gp: [N,k,chi] = [400,3,Mod(17,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.17");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 0, 13]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [64]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{64} + 20 T_{3}^{62} + 30 T_{3}^{61} - 1175 T_{3}^{60} + 852 T_{3}^{59} - 31530 T_{3}^{58} + \cdots + 49\!\cdots\!00 \)
T3^64 + 20*T3^62 + 30*T3^61 - 1175*T3^60 + 852*T3^59 - 31530*T3^58 + 26510*T3^57 + 814300*T3^56 - 2229160*T3^55 + 30026602*T3^54 - 30024840*T3^53 - 523470300*T3^52 + 1656296320*T3^51 - 15082638780*T3^50 - 16185034680*T3^49 + 551874202830*T3^48 - 1257149326420*T3^47 + 7791525723420*T3^46 + 15443209029810*T3^45 - 179731028680119*T3^44 + 195811793484300*T3^43 - 936488695402180*T3^42 - 5268808074908800*T3^41 + 43574272536348125*T3^40 - 18535409738433760*T3^39 + 202601445569439410*T3^38 + 1331389067273722160*T3^37 - 8790637116468980060*T3^36 - 8799396550629749980*T3^35 - 66617094522700119082*T3^34 - 11256152926802592000*T3^33 + 1734652691568473183185*T3^32 + 96972754729899073830*T3^31 + 8602816400691001986500*T3^30 - 39469407516384709332004*T3^29 - 29760262877939427714035*T3^28 - 48663666606891400050190*T3^27 + 213392026673034341484600*T3^26 + 732629548327497672615680*T3^25 + 1046404894595407868983681*T3^24 + 1655990168534646227966940*T3^23 - 2958744767016117287390040*T3^22 - 25898800632535863998037120*T3^21 - 54605628534289667137092945*T3^20 - 68254140954122882804364200*T3^19 + 7226195377780228760390850*T3^18 + 419465572592302798909165500*T3^17 + 1452265956203662045657952625*T3^16 + 3181273473911339164529162250*T3^15 + 5128925379019307140616263250*T3^14 + 6820058937558551669969440000*T3^13 + 8315461338112564916299655000*T3^12 + 8536566246467761938665045000*T3^11 + 6290453292765231994383040000*T3^10 + 2995302398649442902180500000*T3^9 + 871261280945820775196650000*T3^8 + 153814162444539027707400000*T3^7 + 17820056056341647070800000*T3^6 + 1077557554840356032000000*T3^5 - 40330480208404115200000*T3^4 - 10153781067129920000000*T3^3 + 281548457270784000000*T3^2 - 6396499270656000000*T3 + 491165492224000000
acting on \(S_{3}^{\mathrm{new}}(400, [\chi])\).