\) 486.476 669.577i 1.74364 2.39992i
\(280\) 0 0
\(281\) 113.237 82.2714i 0.402978 0.292781i −0.367775 0.929915i \(-0.619880\pi\)
0.770753 + 0.637134i \(0.219880\pi\)
\(282\) 0 0
\(283\) −71.1130 + 448.990i −0.251283 + 1.58654i 0.462793 + 0.886467i \(0.346847\pi\)
−0.714075 + 0.700069i \(0.753153\pi\)
\(284\) 0 0
\(285\) −26.6519 + 18.3715i −0.0935156 + 0.0644613i
\(286\) 0 0
\(287\) 119.159 233.864i 0.415190 0.814856i
\(288\) 0 0
\(289\) −139.524 45.3342i −0.482783 0.156866i
\(290\) 0 0
\(291\) −147.135 452.834i −0.505618 1.55613i
\(292\) 0 0
\(293\) −45.8619 + 45.8619i −0.156525 + 0.156525i −0.781025 0.624500i \(-0.785303\pi\)
0.624500 + 0.781025i \(0.285303\pi\)
\(294\) 0 0
\(295\) 3.08807 + 23.2092i 0.0104680 + 0.0786752i
\(296\) 0 0
\(297\) −36.0271 227.466i −0.121304 0.765880i
\(298\) 0 0
\(299\) 736.398i 2.46287i
\(300\) 0 0
\(301\) −56.3735 −0.187287
\(302\) 0 0
\(303\) 126.629 20.0560i 0.417917 0.0661916i
\(304\) 0 0
\(305\) 17.6216 + 9.53633i 0.0577756 + 0.0312667i
\(306\) 0 0
\(307\) −328.045 328.045i −1.06855 1.06855i −0.997471 0.0710783i \(-0.977356\pi\)
−0.0710783 0.997471i \(-0.522644\pi\)
\(308\) 0 0
\(309\) −305.967 + 99.4146i −0.990184 + 0.321730i
\(310\) 0 0
\(311\) −88.0879 + 271.107i −0.283241 + 0.871726i 0.703679 + 0.710518i \(0.251539\pi\)
−0.986920 + 0.161208i \(0.948461\pi\)
\(312\) 0 0
\(313\) 143.583 + 73.1592i 0.458732 + 0.233736i 0.668056 0.744111i \(-0.267126\pi\)
−0.209324 + 0.977846i \(0.567126\pi\)
\(314\) 0 0
\(315\) −360.081 + 470.607i −1.14311 + 1.49399i
\(316\) 0 0
\(317\) −321.892 50.9826i −1.01543 0.160828i −0.373532 0.927617i \(-0.621853\pi\)
−0.641899 + 0.766789i \(0.721853\pi\)
\(318\) 0 0
\(319\) −65.3866 89.9970i −0.204974 0.282122i
\(320\) 0 0
\(321\) 225.139 + 163.573i 0.701369 + 0.509574i
\(322\) 0 0
\(323\) 6.17596 + 12.1210i 0.0191206 + 0.0375263i
\(324\) 0 0
\(325\) −396.206 437.601i −1.21909 1.34646i
\(326\) 0 0
\(327\) −766.519 + 390.561i −2.34409 + 1.19438i
\(328\) 0 0
\(329\) −127.062 + 174.886i −0.386207 + 0.531568i
\(330\) 0 0
\(331\) 59.2894 43.0762i 0.179122 0.130140i −0.494611 0.869114i \(-0.664690\pi\)
0.673733 + 0.738975i \(0.264690\pi\)
\(332\) 0 0
\(333\) −137.503 + 868.161i −0.412922 + 2.60709i
\(334\) 0 0
\(335\) 58.9696 167.257i 0.176029 0.499273i
\(336\) 0 0
\(337\) −195.911 + 384.497i −0.581339 + 1.14094i 0.393769 + 0.919210i \(0.371171\pi\)
−0.975108 + 0.221732i \(0.928829\pi\)
\(338\) 0 0
\(339\) −323.078 104.974i −0.953032 0.309659i
\(340\) 0 0
\(341\) 31.3956 + 96.6259i 0.0920693 + 0.283360i
\(342\) 0 0
\(343\) 259.645 259.645i 0.756982 0.756982i
\(344\) 0 0
\(345\) 798.463 382.198i 2.31439 1.10782i
\(346\) 0 0
\(347\) 13.0574 + 82.4412i 0.0376294 + 0.237583i 0.999333 0.0365075i \(-0.0116233\pi\)
−0.961704 + 0.274090i \(0.911623\pi\)
\(348\) 0 0
\(349\) 61.3926i 0.175910i −0.996124 0.0879550i \(-0.971967\pi\)
0.996124 0.0879550i \(-0.0280332\pi\)
\(350\) 0 0
\(351\) −1907.18 −5.43357
\(352\) 0 0
\(353\) 530.943 84.0932i 1.50409 0.238224i 0.650634 0.759391i \(-0.274503\pi\)
0.853455 + 0.521167i \(0.174503\pi\)
\(354\) 0 0
\(355\) −15.7488 + 14.9864i −0.0443629 + 0.0422151i
\(356\) 0 0
\(357\) 244.317 + 244.317i 0.684361 + 0.684361i
\(358\) 0 0
\(359\) 120.114 39.0273i 0.334579 0.108711i −0.136910 0.990584i \(-0.543717\pi\)
0.471488 + 0.881872i \(0.343717\pi\)
\(360\) 0 0
\(361\) 111.153 342.095i 0.307904 0.947630i
\(362\) 0 0
\(363\) −570.917 290.897i −1.57277 0.801369i
\(364\) 0 0
\(365\) −88.9549 + 26.4829i −0.243712 + 0.0725560i
\(366\) 0 0
\(367\) 413.727 + 65.5280i 1.12732 + 0.178550i 0.692120 0.721782i \(-0.256677\pi\)
0.435202 + 0.900333i \(0.356677\pi\)
\(368\) 0 0
\(369\) −702.340 966.688i −1.90336 2.61975i
\(370\) 0 0
\(371\) −158.936 115.474i −0.428399 0.311250i
\(372\) 0 0
\(373\) 205.218 + 402.763i 0.550182 + 1.07979i 0.983896 + 0.178742i \(0.0572028\pi\)
−0.433714 + 0.901051i \(0.642797\pi\)
\(374\) 0 0
\(375\) −268.848 + 656.717i −0.716928 + 1.75125i
\(376\) 0 0
\(377\) −820.817 + 418.227i −2.17723 + 1.10936i
\(378\) 0 0
\(379\) 411.506 566.389i 1.08577 1.49443i 0.232758 0.972535i \(-0.425225\pi\)
0.853010 0.521895i \(-0.174775\pi\)
\(380\) 0 0
\(381\) 471.780 342.768i 1.23827 0.899654i
\(382\) 0 0
\(383\) 2.64601 16.7062i 0.00690863 0.0436194i −0.983993 0.178206i \(-0.942971\pi\)
0.990902 + 0.134587i \(0.0429707\pi\)
\(384\) 0 0
\(385\) −20.7555 69.7168i −0.0539105 0.181083i
\(386\) 0 0
\(387\) −116.511 + 228.667i −0.301063 + 0.590870i
\(388\) 0 0
\(389\) −75.7317 24.6067i −0.194683 0.0632563i 0.210053 0.977690i \(-0.432636\pi\)
−0.404736 + 0.914434i \(0.632636\pi\)
\(390\) 0 0
\(391\) −114.960 353.810i −0.294015 0.904884i
\(392\) 0 0
\(393\) 498.476 498.476i 1.26839 1.26839i
\(394\) 0 0
\(395\) −288.638 303.323i −0.730729 0.767907i
\(396\) 0 0
\(397\) −15.5627 98.2590i −0.0392007 0.247504i 0.960305 0.278954i \(-0.0899876\pi\)
−0.999505 + 0.0314498i \(0.989988\pi\)
\(398\) 0 0
\(399\) 33.0320i 0.0827870i
\(400\) 0 0
\(401\) 481.359 1.20040 0.600199 0.799851i \(-0.295088\pi\)
0.600199 + 0.799851i \(0.295088\pi\)
\(402\) 0 0
\(403\) 831.002 131.618i 2.06204 0.326595i
\(404\) 0 0
\(405\) 538.559 + 1125.12i 1.32978 + 2.77808i
\(406\) 0 0
\(407\) −76.2974 76.2974i −0.187463 0.187463i
\(408\) 0 0
\(409\) 476.944 154.968i 1.16612 0.378896i 0.338927 0.940813i \(-0.389936\pi\)
0.827194 + 0.561917i \(0.189936\pi\)
\(410\) 0 0
\(411\) 432.577 1331.33i 1.05250 3.23925i
\(412\) 0 0
\(413\) 21.2882 + 10.8469i 0.0515454 + 0.0262637i
\(414\) 0 0
\(415\) 710.547 + 250.517i 1.71216 + 0.603656i
\(416\) 0 0
\(417\) 282.297 + 44.7115i 0.676972 + 0.107222i
\(418\) 0 0
\(419\) 208.201 + 286.565i 0.496901 + 0.683925i 0.981642 0.190732i \(-0.0610863\pi\)
−0.484741 + 0.874658i \(0.661086\pi\)
\(420\) 0 0
\(421\) −92.2847 67.0487i −0.219203 0.159261i 0.472765 0.881189i \(-0.343256\pi\)
−0.691968 + 0.721928i \(0.743256\pi\)
\(422\) 0 0
\(423\) 446.777 + 876.850i 1.05621 + 2.07293i
\(424\) 0 0
\(425\) 258.675 + 148.398i 0.608647 + 0.349171i
\(426\) 0 0
\(427\) 18.2176 9.28233i 0.0426642 0.0217385i
\(428\) 0 0
\(429\) 224.661 309.219i 0.523685 0.720791i
\(430\) 0 0
\(431\) 121.831 88.5158i 0.282672 0.205373i −0.437410 0.899262i \(-0.644104\pi\)
0.720082 + 0.693889i \(0.244104\pi\)
\(432\) 0 0
\(433\) −47.3574 + 299.003i −0.109370 + 0.690538i 0.870689 + 0.491834i \(0.163673\pi\)
−0.980060 + 0.198704i \(0.936327\pi\)
\(434\) 0 0
\(435\) 879.488 + 672.933i 2.02181 + 1.54697i
\(436\) 0 0
\(437\) 16.1465 31.6892i 0.0369484 0.0725153i
\(438\) 0 0
\(439\) 89.8304 + 29.1877i 0.204625 + 0.0664867i 0.409536 0.912294i \(-0.365691\pi\)
−0.204911 + 0.978781i \(0.565691\pi\)
\(440\) 0 0
\(441\) −164.854 507.369i −0.373819 1.15050i
\(442\) 0 0
\(443\) 228.066 228.066i 0.514822 0.514822i −0.401178 0.916000i \(-0.631399\pi\)
0.916000 + 0.401178i \(0.131399\pi\)
\(444\) 0 0
\(445\) 255.996 473.039i 0.575273 1.06301i
\(446\) 0 0
\(447\) −5.15487 32.5466i −0.0115322 0.0728112i
\(448\) 0 0
\(449\) 307.931i 0.685816i 0.939369 + 0.342908i \(0.111412\pi\)
−0.939369 + 0.342908i \(0.888588\pi\)
\(450\) 0 0
\(451\) 146.681 0.325234
\(452\) 0 0
\(453\) 157.998 25.0244i 0.348780 0.0552414i
\(454\) 0 0
\(455\) −597.121 + 79.4493i −1.31235 + 0.174614i
\(456\) 0 0
\(457\) −4.84146 4.84146i −0.0105940 0.0105940i 0.701790 0.712384i \(-0.252385\pi\)
−0.712384 + 0.701790i \(0.752385\pi\)
\(458\) 0 0
\(459\) 916.325 297.732i 1.99635 0.648654i
\(460\) 0 0
\(461\) 0.492459 1.51563i 0.00106824 0.00328770i −0.950521 0.310660i \(-0.899450\pi\)
0.951589 + 0.307373i \(0.0994498\pi\)
\(462\) 0 0
\(463\) 514.654 + 262.229i 1.11156 + 0.566369i 0.910625 0.413234i \(-0.135601\pi\)
0.200938 + 0.979604i \(0.435601\pi\)
\(464\) 0 0
\(465\) −574.009 832.729i −1.23443 1.79082i
\(466\) 0 0
\(467\) 278.647 + 44.1334i 0.596675 + 0.0945041i 0.447465 0.894301i \(-0.352327\pi\)
0.149210 + 0.988805i \(0.452327\pi\)
\(468\) 0 0
\(469\) −106.373 146.410i −0.226809 0.312175i
\(470\) 0 0
\(471\) 1212.56 + 880.977i 2.57444 + 1.87044i
\(472\) 0 0
\(473\) −14.3025 28.0703i −0.0302379 0.0593452i
\(474\) 0 0
\(475\) 7.45484 + 27.5184i 0.0156944 + 0.0579336i
\(476\) 0 0
\(477\) −796.879 + 406.030i −1.67061 + 0.851216i
\(478\) 0 0
\(479\) −108.466 + 149.291i −0.226443 + 0.311673i −0.907088 0.420941i \(-0.861700\pi\)
0.680644 + 0.732614i \(0.261700\pi\)
\(480\) 0 0
\(481\) −722.898 + 525.216i −1.50291 + 1.09193i
\(482\) 0 0
\(483\) 141.310 892.197i 0.292568 1.84720i
\(484\) 0 0
\(485\) −419.233 10.4003i −0.864397 0.0214439i
\(486\) 0 0
\(487\) −138.654 + 272.124i −0.284711 + 0.558776i −0.988426 0.151706i \(-0.951523\pi\)
0.703715 + 0.710482i \(0.251523\pi\)
\(488\) 0 0
\(489\) 547.243 + 177.810i 1.11911 + 0.363619i
\(490\) 0 0
\(491\) 94.1503 + 289.765i 0.191752 + 0.590152i 0.999999 + 0.00130868i \(0.000416567\pi\)
−0.808247 + 0.588843i \(0.799583\pi\)
\(492\) 0 0
\(493\) 329.080 329.080i 0.667505 0.667505i
\(494\) 0 0
\(495\) −325.688 59.8989i −0.657955 0.121008i
\(496\) 0 0
\(497\) 3.47037 + 21.9110i 0.00698263 + 0.0440866i
\(498\) 0 0
\(499\) 194.528i 0.389836i −0.980820 0.194918i \(-0.937556\pi\)
0.980820 0.194918i \(-0.0624440\pi\)
\(500\) 0 0
\(501\) 287.162 0.573178
\(502\) 0 0
\(503\) 472.931 74.9049i 0.940220 0.148916i 0.332532 0.943092i \(-0.392097\pi\)
0.607688 + 0.794176i \(0.292097\pi\)
\(504\) 0 0
\(505\) 20.4250 111.057i 0.0404456 0.219914i
\(506\) 0 0
\(507\) −1559.75 1559.75i −3.07643 3.07643i
\(508\) 0 0
\(509\) 0.377035 0.122506i 0.000740737 0.000240680i −0.308647 0.951177i \(-0.599876\pi\)
0.309387 + 0.950936i \(0.399876\pi\)
\(510\) 0 0
\(511\) −29.2672 + 90.0752i −0.0572744 + 0.176272i
\(512\) 0 0
\(513\) 82.0712 + 41.8174i 0.159983 + 0.0815153i
\(514\) 0 0
\(515\) −7.02716 + 283.263i −0.0136450 + 0.550026i
\(516\) 0 0
\(517\) −119.319 18.8982i −0.230791 0.0365536i
\(518\) 0 0
\(519\) −609.230 838.533i −1.17385 1.61567i
\(520\) 0 0
\(521\) 124.355 + 90.3495i 0.238686 + 0.173416i 0.700698 0.713458i \(-0.252872\pi\)
−0.462012 + 0.886874i \(0.652872\pi\)
\(522\) 0 0
\(523\) −98.6677 193.646i −0.188657 0.370261i 0.777233 0.629213i \(-0.216623\pi\)
−0.965890 + 0.258952i \(0.916623\pi\)
\(524\) 0 0
\(525\) 396.057 + 606.213i 0.754395 + 1.15469i
\(526\) 0 0
\(527\) −378.716 + 192.965i −0.718626 + 0.366158i
\(528\) 0 0
\(529\) −260.744 + 358.883i −0.492899 + 0.678418i
\(530\) 0 0
\(531\) 87.9961 63.9329i 0.165718 0.120401i
\(532\) 0 0
\(533\) 190.021 1199.74i 0.356511 2.25092i
\(534\) 0 0
\(535\) 201.805 139.106i 0.377205 0.260012i
\(536\) 0 0
\(537\) 685.038 1344.46i 1.27568 2.50365i
\(538\) 0 0
\(539\) 62.2829 + 20.2369i 0.115553 + 0.0375453i
\(540\) 0 0
\(541\) 120.466 + 370.755i 0.222672 + 0.685314i 0.998520 + 0.0543938i \(0.0173226\pi\)
−0.775847 + 0.630921i \(0.782677\pi\)
\(542\) 0 0
\(543\) −82.6099 + 82.6099i −0.152136 + 0.152136i
\(544\) 0 0
\(545\) 99.9342 + 751.081i 0.183366 + 1.37813i
\(546\) 0 0
\(547\) −49.6266 313.330i −0.0907251 0.572816i −0.990613 0.136695i \(-0.956352\pi\)
0.899888 0.436121i \(-0.143648\pi\)
\(548\) 0 0
\(549\) 93.0802i 0.169545i
\(550\) 0 0
\(551\) 44.4921 0.0807479
\(552\) 0 0
\(553\) −422.007 + 66.8394i −0.763124 + 0.120867i
\(554\) 0 0
\(555\) 944.674 + 511.233i 1.70212 + 0.921140i
\(556\) 0 0
\(557\) −164.486 164.486i −0.295307 0.295307i 0.543866 0.839172i \(-0.316960\pi\)
−0.839172 + 0.543866i \(0.816960\pi\)
\(558\) 0 0
\(559\) −248.123 + 80.6201i −0.443870 + 0.144222i
\(560\) 0 0
\(561\) −59.6681 + 183.639i −0.106360 + 0.327343i
\(562\) 0 0
\(563\) −899.777 458.459i −1.59818 0.814315i −0.999915 0.0130183i \(-0.995856\pi\)
−0.598267 0.801296i \(-0.704144\pi\)
\(564\) 0 0
\(565\) −181.812 + 237.619i −0.321792 + 0.420565i
\(566\) 0 0
\(567\) 1257.20 + 199.121i 2.21729 + 0.351184i
\(568\) 0 0
\(569\) 10.0497 + 13.8322i 0.0176621 + 0.0243097i 0.817757 0.575564i \(-0.195217\pi\)
−0.800095 + 0.599874i \(0.795217\pi\)
\(570\) 0 0
\(571\) 597.683 + 434.242i 1.04673 + 0.760495i 0.971588 0.236678i \(-0.0760587\pi\)
0.0751430 + 0.997173i \(0.476059\pi\)
\(572\) 0 0
\(573\) −548.233 1075.97i −0.956777 1.87778i
\(574\) 0 0
\(575\) −83.6325 775.166i −0.145448 1.34812i
\(576\) 0 0
\(577\) −230.489 + 117.440i −0.399461 + 0.203536i −0.642168 0.766564i \(-0.721965\pi\)
0.242707 + 0.970100i \(0.421965\pi\)
\(578\) 0 0
\(579\) −845.287 + 1163.44i −1.45991 + 2.00939i
\(580\) 0 0
\(581\) 621.987 451.900i 1.07054 0.777796i
\(582\) 0 0
\(583\) 17.1747 108.437i 0.0294591 0.185998i
\(584\) 0 0
\(585\) −911.849 + 2586.30i −1.55872 + 4.42102i
\(586\) 0 0
\(587\) −376.054 + 738.047i −0.640636 + 1.25732i 0.311093 + 0.950380i \(0.399305\pi\)
−0.951729 + 0.306940i \(0.900695\pi\)
\(588\) 0 0
\(589\) −38.6461 12.5569i −0.0656131 0.0213190i
\(590\) 0 0
\(591\) −104.858 322.719i −0.177424 0.546056i
\(592\) 0 0
\(593\) −103.236 + 103.236i −0.174092 + 0.174092i −0.788774 0.614683i \(-0.789284\pi\)
0.614683 + 0.788774i \(0.289284\pi\)
\(594\) 0 0
\(595\) 274.490 131.389i 0.461328 0.220822i
\(596\) 0 0
\(597\) −92.6141 584.742i −0.155132 0.979468i
\(598\) 0 0
\(599\) 272.933i 0.455648i 0.973702 + 0.227824i \(0.0731610\pi\)
−0.973702 + 0.227824i \(0.926839\pi\)
\(600\) 0 0
\(601\) −389.161 −0.647522 −0.323761 0.946139i \(-0.604947\pi\)
−0.323761 + 0.946139i \(0.604947\pi\)
\(602\) 0 0
\(603\) −813.730 + 128.882i −1.34947 + 0.213735i
\(604\) 0 0
\(605\) −408.829 + 389.036i −0.675750 + 0.643034i
\(606\) 0 0
\(607\) 800.589 + 800.589i 1.31893 + 1.31893i 0.914625 + 0.404303i \(0.132486\pi\)
0.404303 + 0.914625i \(0.367514\pi\)
\(608\) 0 0
\(609\) 1074.73 349.201i 1.76475 0.573401i
\(610\) 0 0
\(611\) −309.148 + 951.459i −0.505970 + 1.55722i
\(612\) 0 0
\(613\) 660.013 + 336.294i 1.07669 + 0.548603i 0.900101 0.435681i \(-0.143492\pi\)
0.176593 + 0.984284i \(0.443492\pi\)
\(614\) 0 0
\(615\) −1399.48 + 416.642i −2.27558 + 0.677467i
\(616\) 0 0
\(617\) −478.466 75.7815i −0.775471 0.122823i −0.243859 0.969811i \(-0.578413\pi\)
−0.531612 + 0.846988i \(0.678413\pi\)
\(618\) 0 0
\(619\) −164.009 225.740i −0.264959 0.364684i 0.655721 0.755003i \(-0.272365\pi\)
−0.920680 + 0.390319i \(0.872365\pi\)
\(620\) 0 0
\(621\) −2037.86 1480.59i −3.28157 2.38420i
\(622\) 0 0
\(623\) −249.178 489.039i −0.399965 0.784975i
\(624\) 0 0
\(625\) 466.762 + 415.642i 0.746819 + 0.665027i
\(626\) 0 0
\(627\) −16.4478 + 8.38056i −0.0262325 + 0.0133661i
\(628\) 0 0
\(629\) 265.332 365.198i 0.421831 0.580600i
\(630\) 0 0
\(631\) −119.420 + 86.7635i −0.189255 + 0.137502i −0.678378 0.734713i \(-0.737317\pi\)
0.489123 + 0.872215i \(0.337317\pi\)
\(632\) 0 0
\(633\) −132.178 + 834.541i −0.208813 + 1.31839i
\(634\) 0 0
\(635\) −146.552 492.262i −0.230791 0.775216i
\(636\) 0 0
\(637\) 246.209 483.213i 0.386514 0.758576i
\(638\) 0 0
\(639\) 96.0498 + 31.2085i 0.150313 + 0.0488395i
\(640\) 0 0
\(641\) −203.571 626.527i −0.317583 0.977421i −0.974678 0.223613i \(-0.928215\pi\)
0.657095 0.753808i \(-0.271785\pi\)
\(642\) 0 0
\(643\) 314.726 314.726i 0.489465 0.489465i −0.418672 0.908137i \(-0.637504\pi\)
0.908137 + 0.418672i \(0.137504\pi\)
\(644\) 0 0
\(645\) 216.193 + 227.193i 0.335183 + 0.352237i
\(646\) 0 0
\(647\) −156.034 985.160i −0.241165 1.52266i −0.749793 0.661672i \(-0.769847\pi\)
0.508628 0.860987i \(-0.330153\pi\)
\(648\) 0 0
\(649\) 13.3521i 0.0205734i
\(650\) 0 0
\(651\) −1032.07 −1.58536
\(652\) 0 0
\(653\) 181.014 28.6699i 0.277204 0.0439049i −0.0162843 0.999867i \(-0.505184\pi\)
0.293489 + 0.955963i \(0.405184\pi\)
\(654\) 0 0
\(655\) −268.072 560.038i −0.409270 0.855020i
\(656\) 0 0
\(657\) 304.881 + 304.881i 0.464051 + 0.464051i
\(658\) 0 0
\(659\) −104.192 + 33.8539i −0.158105 + 0.0513716i −0.387000 0.922080i \(-0.626489\pi\)
0.228895 + 0.973451i \(0.426489\pi\)
\(660\) 0 0
\(661\) −344.449 + 1060.11i −0.521103 + 1.60379i 0.250792 + 0.968041i \(0.419309\pi\)
−0.771895 + 0.635750i \(0.780691\pi\)
\(662\) 0 0
\(663\) 1424.74 + 725.941i 2.14893 + 1.09493i
\(664\) 0 0
\(665\) 27.4378 + 9.67372i 0.0412598 + 0.0145469i
\(666\) 0 0
\(667\) −1201.73 190.336i −1.80170 0.285361i
\(668\) 0 0
\(669\) 1255.30 + 1727.78i 1.87639 + 2.58263i
\(670\) 0 0
\(671\) 9.24398 + 6.71615i 0.0137764 + 0.0100092i
\(672\) 0 0
\(673\) −470.131 922.683i −0.698559 1.37100i −0.918474 0.395481i \(-0.870578\pi\)
0.219915 0.975519i \(-0.429422\pi\)
\(674\) 0 0
\(675\) 2007.59 216.598i 2.97420 0.320886i
\(676\) 0 0
\(677\) −384.833 + 196.082i −0.568439 + 0.289634i −0.714493 0.699642i \(-0.753343\pi\)
0.146054 + 0.989277i \(0.453343\pi\)
\(678\) 0 0
\(679\) −251.533 + 346.206i −0.370447 + 0.509876i
\(680\) 0 0
\(681\) −1170.05 + 850.093i −1.71814 + 1.24830i
\(682\) 0 0
\(683\) −113.277 + 715.203i −0.165852 + 1.04715i 0.754569 + 0.656221i \(0.227846\pi\)
−0.920421 + 0.390928i \(0.872154\pi\)
\(684\) 0 0
\(685\) −979.177 749.209i −1.42946 1.09374i
\(686\) 0 0
\(687\) −440.788 + 865.095i −0.641613 + 1.25924i
\(688\) 0 0
\(689\) −864.684 280.953i −1.25498 0.407769i
\(690\) 0 0
\(691\) −108.325 333.392i −0.156766 0.482477i 0.841569 0.540149i \(-0.181632\pi\)
−0.998336 + 0.0576722i \(0.981632\pi\)
\(692\) 0 0
\(693\) −238.945 + 238.945i −0.344798 + 0.344798i
\(694\) 0 0
\(695\) 119.813 221.394i 0.172392 0.318552i
\(696\) 0 0
\(697\) 95.9956 + 606.092i 0.137727 + 0.869573i
\(698\) 0 0
\(699\) 668.729i 0.956694i
\(700\) 0 0
\(701\) 1060.87 1.51337 0.756683 0.653781i \(-0.226818\pi\)
0.756683 + 0.653781i \(0.226818\pi\)
\(702\) 0 0
\(703\) 42.6243 6.75102i 0.0606320 0.00960316i
\(704\) 0 0
\(705\) 1192.10 158.613i 1.69092 0.224984i
\(706\) 0 0
\(707\) −81.4783 81.4783i −0.115245 0.115245i
\(708\) 0 0
\(709\) 288.942 93.8829i 0.407534 0.132416i −0.0980738 0.995179i \(-0.531268\pi\)
0.505608 + 0.862763i \(0.331268\pi\)
\(710\) 0 0
\(711\) −601.076 + 1849.92i −0.845395 + 2.60186i
\(712\) 0 0
\(713\) 990.116 + 504.489i 1.38866 + 0.707559i
\(714\) 0 0
\(715\) −191.056 277.170i −0.267212 0.387651i
\(716\) 0 0
\(717\) 1269.96 + 201.141i 1.77121 + 0.280532i
\(718\) 0 0
\(719\) 376.006 + 517.527i 0.522956 + 0.719787i 0.986037 0.166529i \(-0.0532559\pi\)
−0.463080 + 0.886316i \(0.653256\pi\)
\(720\) 0 0
\(721\) 233.921 + 169.954i 0.324440 + 0.235719i
\(722\) 0 0
\(723\) −180.048 353.365i −0.249029 0.488748i
\(724\) 0 0
\(725\) 816.531 533.465i 1.12625 0.735814i
\(726\) 0 0
\(727\) −793.518 + 404.318i −1.09150 + 0.556145i −0.904612 0.426237i \(-0.859839\pi\)
−0.186885 + 0.982382i \(0.559839\pi\)
\(728\) 0 0
\(729\) 980.429 1349.44i 1.34490 1.85109i
\(730\) 0 0
\(731\) 106.628 77.4695i 0.145865 0.105977i
\(732\) 0 0
\(733\) 139.834 882.880i 0.190770 1.20447i −0.687455 0.726227i \(-0.741272\pi\)
0.878225 0.478247i \(-0.158728\pi\)
\(734\) 0 0
\(735\) −651.724 16.1679i −0.886699 0.0219971i
\(736\) 0 0
\(737\) 45.9147 90.1127i 0.0622995 0.122270i
\(738\) 0 0
\(739\) 676.181 + 219.704i 0.914994 + 0.297300i 0.728412 0.685140i \(-0.240259\pi\)
0.186583 + 0.982439i \(0.440259\pi\)
\(740\) 0 0
\(741\) 47.2393 + 145.388i 0.0637508 + 0.196205i
\(742\) 0 0
\(743\) −558.124 + 558.124i −0.751176 + 0.751176i −0.974699 0.223523i \(-0.928244\pi\)
0.223523 + 0.974699i \(0.428244\pi\)
\(744\) 0 0
\(745\) −28.5442 5.24970i −0.0383144 0.00704658i
\(746\) 0 0
\(747\) −547.524 3456.93i −0.732963 4.62775i
\(748\) 0 0
\(749\) 250.114i 0.333930i
\(750\) 0 0
\(751\) −1208.38 −1.60903 −0.804514 0.593933i \(-0.797574\pi\)
−0.804514 + 0.593933i \(0.797574\pi\)
\(752\) 0 0
\(753\) −2371.67 + 375.635i −3.14962 + 0.498852i
\(754\) 0 0
\(755\) 25.4847 138.568i 0.0337546 0.183534i
\(756\) 0 0
\(757\) 358.715 + 358.715i 0.473864 + 0.473864i 0.903163 0.429298i \(-0.141239\pi\)
−0.429298 + 0.903163i \(0.641239\pi\)
\(758\) 0 0
\(759\) 480.107 155.996i 0.632553 0.205529i
\(760\) 0 0
\(761\) −34.4242 + 105.947i −0.0452355 + 0.139221i −0.971123 0.238578i \(-0.923319\pi\)
0.925888 + 0.377798i \(0.123319\pi\)
\(762\) 0 0
\(763\) 688.917 + 351.021i 0.902906 + 0.460053i
\(764\) 0 0
\(765\) 34.3579 1384.96i 0.0449123 1.81041i
\(766\) 0 0
\(767\) 109.211 + 17.2973i 0.142387 + 0.0225519i
\(768\) 0 0
\(769\) 426.548 + 587.092i 0.554678 + 0.763449i 0.990638 0.136517i \(-0.0435909\pi\)
−0.435960 + 0.899966i \(0.643591\pi\)
\(770\) 0 0
\(771\) 497.506 + 361.459i 0.645273 + 0.468819i
\(772\) 0 0
\(773\) 316.627 + 621.415i 0.409608 + 0.803901i 0.999995 0.00321951i \(-0.00102480\pi\)
−0.590387 + 0.807120i \(0.701025\pi\)
\(774\) 0 0
\(775\) −859.803 + 232.924i −1.10942 + 0.300546i
\(776\) 0 0
\(777\) 976.626 497.616i 1.25692 0.640432i
\(778\) 0 0
\(779\) −34.4829 + 47.4617i −0.0442656 + 0.0609264i
\(780\) 0 0
\(781\) −10.0298 + 7.28707i −0.0128422 + 0.00933044i
\(782\) 0 0
\(783\) 492.948 3112.35i 0.629563 3.97490i
\(784\) 0 0
\(785\) 1086.88 749.201i 1.38457 0.954396i
\(786\) 0 0
\(787\) −133.431 + 261.873i −0.169544 + 0.332749i −0.960107 0.279631i \(-0.909788\pi\)
0.790564 + 0.612380i \(0.209788\pi\)
\(788\) 0 0
\(789\) 1950.70 + 633.820i 2.47237 + 0.803321i
\(790\) 0 0
\(791\) 94.3468 + 290.370i 0.119275 + 0.367092i
\(792\) 0 0
\(793\) 66.9086 66.9086i 0.0843740 0.0843740i
\(794\) 0 0
\(795\) 144.147 + 1083.38i 0.181318 + 1.36274i
\(796\) 0 0
\(797\) −53.3751 336.997i −0.0669701 0.422832i −0.998281 0.0586075i \(-0.981334\pi\)
0.931311 0.364225i \(-0.118666\pi\)
\(798\) 0 0
\(799\) 505.399i 0.632539i
\(800\) 0 0
\(801\) −2498.67 −3.11944
\(802\) 0 0
\(803\) −52.2769 + 8.27985i −0.0651020 + 0.0103111i
\(804\) 0 0
\(805\) −699.712 378.666i −0.869207 0.470392i
\(806\) 0 0
\(807\) −30.8062 30.8062i −0.0381737 0.0381737i
\(808\) 0 0
\(809\) −728.516 + 236.709i −0.900515 + 0.292595i −0.722449 0.691424i \(-0.756984\pi\)
−0.178065 + 0.984019i \(0.556984\pi\)
\(810\) 0 0
\(811\) 21.6100 66.5086i 0.0266461 0.0820082i −0.936849 0.349734i \(-0.886272\pi\)
0.963495 + 0.267726i \(0.0862721\pi\)
\(812\) 0 0
\(813\) −2334.47 1189.47i −2.87142 1.46306i
\(814\) 0 0
\(815\) 307.961 402.489i 0.377866 0.493852i
\(816\) 0 0
\(817\) 12.4451 + 1.97111i 0.0152327 + 0.00241262i
\(818\) 0 0
\(819\) 1644.85 + 2263.95i 2.00837 + 2.76428i
\(820\) 0 0
\(821\) 257.891 + 187.369i 0.314118 + 0.228220i 0.733662 0.679515i \(-0.237810\pi\)
−0.419543 + 0.907735i \(0.637810\pi\)
\(822\) 0 0
\(823\) 540.121 + 1060.05i 0.656283 + 1.28803i 0.943884 + 0.330277i \(0.107142\pi\)
−0.287601 + 0.957750i \(0.592858\pi\)
\(824\) 0 0
\(825\) −201.370 + 351.013i −0.244085 + 0.425470i
\(826\) 0 0
\(827\) 535.642 272.923i 0.647693 0.330016i −0.0990951 0.995078i \(-0.531595\pi\)
0.746788 + 0.665062i \(0.231595\pi\)
\(828\) 0 0
\(829\) −695.307 + 957.008i −0.838729 + 1.15441i 0.147505 + 0.989061i \(0.452876\pi\)
−0.986235 + 0.165351i \(0.947124\pi\)
\(830\) 0 0
\(831\) −694.543 + 504.615i −0.835792 + 0.607239i
\(832\) 0 0
\(833\) −42.8589 + 270.600i −0.0514512 + 0.324850i
\(834\) 0 0
\(835\) 84.0979 238.529i 0.100716 0.285663i
\(836\) 0 0
\(837\) −1306.57 + 2564.28i −1.56101 + 3.06366i
\(838\) 0 0
\(839\) 940.886 + 305.712i 1.12144 + 0.364377i 0.810316 0.585993i \(-0.199295\pi\)
0.311121 + 0.950370i \(0.399295\pi\)
\(840\) 0 0
\(841\) −210.469 647.758i −0.250261 0.770224i
\(842\) 0 0
\(843\) −561.862 + 561.862i −0.666503 + 0.666503i
\(844\) 0 0
\(845\) −1752.38 + 838.806i −2.07382 + 0.992669i
\(846\) 0 0
\(847\) 90.0884 + 568.796i 0.106362 + 0.671541i
\(848\) 0 0
\(849\) 2580.66i 3.03965i
\(850\) 0 0
\(851\) −1180.17 −1.38680
\(852\) 0 0
\(853\) −1232.08 + 195.143i −1.44441 + 0.228772i −0.828918 0.559371i \(-0.811043\pi\)
−0.615492 + 0.788143i \(0.711043\pi\)
\(854\) 0 0
\(855\) 95.9470 91.3018i 0.112219 0.106786i
\(856\) 0 0
\(857\) 896.226 + 896.226i 1.04577 + 1.04577i 0.998901 + 0.0468704i \(0.0149248\pi\)
0.0468704 + 0.998901i \(0.485075\pi\)
\(858\) 0 0
\(859\) −145.746 + 47.3557i −0.169669 + 0.0551289i −0.392620 0.919701i \(-0.628431\pi\)
0.222951 + 0.974830i \(0.428431\pi\)
\(860\) 0 0
\(861\) −460.446 + 1417.11i −0.534780 + 1.64588i
\(862\) 0 0
\(863\) −1025.56 522.551i −1.18837 0.605505i −0.255883 0.966708i \(-0.582366\pi\)
−0.932487 + 0.361203i \(0.882366\pi\)
\(864\) 0 0
\(865\) −874.938 + 260.480i −1.01149 + 0.301132i
\(866\) 0 0
\(867\) 822.579 + 130.284i 0.948765 + 0.150270i
\(868\) 0 0
\(869\) −140.349 193.174i −0.161507 0.222295i
\(870\) 0 0
\(871\) −677.575 492.287i −0.777928 0.565198i
\(872\) 0 0
\(873\) 884.445 + 1735.82i 1.01311 + 1.98834i
\(874\) 0 0
\(875\) 619.534 151.447i 0.708039 0.173082i
\(876\) 0 0
\(877\) −665.904 + 339.295i −0.759298 + 0.386881i −0.790365 0.612636i \(-0.790109\pi\)
0.0310678 + 0.999517i \(0.490109\pi\)
\(878\) 0 0
\(879\) 216.421 297.878i 0.246213 0.338883i
\(880\) 0 0
\(881\) 577.102 419.289i 0.655054 0.475924i −0.209935 0.977715i \(-0.567325\pi\)
0.864989 + 0.501791i \(0.167325\pi\)
\(882\) 0 0
\(883\) 0.190359 1.20188i 0.000215582 0.00136113i −0.987580 0.157115i \(-0.949781\pi\)
0.987796 + 0.155754i \(0.0497807\pi\)
\(884\) 0 0
\(885\) −37.9263 127.393i −0.0428546 0.143946i
\(886\) 0 0
\(887\) 653.141 1281.86i 0.736348 1.44516i −0.153139 0.988205i \(-0.548938\pi\)
0.889487 0.456960i \(-0.151062\pi\)
\(888\) 0 0
\(889\) −498.462 161.960i −0.560700 0.182182i
\(890\) 0 0
\(891\) 219.816 + 676.524i 0.246707 + 0.759286i
\(892\) 0 0
\(893\) 34.1654 34.1654i 0.0382591 0.0382591i
\(894\) 0 0
\(895\) −916.147 962.758i −1.02363 1.07571i
\(896\) 0 0
\(897\) −653.973 4129.02i −0.729067 4.60315i
\(898\) 0 0
\(899\) 1390.14i 1.54632i
\(900\) 0 0
\(901\) 459.306 0.509773
\(902\) 0 0
\(903\) 316.089 50.0635i 0.350043 0.0554414i
\(904\) 0 0
\(905\) 44.4262 + 92.8122i 0.0490897 + 0.102555i
\(906\) 0 0
\(907\) 924.463 + 924.463i 1.01925 + 1.01925i 0.999811 + 0.0194427i \(0.00618920\pi\)
0.0194427 + 0.999811i \(0.493811\pi\)
\(908\) 0 0
\(909\) −498.896 + 162.101i −0.548841 + 0.178329i
\(910\) 0 0
\(911\) −92.4877 + 284.648i −0.101523 + 0.312456i −0.988899 0.148591i \(-0.952526\pi\)
0.887375 + 0.461047i \(0.152526\pi\)
\(912\) 0 0
\(913\) 382.821 + 195.057i 0.419300 + 0.213644i
\(914\) 0 0
\(915\) −107.274 37.8215i −0.117239 0.0413350i
\(916\) 0 0
\(917\) −625.783 99.1142i −0.682424 0.108085i
\(918\) 0 0
\(919\) 451.577 + 621.542i 0.491378 + 0.676324i 0.980641 0.195812i \(-0.0627342\pi\)
−0.489263 + 0.872136i \(0.662734\pi\)
\(920\) 0 0
\(921\) 2130.69 + 1548.04i 2.31345 + 1.68082i
\(922\) 0 0
\(923\) 46.6097 + 91.4767i 0.0504980 + 0.0991080i
\(924\) 0 0
\(925\) 701.307 634.966i 0.758170 0.686450i
\(926\) 0 0
\(927\) 1172.84 597.593i 1.26520 0.644653i
\(928\) 0 0
\(929\) −843.119 + 1160.45i −0.907556 + 1.24914i 0.0604386 + 0.998172i \(0.480750\pi\)
−0.967994 + 0.250972i \(0.919250\pi\)
\(930\) 0 0
\(931\) −21.1901 + 15.3955i −0.0227606 + 0.0165365i
\(932\) 0 0
\(933\) 253.152 1598.34i 0.271331 1.71312i
\(934\) 0 0
\(935\) 135.064 + 103.343i 0.144454 + 0.110527i
\(936\) 0 0
\(937\) −213.762 + 419.532i −0.228135 + 0.447740i −0.976491 0.215557i \(-0.930843\pi\)
0.748356 + 0.663297i \(0.230843\pi\)
\(938\) 0 0
\(939\) −870.048 282.696i −0.926568 0.301060i
\(940\) 0 0
\(941\) 23.2808 + 71.6510i 0.0247405 + 0.0761434i 0.962664 0.270698i \(-0.0872543\pi\)
−0.937924 + 0.346841i \(0.887254\pi\)
\(942\) 0 0
\(943\) 1134.43 1134.43i 1.20300 1.20300i
\(944\) 0 0
\(945\) 980.699 1812.17i 1.03778 1.91764i
\(946\) 0 0
\(947\) 29.4865 + 186.170i 0.0311367 + 0.196590i 0.998353 0.0573631i \(-0.0182693\pi\)
−0.967217 + 0.253953i \(0.918269\pi\)
\(948\) 0 0
\(949\) 438.314i 0.461869i
\(950\) 0 0
\(951\) 1850.14 1.94547
\(952\) 0 0
\(953\) −456.234 + 72.2603i −0.478734 + 0.0758240i −0.391138 0.920332i \(-0.627918\pi\)
−0.0875961 + 0.996156i \(0.527918\pi\)
\(954\) 0 0
\(955\) −1054.30 + 140.278i −1.10398 + 0.146888i
\(956\) 0 0
\(957\) 446.550 + 446.550i 0.466614 + 0.466614i
\(958\) 0 0
\(959\) −1196.55 + 388.783i −1.24771 + 0.405404i
\(960\) 0 0
\(961\) 95.3697 293.518i 0.0992400 0.305429i
\(962\) 0 0
\(963\) −1014.53 516.930i −1.05351 0.536791i
\(964\) 0 0
\(965\) 718.850 + 1042.85i 0.744922 + 1.08068i
\(966\) 0 0
\(967\) −1540.85 244.046i −1.59343 0.252374i −0.704256 0.709946i \(-0.748719\pi\)
−0.889173 + 0.457572i \(0.848719\pi\)
\(968\) 0 0
\(969\) −45.3932 62.4784i −0.0468454 0.0644772i
\(970\) 0 0
\(971\) 775.545 + 563.467i 0.798708 + 0.580295i 0.910535 0.413432i \(-0.135670\pi\)
−0.111827 + 0.993728i \(0.535670\pi\)
\(972\) 0 0
\(973\) −116.621 228.882i −0.119857 0.235233i
\(974\) 0 0
\(975\) 2610.16 + 2101.79i 2.67709 + 2.15568i
\(976\) 0 0
\(977\) 1375.81 701.008i 1.40819 0.717511i 0.425886 0.904777i \(-0.359963\pi\)
0.982309 + 0.187266i \(0.0599626\pi\)
\(978\) 0 0
\(979\) 180.290 248.149i 0.184158 0.253471i
\(980\) 0 0
\(981\) 2847.68 2068.96i 2.90283 2.10903i
\(982\) 0 0
\(983\) 18.9549 119.676i 0.0192827 0.121746i −0.976169 0.217010i \(-0.930370\pi\)
0.995452 + 0.0952640i \(0.0303695\pi\)
\(984\) 0 0
\(985\) −298.772 7.41191i −0.303322 0.00752478i
\(986\) 0 0
\(987\) 557.132 1093.43i 0.564470 1.10784i
\(988\) 0 0
\(989\) −327.711 106.480i −0.331356 0.107664i
\(990\) 0 0
\(991\) −82.9634 255.335i −0.0837169 0.257654i 0.900432 0.434996i \(-0.143250\pi\)
−0.984149 + 0.177342i \(0.943250\pi\)
\(992\) 0 0
\(993\) −294.184 + 294.184i −0.296257 + 0.296257i
\(994\) 0 0
\(995\) −512.834 94.3178i −0.515411 0.0947918i
\(996\) 0 0
\(997\) −12.8867 81.3634i −0.0129255 0.0816082i 0.980382 0.197105i \(-0.0631540\pi\)
−0.993308 + 0.115497i \(0.963154\pi\)
\(998\) 0 0
\(999\) 3056.49i 3.05955i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.bg.f.97.1 64
4.3 odd 2 200.3.u.b.97.8 yes 64
25.8 odd 20 inner 400.3.bg.f.33.1 64
100.83 even 20 200.3.u.b.33.8 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.3.u.b.33.8 64 100.83 even 20
200.3.u.b.97.8 yes 64 4.3 odd 2
400.3.bg.f.33.1 64 25.8 odd 20 inner
400.3.bg.f.97.1 64 1.1 even 1 trivial