Properties

Label 400.3.bg.f.17.1
Level $400$
Weight $3$
Character 400.17
Analytic conductor $10.899$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,3,Mod(17,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.17"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.bg (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 400.17
Dual form 400.3.bg.f.353.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.811497 + 5.12359i) q^{3} +(1.63338 - 4.72568i) q^{5} +(4.59566 + 4.59566i) q^{7} +(-17.0331 - 5.53440i) q^{9} +(-1.18760 - 3.65505i) q^{11} +(10.6786 + 20.9580i) q^{13} +(22.8870 + 12.2037i) q^{15} +(1.95690 + 12.3554i) q^{17} +(-18.6024 + 25.6040i) q^{19} +(-27.2756 + 19.8169i) q^{21} +(-4.45484 - 2.26986i) q^{23} +(-19.6641 - 15.4377i) q^{25} +(20.9828 - 41.1811i) q^{27} +(-19.6538 - 27.0511i) q^{29} +(20.2816 + 14.7355i) q^{31} +(19.6907 - 3.11870i) q^{33} +(29.2241 - 14.2111i) q^{35} +(3.03733 - 1.54760i) q^{37} +(-116.046 + 37.7056i) q^{39} +(10.2499 - 31.5459i) q^{41} +(-25.0372 + 25.0372i) q^{43} +(-53.9754 + 71.4533i) q^{45} +(-64.3235 - 10.1878i) q^{47} -6.75985i q^{49} -64.8919 q^{51} +(-3.09155 + 19.5193i) q^{53} +(-19.2124 - 0.357889i) q^{55} +(-116.089 - 116.089i) q^{57} +(92.4197 + 30.0290i) q^{59} +(34.8035 + 107.114i) q^{61} +(-52.8442 - 103.713i) q^{63} +(116.483 - 16.2314i) q^{65} +(0.884920 + 5.58716i) q^{67} +(15.2449 - 20.9828i) q^{69} +(-39.5309 + 28.7209i) q^{71} +(77.2257 + 39.3484i) q^{73} +(95.0538 - 88.2232i) q^{75} +(11.3396 - 22.2551i) q^{77} +(-58.9885 - 81.1907i) q^{79} +(63.5643 + 46.1822i) q^{81} +(28.2368 - 4.47227i) q^{83} +(61.5839 + 10.9334i) q^{85} +(154.548 - 78.7461i) q^{87} +(-126.306 + 41.0394i) q^{89} +(-47.2405 + 145.391i) q^{91} +(-91.9570 + 91.9570i) q^{93} +(90.6117 + 129.730i) q^{95} +(73.6536 + 11.6656i) q^{97} +68.8295i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 6 q^{5} + 4 q^{7} - 40 q^{9} - 16 q^{11} + 24 q^{13} - 82 q^{15} - 8 q^{17} + 50 q^{19} - 100 q^{21} + 48 q^{23} - 200 q^{25} - 90 q^{27} - 108 q^{31} + 260 q^{33} - 2 q^{35} - 94 q^{37} - 320 q^{39}+ \cdots - 544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.811497 + 5.12359i −0.270499 + 1.70786i 0.361066 + 0.932540i \(0.382413\pi\)
−0.631565 + 0.775323i \(0.717587\pi\)
\(4\) 0 0
\(5\) 1.63338 4.72568i 0.326677 0.945136i
\(6\) 0 0
\(7\) 4.59566 + 4.59566i 0.656523 + 0.656523i 0.954556 0.298033i \(-0.0963305\pi\)
−0.298033 + 0.954556i \(0.596331\pi\)
\(8\) 0 0
\(9\) −17.0331 5.53440i −1.89257 0.614933i
\(10\) 0 0
\(11\) −1.18760 3.65505i −0.107963 0.332277i 0.882451 0.470404i \(-0.155892\pi\)
−0.990415 + 0.138127i \(0.955892\pi\)
\(12\) 0 0
\(13\) 10.6786 + 20.9580i 0.821435 + 1.61216i 0.790363 + 0.612639i \(0.209892\pi\)
0.0310717 + 0.999517i \(0.490108\pi\)
\(14\) 0 0
\(15\) 22.8870 + 12.2037i 1.52580 + 0.813577i
\(16\) 0 0
\(17\) 1.95690 + 12.3554i 0.115112 + 0.726787i 0.975964 + 0.217932i \(0.0699310\pi\)
−0.860852 + 0.508855i \(0.830069\pi\)
\(18\) 0 0
\(19\) −18.6024 + 25.6040i −0.979075 + 1.34758i −0.0417490 + 0.999128i \(0.513293\pi\)
−0.937326 + 0.348453i \(0.886707\pi\)
\(20\) 0 0
\(21\) −27.2756 + 19.8169i −1.29884 + 0.943662i
\(22\) 0 0
\(23\) −4.45484 2.26986i −0.193689 0.0986894i 0.354456 0.935073i \(-0.384666\pi\)
−0.548145 + 0.836383i \(0.684666\pi\)
\(24\) 0 0
\(25\) −19.6641 15.4377i −0.786565 0.617508i
\(26\) 0 0
\(27\) 20.9828 41.1811i 0.777141 1.52523i
\(28\) 0 0
\(29\) −19.6538 27.0511i −0.677717 0.932797i 0.322187 0.946676i \(-0.395582\pi\)
−0.999904 + 0.0138787i \(0.995582\pi\)
\(30\) 0 0
\(31\) 20.2816 + 14.7355i 0.654247 + 0.475338i 0.864715 0.502263i \(-0.167499\pi\)
−0.210468 + 0.977601i \(0.567499\pi\)
\(32\) 0 0
\(33\) 19.6907 3.11870i 0.596688 0.0945060i
\(34\) 0 0
\(35\) 29.2241 14.2111i 0.834974 0.406033i
\(36\) 0 0
\(37\) 3.03733 1.54760i 0.0820899 0.0418269i −0.412464 0.910974i \(-0.635332\pi\)
0.494554 + 0.869147i \(0.335332\pi\)
\(38\) 0 0
\(39\) −116.046 + 37.7056i −2.97554 + 0.966811i
\(40\) 0 0
\(41\) 10.2499 31.5459i 0.249998 0.769413i −0.744777 0.667314i \(-0.767444\pi\)
0.994774 0.102100i \(-0.0325560\pi\)
\(42\) 0 0
\(43\) −25.0372 + 25.0372i −0.582261 + 0.582261i −0.935524 0.353263i \(-0.885072\pi\)
0.353263 + 0.935524i \(0.385072\pi\)
\(44\) 0 0
\(45\) −53.9754 + 71.4533i −1.19945 + 1.58785i
\(46\) 0 0
\(47\) −64.3235 10.1878i −1.36859 0.216763i −0.571487 0.820611i \(-0.693633\pi\)
−0.797099 + 0.603849i \(0.793633\pi\)
\(48\) 0 0
\(49\) 6.75985i 0.137956i
\(50\) 0 0
\(51\) −64.8919 −1.27239
\(52\) 0 0
\(53\) −3.09155 + 19.5193i −0.0583311 + 0.368288i 0.941205 + 0.337836i \(0.109695\pi\)
−0.999536 + 0.0304524i \(0.990305\pi\)
\(54\) 0 0
\(55\) −19.2124 0.357889i −0.349316 0.00650707i
\(56\) 0 0
\(57\) −116.089 116.089i −2.03665 2.03665i
\(58\) 0 0
\(59\) 92.4197 + 30.0290i 1.56644 + 0.508966i 0.958518 0.285033i \(-0.0920047\pi\)
0.607919 + 0.793999i \(0.292005\pi\)
\(60\) 0 0
\(61\) 34.8035 + 107.114i 0.570550 + 1.75597i 0.650855 + 0.759202i \(0.274410\pi\)
−0.0803053 + 0.996770i \(0.525590\pi\)
\(62\) 0 0
\(63\) −52.8442 103.713i −0.838797 1.64623i
\(64\) 0 0
\(65\) 116.483 16.2314i 1.79205 0.249714i
\(66\) 0 0
\(67\) 0.884920 + 5.58716i 0.0132078 + 0.0833905i 0.993412 0.114600i \(-0.0365586\pi\)
−0.980204 + 0.197990i \(0.936559\pi\)
\(68\) 0 0
\(69\) 15.2449 20.9828i 0.220941 0.304099i
\(70\) 0 0
\(71\) −39.5309 + 28.7209i −0.556773 + 0.404519i −0.830276 0.557352i \(-0.811817\pi\)
0.273503 + 0.961871i \(0.411817\pi\)
\(72\) 0 0
\(73\) 77.2257 + 39.3484i 1.05789 + 0.539020i 0.894281 0.447506i \(-0.147688\pi\)
0.163605 + 0.986526i \(0.447688\pi\)
\(74\) 0 0
\(75\) 95.0538 88.2232i 1.26738 1.17631i
\(76\) 0 0
\(77\) 11.3396 22.2551i 0.147267 0.289028i
\(78\) 0 0
\(79\) −58.9885 81.1907i −0.746690 1.02773i −0.998206 0.0598771i \(-0.980929\pi\)
0.251516 0.967853i \(-0.419071\pi\)
\(80\) 0 0
\(81\) 63.5643 + 46.1822i 0.784744 + 0.570150i
\(82\) 0 0
\(83\) 28.2368 4.47227i 0.340203 0.0538828i 0.0160042 0.999872i \(-0.494905\pi\)
0.324198 + 0.945989i \(0.394905\pi\)
\(84\) 0 0
\(85\) 61.5839 + 10.9334i 0.724517 + 0.128628i
\(86\) 0 0
\(87\) 154.548 78.7461i 1.77641 0.905127i
\(88\) 0 0
\(89\) −126.306 + 41.0394i −1.41917 + 0.461117i −0.915339 0.402684i \(-0.868077\pi\)
−0.503833 + 0.863801i \(0.668077\pi\)
\(90\) 0 0
\(91\) −47.2405 + 145.391i −0.519127 + 1.59771i
\(92\) 0 0
\(93\) −91.9570 + 91.9570i −0.988785 + 0.988785i
\(94\) 0 0
\(95\) 90.6117 + 129.730i 0.953807 + 1.36558i
\(96\) 0 0
\(97\) 73.6536 + 11.6656i 0.759316 + 0.120264i 0.524074 0.851673i \(-0.324412\pi\)
0.235242 + 0.971937i \(0.424412\pi\)
\(98\) 0 0
\(99\) 68.8295i 0.695248i
\(100\) 0 0
\(101\) 145.151 1.43713 0.718567 0.695457i \(-0.244798\pi\)
0.718567 + 0.695457i \(0.244798\pi\)
\(102\) 0 0
\(103\) 7.59966 47.9823i 0.0737831 0.465848i −0.922939 0.384946i \(-0.874220\pi\)
0.996722 0.0809018i \(-0.0257800\pi\)
\(104\) 0 0
\(105\) 49.0968 + 161.264i 0.467589 + 1.53585i
\(106\) 0 0
\(107\) 68.4603 + 68.4603i 0.639816 + 0.639816i 0.950510 0.310694i \(-0.100562\pi\)
−0.310694 + 0.950510i \(0.600562\pi\)
\(108\) 0 0
\(109\) 95.5419 + 31.0434i 0.876531 + 0.284802i 0.712516 0.701656i \(-0.247555\pi\)
0.164015 + 0.986458i \(0.447555\pi\)
\(110\) 0 0
\(111\) 5.46446 + 16.8179i 0.0492294 + 0.151512i
\(112\) 0 0
\(113\) −21.1197 41.4498i −0.186900 0.366813i 0.778476 0.627675i \(-0.215993\pi\)
−0.965376 + 0.260862i \(0.915993\pi\)
\(114\) 0 0
\(115\) −18.0031 + 17.3446i −0.156549 + 0.150823i
\(116\) 0 0
\(117\) −65.9007 416.081i −0.563254 3.55625i
\(118\) 0 0
\(119\) −47.7878 + 65.7743i −0.401578 + 0.552725i
\(120\) 0 0
\(121\) 85.9421 62.4406i 0.710265 0.516038i
\(122\) 0 0
\(123\) 153.311 + 78.1157i 1.24643 + 0.635087i
\(124\) 0 0
\(125\) −105.073 + 67.7107i −0.840581 + 0.541685i
\(126\) 0 0
\(127\) 61.0371 119.792i 0.480607 0.943244i −0.515650 0.856799i \(-0.672449\pi\)
0.996257 0.0864446i \(-0.0275505\pi\)
\(128\) 0 0
\(129\) −107.963 148.598i −0.836921 1.15192i
\(130\) 0 0
\(131\) −19.4858 14.1572i −0.148746 0.108071i 0.510923 0.859626i \(-0.329304\pi\)
−0.659669 + 0.751556i \(0.729304\pi\)
\(132\) 0 0
\(133\) −203.158 + 32.1770i −1.52750 + 0.241933i
\(134\) 0 0
\(135\) −160.336 166.423i −1.18767 1.23276i
\(136\) 0 0
\(137\) 86.9089 44.2823i 0.634371 0.323228i −0.107064 0.994252i \(-0.534145\pi\)
0.741436 + 0.671024i \(0.234145\pi\)
\(138\) 0 0
\(139\) 62.1532 20.1948i 0.447146 0.145286i −0.0767844 0.997048i \(-0.524465\pi\)
0.523930 + 0.851761i \(0.324465\pi\)
\(140\) 0 0
\(141\) 104.397 321.300i 0.740402 2.27872i
\(142\) 0 0
\(143\) 63.9207 63.9207i 0.446998 0.446998i
\(144\) 0 0
\(145\) −159.937 + 48.6927i −1.10301 + 0.335812i
\(146\) 0 0
\(147\) 34.6347 + 5.48560i 0.235610 + 0.0373170i
\(148\) 0 0
\(149\) 27.0995i 0.181876i −0.995857 0.0909381i \(-0.971013\pi\)
0.995857 0.0909381i \(-0.0289865\pi\)
\(150\) 0 0
\(151\) 46.4033 0.307306 0.153653 0.988125i \(-0.450896\pi\)
0.153653 + 0.988125i \(0.450896\pi\)
\(152\) 0 0
\(153\) 35.0474 221.281i 0.229068 1.44628i
\(154\) 0 0
\(155\) 102.763 71.7759i 0.662986 0.463070i
\(156\) 0 0
\(157\) 62.2097 + 62.2097i 0.396240 + 0.396240i 0.876905 0.480665i \(-0.159605\pi\)
−0.480665 + 0.876905i \(0.659605\pi\)
\(158\) 0 0
\(159\) −97.4999 31.6796i −0.613207 0.199243i
\(160\) 0 0
\(161\) −10.0415 30.9044i −0.0623693 0.191953i
\(162\) 0 0
\(163\) −112.951 221.678i −0.692950 1.35999i −0.922235 0.386631i \(-0.873639\pi\)
0.229285 0.973359i \(-0.426361\pi\)
\(164\) 0 0
\(165\) 17.4245 98.1460i 0.105603 0.594824i
\(166\) 0 0
\(167\) 33.1368 + 209.218i 0.198424 + 1.25280i 0.862855 + 0.505451i \(0.168674\pi\)
−0.664431 + 0.747349i \(0.731326\pi\)
\(168\) 0 0
\(169\) −225.870 + 310.883i −1.33651 + 1.83954i
\(170\) 0 0
\(171\) 458.561 333.164i 2.68164 1.94833i
\(172\) 0 0
\(173\) −11.2431 5.72867i −0.0649893 0.0331137i 0.421194 0.906971i \(-0.361611\pi\)
−0.486183 + 0.873857i \(0.661611\pi\)
\(174\) 0 0
\(175\) −19.4232 161.316i −0.110990 0.921805i
\(176\) 0 0
\(177\) −228.855 + 449.152i −1.29296 + 2.53758i
\(178\) 0 0
\(179\) −0.919747 1.26592i −0.00513825 0.00707220i 0.806440 0.591316i \(-0.201391\pi\)
−0.811578 + 0.584244i \(0.801391\pi\)
\(180\) 0 0
\(181\) 159.116 + 115.604i 0.879092 + 0.638697i 0.933011 0.359848i \(-0.117171\pi\)
−0.0539194 + 0.998545i \(0.517171\pi\)
\(182\) 0 0
\(183\) −577.053 + 91.3962i −3.15329 + 0.499433i
\(184\) 0 0
\(185\) −2.35232 16.8813i −0.0127153 0.0912500i
\(186\) 0 0
\(187\) 42.8355 21.8258i 0.229067 0.116715i
\(188\) 0 0
\(189\) 285.684 92.8244i 1.51156 0.491134i
\(190\) 0 0
\(191\) 53.2092 163.761i 0.278582 0.857389i −0.709667 0.704537i \(-0.751155\pi\)
0.988249 0.152851i \(-0.0488455\pi\)
\(192\) 0 0
\(193\) 34.3905 34.3905i 0.178189 0.178189i −0.612377 0.790566i \(-0.709786\pi\)
0.790566 + 0.612377i \(0.209786\pi\)
\(194\) 0 0
\(195\) −11.3628 + 609.984i −0.0582708 + 3.12812i
\(196\) 0 0
\(197\) 77.8882 + 12.3363i 0.395372 + 0.0626207i 0.350955 0.936392i \(-0.385857\pi\)
0.0444167 + 0.999013i \(0.485857\pi\)
\(198\) 0 0
\(199\) 238.030i 1.19613i 0.801447 + 0.598066i \(0.204064\pi\)
−0.801447 + 0.598066i \(0.795936\pi\)
\(200\) 0 0
\(201\) −29.3444 −0.145992
\(202\) 0 0
\(203\) 33.9956 214.640i 0.167466 1.05734i
\(204\) 0 0
\(205\) −132.334 99.9644i −0.645532 0.487631i
\(206\) 0 0
\(207\) 63.3176 + 63.3176i 0.305882 + 0.305882i
\(208\) 0 0
\(209\) 115.676 + 37.5855i 0.553475 + 0.179835i
\(210\) 0 0
\(211\) −35.7171 109.926i −0.169275 0.520976i 0.830051 0.557688i \(-0.188311\pi\)
−0.999326 + 0.0367123i \(0.988311\pi\)
\(212\) 0 0
\(213\) −115.075 225.847i −0.540257 1.06031i
\(214\) 0 0
\(215\) 77.4226 + 159.213i 0.360105 + 0.740527i
\(216\) 0 0
\(217\) 25.4883 + 160.927i 0.117458 + 0.741598i
\(218\) 0 0
\(219\) −264.274 + 363.741i −1.20673 + 1.66092i
\(220\) 0 0
\(221\) −238.047 + 172.951i −1.07714 + 0.782586i
\(222\) 0 0
\(223\) −192.730 98.2007i −0.864259 0.440362i −0.0351058 0.999384i \(-0.511177\pi\)
−0.829153 + 0.559022i \(0.811177\pi\)
\(224\) 0 0
\(225\) 249.503 + 371.781i 1.10890 + 1.65236i
\(226\) 0 0
\(227\) 15.9821 31.3667i 0.0704059 0.138179i −0.853121 0.521713i \(-0.825293\pi\)
0.923527 + 0.383534i \(0.125293\pi\)
\(228\) 0 0
\(229\) −43.4339 59.7817i −0.189668 0.261055i 0.703584 0.710612i \(-0.251582\pi\)
−0.893252 + 0.449557i \(0.851582\pi\)
\(230\) 0 0
\(231\) 104.824 + 76.1592i 0.453784 + 0.329694i
\(232\) 0 0
\(233\) 383.300 60.7088i 1.64507 0.260553i 0.735931 0.677056i \(-0.236745\pi\)
0.909134 + 0.416504i \(0.136745\pi\)
\(234\) 0 0
\(235\) −153.210 + 287.332i −0.651955 + 1.22269i
\(236\) 0 0
\(237\) 463.857 236.347i 1.95720 0.997244i
\(238\) 0 0
\(239\) 446.303 145.013i 1.86738 0.606748i 0.874904 0.484297i \(-0.160924\pi\)
0.992475 0.122451i \(-0.0390755\pi\)
\(240\) 0 0
\(241\) 119.110 366.583i 0.494233 1.52109i −0.323917 0.946086i \(-0.605000\pi\)
0.818149 0.575006i \(-0.195000\pi\)
\(242\) 0 0
\(243\) 5.93284 5.93284i 0.0244150 0.0244150i
\(244\) 0 0
\(245\) −31.9449 11.0414i −0.130387 0.0450670i
\(246\) 0 0
\(247\) −735.259 116.454i −2.97676 0.471472i
\(248\) 0 0
\(249\) 148.303i 0.595595i
\(250\) 0 0
\(251\) 189.808 0.756208 0.378104 0.925763i \(-0.376576\pi\)
0.378104 + 0.925763i \(0.376576\pi\)
\(252\) 0 0
\(253\) −3.00587 + 18.9783i −0.0118809 + 0.0750132i
\(254\) 0 0
\(255\) −105.993 + 306.658i −0.415660 + 1.20258i
\(256\) 0 0
\(257\) 153.161 + 153.161i 0.595959 + 0.595959i 0.939235 0.343276i \(-0.111537\pi\)
−0.343276 + 0.939235i \(0.611537\pi\)
\(258\) 0 0
\(259\) 21.0707 + 6.84630i 0.0813542 + 0.0264336i
\(260\) 0 0
\(261\) 185.054 + 569.537i 0.709019 + 2.18213i
\(262\) 0 0
\(263\) −18.8716 37.0375i −0.0717550 0.140827i 0.852342 0.522984i \(-0.175181\pi\)
−0.924097 + 0.382157i \(0.875181\pi\)
\(264\) 0 0
\(265\) 87.1921 + 46.4921i 0.329027 + 0.175442i
\(266\) 0 0
\(267\) −107.772 680.445i −0.403640 2.54848i
\(268\) 0 0
\(269\) −119.897 + 165.024i −0.445715 + 0.613474i −0.971470 0.237162i \(-0.923783\pi\)
0.525755 + 0.850636i \(0.323783\pi\)
\(270\) 0 0
\(271\) −43.6702 + 31.7283i −0.161145 + 0.117078i −0.665435 0.746456i \(-0.731754\pi\)
0.504291 + 0.863534i \(0.331754\pi\)
\(272\) 0 0
\(273\) −706.590 360.026i −2.58824 1.31878i
\(274\) 0 0
\(275\) −33.0725 + 90.2071i −0.120264 + 0.328026i
\(276\) 0 0
\(277\) −181.945 + 357.087i −0.656842 + 1.28912i 0.286748 + 0.958006i \(0.407426\pi\)
−0.943589 + 0.331118i \(0.892574\pi\)
\(278\) 0 0
\(279\) −263.908 363.238i −0.945906 1.30193i
\(280\) 0 0
\(281\) −305.504 221.962i −1.08720 0.789900i −0.108280 0.994120i \(-0.534534\pi\)
−0.978925 + 0.204220i \(0.934534\pi\)
\(282\) 0 0
\(283\) 278.753 44.1501i 0.984993 0.156008i 0.356897 0.934144i \(-0.383835\pi\)
0.628096 + 0.778136i \(0.283835\pi\)
\(284\) 0 0
\(285\) −738.216 + 358.981i −2.59023 + 1.25958i
\(286\) 0 0
\(287\) 192.079 97.8694i 0.669266 0.341008i
\(288\) 0 0
\(289\) 126.030 40.9495i 0.436089 0.141694i
\(290\) 0 0
\(291\) −119.539 + 367.904i −0.410788 + 1.26428i
\(292\) 0 0
\(293\) −135.446 + 135.446i −0.462273 + 0.462273i −0.899400 0.437127i \(-0.855996\pi\)
0.437127 + 0.899400i \(0.355996\pi\)
\(294\) 0 0
\(295\) 292.864 387.697i 0.992760 1.31423i
\(296\) 0 0
\(297\) −175.438 27.7866i −0.590700 0.0935577i
\(298\) 0 0
\(299\) 117.604i 0.393324i
\(300\) 0 0
\(301\) −230.125 −0.764535
\(302\) 0 0
\(303\) −117.789 + 743.692i −0.388743 + 2.45443i
\(304\) 0 0
\(305\) 563.036 + 10.4882i 1.84602 + 0.0343877i
\(306\) 0 0
\(307\) −16.2934 16.2934i −0.0530731 0.0530731i 0.680072 0.733145i \(-0.261948\pi\)
−0.733145 + 0.680072i \(0.761948\pi\)
\(308\) 0 0
\(309\) 239.675 + 77.8750i 0.775646 + 0.252023i
\(310\) 0 0
\(311\) 33.6750 + 103.641i 0.108280 + 0.333251i 0.990486 0.137612i \(-0.0439427\pi\)
−0.882206 + 0.470863i \(0.843943\pi\)
\(312\) 0 0
\(313\) 41.5999 + 81.6445i 0.132907 + 0.260845i 0.947863 0.318678i \(-0.103239\pi\)
−0.814956 + 0.579523i \(0.803239\pi\)
\(314\) 0 0
\(315\) −576.428 + 80.3225i −1.82993 + 0.254992i
\(316\) 0 0
\(317\) −15.7446 99.4074i −0.0496675 0.313588i −0.999997 0.00234328i \(-0.999254\pi\)
0.950330 0.311245i \(-0.100746\pi\)
\(318\) 0 0
\(319\) −75.5324 + 103.961i −0.236779 + 0.325898i
\(320\) 0 0
\(321\) −406.318 + 295.207i −1.26579 + 0.919648i
\(322\) 0 0
\(323\) −352.751 179.735i −1.09211 0.556456i
\(324\) 0 0
\(325\) 113.557 576.975i 0.349407 1.77531i
\(326\) 0 0
\(327\) −236.586 + 464.326i −0.723504 + 1.41996i
\(328\) 0 0
\(329\) −248.789 342.429i −0.756198 1.04082i
\(330\) 0 0
\(331\) −345.041 250.687i −1.04242 0.757363i −0.0716636 0.997429i \(-0.522831\pi\)
−0.970756 + 0.240066i \(0.922831\pi\)
\(332\) 0 0
\(333\) −60.3002 + 9.55061i −0.181082 + 0.0286805i
\(334\) 0 0
\(335\) 27.8486 + 4.94413i 0.0831300 + 0.0147586i
\(336\) 0 0
\(337\) 199.429 101.614i 0.591777 0.301526i −0.132338 0.991205i \(-0.542248\pi\)
0.724115 + 0.689679i \(0.242248\pi\)
\(338\) 0 0
\(339\) 229.511 74.5725i 0.677022 0.219978i
\(340\) 0 0
\(341\) 29.7725 91.6302i 0.0873093 0.268710i
\(342\) 0 0
\(343\) 256.253 256.253i 0.747094 0.747094i
\(344\) 0 0
\(345\) −74.2573 106.316i −0.215239 0.308161i
\(346\) 0 0
\(347\) 126.988 + 20.1130i 0.365961 + 0.0579625i 0.336707 0.941610i \(-0.390687\pi\)
0.0292539 + 0.999572i \(0.490687\pi\)
\(348\) 0 0
\(349\) 485.668i 1.39160i 0.718236 + 0.695799i \(0.244950\pi\)
−0.718236 + 0.695799i \(0.755050\pi\)
\(350\) 0 0
\(351\) 1087.14 3.09727
\(352\) 0 0
\(353\) 38.6300 243.900i 0.109433 0.690935i −0.870583 0.492021i \(-0.836258\pi\)
0.980017 0.198914i \(-0.0637416\pi\)
\(354\) 0 0
\(355\) 71.1566 + 233.723i 0.200441 + 0.658373i
\(356\) 0 0
\(357\) −298.221 298.221i −0.835352 0.835352i
\(358\) 0 0
\(359\) 253.144 + 82.2516i 0.705138 + 0.229113i 0.639568 0.768735i \(-0.279113\pi\)
0.0655700 + 0.997848i \(0.479113\pi\)
\(360\) 0 0
\(361\) −197.962 609.263i −0.548370 1.68771i
\(362\) 0 0
\(363\) 250.178 + 491.002i 0.689196 + 1.35262i
\(364\) 0 0
\(365\) 312.087 300.673i 0.855034 0.823761i
\(366\) 0 0
\(367\) 55.5032 + 350.433i 0.151235 + 0.954859i 0.940250 + 0.340485i \(0.110591\pi\)
−0.789015 + 0.614374i \(0.789409\pi\)
\(368\) 0 0
\(369\) −349.176 + 480.599i −0.946276 + 1.30244i
\(370\) 0 0
\(371\) −103.912 + 75.4962i −0.280085 + 0.203494i
\(372\) 0 0
\(373\) −411.196 209.515i −1.10240 0.561702i −0.194508 0.980901i \(-0.562311\pi\)
−0.907894 + 0.419199i \(0.862311\pi\)
\(374\) 0 0
\(375\) −261.656 593.296i −0.697748 1.58212i
\(376\) 0 0
\(377\) 357.062 700.774i 0.947115 1.85882i
\(378\) 0 0
\(379\) −199.842 275.059i −0.527287 0.725749i 0.459427 0.888216i \(-0.348055\pi\)
−0.986714 + 0.162467i \(0.948055\pi\)
\(380\) 0 0
\(381\) 564.233 + 409.940i 1.48093 + 1.07596i
\(382\) 0 0
\(383\) −0.765917 + 0.121309i −0.00199978 + 0.000316735i −0.157434 0.987529i \(-0.550322\pi\)
0.155434 + 0.987846i \(0.450322\pi\)
\(384\) 0 0
\(385\) −86.6488 89.9383i −0.225062 0.233606i
\(386\) 0 0
\(387\) 565.028 287.896i 1.46002 0.743918i
\(388\) 0 0
\(389\) −345.103 + 112.131i −0.887153 + 0.288254i −0.716924 0.697151i \(-0.754451\pi\)
−0.170229 + 0.985405i \(0.554451\pi\)
\(390\) 0 0
\(391\) 19.3272 59.4831i 0.0494303 0.152131i
\(392\) 0 0
\(393\) 88.3485 88.3485i 0.224805 0.224805i
\(394\) 0 0
\(395\) −480.032 + 146.145i −1.21527 + 0.369988i
\(396\) 0 0
\(397\) −110.076 17.4344i −0.277270 0.0439153i 0.0162506 0.999868i \(-0.494827\pi\)
−0.293521 + 0.955953i \(0.594827\pi\)
\(398\) 0 0
\(399\) 1067.01i 2.67421i
\(400\) 0 0
\(401\) 367.221 0.915764 0.457882 0.889013i \(-0.348608\pi\)
0.457882 + 0.889013i \(0.348608\pi\)
\(402\) 0 0
\(403\) −92.2460 + 582.418i −0.228898 + 1.44521i
\(404\) 0 0
\(405\) 322.067 224.951i 0.795227 0.555436i
\(406\) 0 0
\(407\) −9.26366 9.26366i −0.0227608 0.0227608i
\(408\) 0 0
\(409\) −716.024 232.650i −1.75067 0.568827i −0.754503 0.656296i \(-0.772122\pi\)
−0.996167 + 0.0874691i \(0.972122\pi\)
\(410\) 0 0
\(411\) 156.358 + 481.220i 0.380433 + 1.17085i
\(412\) 0 0
\(413\) 286.727 + 562.733i 0.694253 + 1.36255i
\(414\) 0 0
\(415\) 24.9870 140.743i 0.0602097 0.339140i
\(416\) 0 0
\(417\) 53.0328 + 334.836i 0.127177 + 0.802963i
\(418\) 0 0
\(419\) −101.060 + 139.097i −0.241193 + 0.331974i −0.912403 0.409294i \(-0.865775\pi\)
0.671210 + 0.741268i \(0.265775\pi\)
\(420\) 0 0
\(421\) 50.3272 36.5649i 0.119542 0.0868524i −0.526408 0.850232i \(-0.676461\pi\)
0.645950 + 0.763380i \(0.276461\pi\)
\(422\) 0 0
\(423\) 1039.25 + 529.523i 2.45685 + 1.25183i
\(424\) 0 0
\(425\) 152.258 273.167i 0.358254 0.642747i
\(426\) 0 0
\(427\) −332.316 + 652.206i −0.778256 + 1.52741i
\(428\) 0 0
\(429\) 275.632 + 379.375i 0.642498 + 0.884323i
\(430\) 0 0
\(431\) −676.662 491.624i −1.56998 1.14066i −0.927174 0.374632i \(-0.877769\pi\)
−0.642808 0.766027i \(-0.722231\pi\)
\(432\) 0 0
\(433\) 61.0524 9.66974i 0.140999 0.0223320i −0.0855362 0.996335i \(-0.527260\pi\)
0.226535 + 0.974003i \(0.427260\pi\)
\(434\) 0 0
\(435\) −119.693 858.966i −0.275156 1.97463i
\(436\) 0 0
\(437\) 140.988 71.8372i 0.322628 0.164387i
\(438\) 0 0
\(439\) −568.190 + 184.616i −1.29428 + 0.420538i −0.873589 0.486665i \(-0.838213\pi\)
−0.420693 + 0.907203i \(0.638213\pi\)
\(440\) 0 0
\(441\) −37.4117 + 115.141i −0.0848338 + 0.261092i
\(442\) 0 0
\(443\) 598.532 598.532i 1.35109 1.35109i 0.466640 0.884447i \(-0.345464\pi\)
0.884447 0.466640i \(-0.154536\pi\)
\(444\) 0 0
\(445\) −12.3675 + 663.916i −0.0277920 + 1.49195i
\(446\) 0 0
\(447\) 138.847 + 21.9912i 0.310620 + 0.0491973i
\(448\) 0 0
\(449\) 59.0887i 0.131601i 0.997833 + 0.0658003i \(0.0209600\pi\)
−0.997833 + 0.0658003i \(0.979040\pi\)
\(450\) 0 0
\(451\) −127.475 −0.282649
\(452\) 0 0
\(453\) −37.6561 + 237.751i −0.0831261 + 0.524837i
\(454\) 0 0
\(455\) 609.911 + 460.723i 1.34046 + 1.01258i
\(456\) 0 0
\(457\) 310.756 + 310.756i 0.679992 + 0.679992i 0.959998 0.280006i \(-0.0903365\pi\)
−0.280006 + 0.959998i \(0.590336\pi\)
\(458\) 0 0
\(459\) 549.869 + 178.663i 1.19797 + 0.389245i
\(460\) 0 0
\(461\) −47.8249 147.190i −0.103742 0.319284i 0.885691 0.464274i \(-0.153685\pi\)
−0.989433 + 0.144991i \(0.953685\pi\)
\(462\) 0 0
\(463\) 37.4168 + 73.4345i 0.0808138 + 0.158606i 0.927877 0.372886i \(-0.121632\pi\)
−0.847063 + 0.531492i \(0.821632\pi\)
\(464\) 0 0
\(465\) 284.359 + 584.761i 0.611524 + 1.25755i
\(466\) 0 0
\(467\) −99.6736 629.314i −0.213434 1.34757i −0.828897 0.559402i \(-0.811031\pi\)
0.615463 0.788166i \(-0.288969\pi\)
\(468\) 0 0
\(469\) −21.6099 + 29.7435i −0.0460765 + 0.0634189i
\(470\) 0 0
\(471\) −369.220 + 268.254i −0.783906 + 0.569541i
\(472\) 0 0
\(473\) 121.246 + 61.7781i 0.256335 + 0.130609i
\(474\) 0 0
\(475\) 761.068 216.302i 1.60225 0.455373i
\(476\) 0 0
\(477\) 160.686 315.364i 0.336868 0.661141i
\(478\) 0 0
\(479\) −18.8372 25.9272i −0.0393261 0.0541278i 0.788901 0.614520i \(-0.210650\pi\)
−0.828227 + 0.560392i \(0.810650\pi\)
\(480\) 0 0
\(481\) 64.8691 + 47.1302i 0.134863 + 0.0979837i
\(482\) 0 0
\(483\) 166.490 26.3695i 0.344700 0.0545951i
\(484\) 0 0
\(485\) 175.432 329.009i 0.361716 0.678370i
\(486\) 0 0
\(487\) 418.145 213.056i 0.858614 0.437486i 0.0314896 0.999504i \(-0.489975\pi\)
0.827125 + 0.562018i \(0.189975\pi\)
\(488\) 0 0
\(489\) 1227.45 398.822i 2.51012 0.815587i
\(490\) 0 0
\(491\) −178.219 + 548.501i −0.362971 + 1.11711i 0.588271 + 0.808664i \(0.299809\pi\)
−0.951242 + 0.308446i \(0.900191\pi\)
\(492\) 0 0
\(493\) 295.766 295.766i 0.599931 0.599931i
\(494\) 0 0
\(495\) 325.266 + 112.425i 0.657104 + 0.227121i
\(496\) 0 0
\(497\) −313.662 49.6791i −0.631110 0.0999580i
\(498\) 0 0
\(499\) 173.174i 0.347041i 0.984830 + 0.173521i \(0.0555143\pi\)
−0.984830 + 0.173521i \(0.944486\pi\)
\(500\) 0 0
\(501\) −1098.84 −2.19328
\(502\) 0 0
\(503\) 67.1699 424.094i 0.133538 0.843129i −0.826434 0.563034i \(-0.809634\pi\)
0.959972 0.280095i \(-0.0903660\pi\)
\(504\) 0 0
\(505\) 237.087 685.935i 0.469478 1.35829i
\(506\) 0 0
\(507\) −1409.54 1409.54i −2.78017 2.78017i
\(508\) 0 0
\(509\) 136.589 + 44.3805i 0.268348 + 0.0871915i 0.440100 0.897949i \(-0.354943\pi\)
−0.171752 + 0.985140i \(0.554943\pi\)
\(510\) 0 0
\(511\) 174.071 + 535.735i 0.340647 + 1.04840i
\(512\) 0 0
\(513\) 664.071 + 1303.31i 1.29449 + 2.54057i
\(514\) 0 0
\(515\) −214.336 114.287i −0.416187 0.221917i
\(516\) 0 0
\(517\) 39.1534 + 247.205i 0.0757319 + 0.478152i
\(518\) 0 0
\(519\) 38.4751 52.9565i 0.0741332 0.102036i
\(520\) 0 0
\(521\) −366.647 + 266.384i −0.703736 + 0.511294i −0.881147 0.472843i \(-0.843228\pi\)
0.177411 + 0.984137i \(0.443228\pi\)
\(522\) 0 0
\(523\) 17.9407 + 9.14123i 0.0343034 + 0.0174784i 0.471058 0.882102i \(-0.343872\pi\)
−0.436755 + 0.899581i \(0.643872\pi\)
\(524\) 0 0
\(525\) 842.278 + 31.3909i 1.60434 + 0.0597921i
\(526\) 0 0
\(527\) −142.373 + 279.423i −0.270158 + 0.530215i
\(528\) 0 0
\(529\) −296.245 407.746i −0.560009 0.770787i
\(530\) 0 0
\(531\) −1408.00 1022.98i −2.65161 1.92651i
\(532\) 0 0
\(533\) 770.596 122.050i 1.44577 0.228988i
\(534\) 0 0
\(535\) 435.343 211.700i 0.813726 0.395700i
\(536\) 0 0
\(537\) 7.23245 3.68511i 0.0134682 0.00686241i
\(538\) 0 0
\(539\) −24.7076 + 8.02798i −0.0458397 + 0.0148942i
\(540\) 0 0
\(541\) 9.95129 30.6269i 0.0183942 0.0566117i −0.941438 0.337186i \(-0.890525\pi\)
0.959832 + 0.280574i \(0.0905249\pi\)
\(542\) 0 0
\(543\) −721.430 + 721.430i −1.32860 + 1.32860i
\(544\) 0 0
\(545\) 302.758 400.795i 0.555519 0.735403i
\(546\) 0 0
\(547\) 1011.15 + 160.151i 1.84854 + 0.292780i 0.979422 0.201824i \(-0.0646870\pi\)
0.869118 + 0.494604i \(0.164687\pi\)
\(548\) 0 0
\(549\) 2017.11i 3.67415i
\(550\) 0 0
\(551\) 1058.23 1.92056
\(552\) 0 0
\(553\) 102.034 644.216i 0.184509 1.16495i
\(554\) 0 0
\(555\) 88.4015 + 1.64675i 0.159282 + 0.00296711i
\(556\) 0 0
\(557\) 56.7428 + 56.7428i 0.101872 + 0.101872i 0.756206 0.654334i \(-0.227051\pi\)
−0.654334 + 0.756206i \(0.727051\pi\)
\(558\) 0 0
\(559\) −792.095 257.367i −1.41699 0.460406i
\(560\) 0 0
\(561\) 77.0654 + 237.183i 0.137371 + 0.422786i
\(562\) 0 0
\(563\) −138.487 271.796i −0.245980 0.482764i 0.734697 0.678395i \(-0.237324\pi\)
−0.980677 + 0.195632i \(0.937324\pi\)
\(564\) 0 0
\(565\) −230.375 + 32.1017i −0.407744 + 0.0568172i
\(566\) 0 0
\(567\) 79.8823 + 504.357i 0.140886 + 0.889519i
\(568\) 0 0
\(569\) 103.363 142.268i 0.181658 0.250031i −0.708470 0.705741i \(-0.750614\pi\)
0.890129 + 0.455710i \(0.150614\pi\)
\(570\) 0 0
\(571\) −393.388 + 285.813i −0.688947 + 0.500549i −0.876314 0.481741i \(-0.840005\pi\)
0.187367 + 0.982290i \(0.440005\pi\)
\(572\) 0 0
\(573\) 795.866 + 405.514i 1.38895 + 0.707703i
\(574\) 0 0
\(575\) 52.5592 + 113.407i 0.0914074 + 0.197230i
\(576\) 0 0
\(577\) −398.601 + 782.298i −0.690816 + 1.35580i 0.232816 + 0.972521i \(0.425206\pi\)
−0.923632 + 0.383281i \(0.874794\pi\)
\(578\) 0 0
\(579\) 148.295 + 204.110i 0.256123 + 0.352522i
\(580\) 0 0
\(581\) 150.320 + 109.214i 0.258726 + 0.187975i
\(582\) 0 0
\(583\) 75.0154 11.8813i 0.128671 0.0203795i
\(584\) 0 0
\(585\) −2073.91 368.193i −3.54514 0.629391i
\(586\) 0 0
\(587\) −871.422 + 444.012i −1.48453 + 0.756408i −0.993403 0.114677i \(-0.963417\pi\)
−0.491132 + 0.871085i \(0.663417\pi\)
\(588\) 0 0
\(589\) −754.576 + 245.177i −1.28111 + 0.416259i
\(590\) 0 0
\(591\) −126.412 + 389.056i −0.213895 + 0.658302i
\(592\) 0 0
\(593\) −578.079 + 578.079i −0.974838 + 0.974838i −0.999691 0.0248530i \(-0.992088\pi\)
0.0248530 + 0.999691i \(0.492088\pi\)
\(594\) 0 0
\(595\) 232.773 + 333.265i 0.391214 + 0.560109i
\(596\) 0 0
\(597\) −1219.57 193.161i −2.04283 0.323552i
\(598\) 0 0
\(599\) 214.667i 0.358376i 0.983815 + 0.179188i \(0.0573471\pi\)
−0.983815 + 0.179188i \(0.942653\pi\)
\(600\) 0 0
\(601\) −98.6172 −0.164088 −0.0820442 0.996629i \(-0.526145\pi\)
−0.0820442 + 0.996629i \(0.526145\pi\)
\(602\) 0 0
\(603\) 15.8486 100.064i 0.0262830 0.165944i
\(604\) 0 0
\(605\) −154.698 508.124i −0.255699 0.839875i
\(606\) 0 0
\(607\) 180.017 + 180.017i 0.296569 + 0.296569i 0.839668 0.543099i \(-0.182749\pi\)
−0.543099 + 0.839668i \(0.682749\pi\)
\(608\) 0 0
\(609\) 1072.14 + 348.359i 1.76049 + 0.572018i
\(610\) 0 0
\(611\) −473.371 1456.89i −0.774748 2.38443i
\(612\) 0 0
\(613\) −268.747 527.445i −0.438412 0.860432i −0.999467 0.0326535i \(-0.989604\pi\)
0.561055 0.827779i \(-0.310396\pi\)
\(614\) 0 0
\(615\) 619.565 596.905i 1.00742 0.970577i
\(616\) 0 0
\(617\) 55.2112 + 348.590i 0.0894833 + 0.564975i 0.991171 + 0.132588i \(0.0423287\pi\)
−0.901688 + 0.432387i \(0.857671\pi\)
\(618\) 0 0
\(619\) 158.717 218.455i 0.256409 0.352916i −0.661334 0.750092i \(-0.730009\pi\)
0.917743 + 0.397175i \(0.130009\pi\)
\(620\) 0 0
\(621\) −186.950 + 135.827i −0.301047 + 0.218724i
\(622\) 0 0
\(623\) −769.064 391.858i −1.23445 0.628985i
\(624\) 0 0
\(625\) 148.355 + 607.137i 0.237368 + 0.971420i
\(626\) 0 0
\(627\) −286.443 + 562.177i −0.456848 + 0.896614i
\(628\) 0 0
\(629\) 25.0649 + 34.4988i 0.0398487 + 0.0548471i
\(630\) 0 0
\(631\) 451.985 + 328.386i 0.716299 + 0.520422i 0.885200 0.465211i \(-0.154022\pi\)
−0.168900 + 0.985633i \(0.554022\pi\)
\(632\) 0 0
\(633\) 592.199 93.7952i 0.935544 0.148176i
\(634\) 0 0
\(635\) −466.402 484.108i −0.734491 0.762375i
\(636\) 0 0
\(637\) 141.673 72.1861i 0.222407 0.113322i
\(638\) 0 0
\(639\) 832.287 270.427i 1.30248 0.423203i
\(640\) 0 0
\(641\) −322.762 + 993.360i −0.503529 + 1.54970i 0.299700 + 0.954033i \(0.403113\pi\)
−0.803229 + 0.595670i \(0.796887\pi\)
\(642\) 0 0
\(643\) −34.9330 + 34.9330i −0.0543282 + 0.0543282i −0.733749 0.679421i \(-0.762231\pi\)
0.679421 + 0.733749i \(0.262231\pi\)
\(644\) 0 0
\(645\) −878.572 + 267.480i −1.36213 + 0.414698i
\(646\) 0 0
\(647\) 920.493 + 145.792i 1.42271 + 0.225335i 0.819880 0.572535i \(-0.194040\pi\)
0.602830 + 0.797870i \(0.294040\pi\)
\(648\) 0 0
\(649\) 373.461i 0.575441i
\(650\) 0 0
\(651\) −845.206 −1.29832
\(652\) 0 0
\(653\) 29.0165 183.203i 0.0444357 0.280556i −0.955458 0.295127i \(-0.904638\pi\)
0.999894 + 0.0145706i \(0.00463814\pi\)
\(654\) 0 0
\(655\) −98.7303 + 68.9593i −0.150733 + 0.105281i
\(656\) 0 0
\(657\) −1097.62 1097.62i −1.67066 1.67066i
\(658\) 0 0
\(659\) 739.990 + 240.437i 1.12290 + 0.364852i 0.810873 0.585222i \(-0.198993\pi\)
0.312025 + 0.950074i \(0.398993\pi\)
\(660\) 0 0
\(661\) −96.4256 296.767i −0.145878 0.448967i 0.851245 0.524769i \(-0.175848\pi\)
−0.997123 + 0.0758018i \(0.975848\pi\)
\(662\) 0 0
\(663\) −692.957 1360.01i −1.04518 2.05129i
\(664\) 0 0
\(665\) −179.776 + 1012.62i −0.270340 + 1.52273i
\(666\) 0 0
\(667\) 26.1524 + 165.120i 0.0392090 + 0.247556i
\(668\) 0 0
\(669\) 659.540 907.778i 0.985859 1.35692i
\(670\) 0 0
\(671\) 350.175 254.417i 0.521871 0.379161i
\(672\) 0 0
\(673\) 246.160 + 125.425i 0.365766 + 0.186367i 0.627207 0.778852i \(-0.284198\pi\)
−0.261441 + 0.965219i \(0.584198\pi\)
\(674\) 0 0
\(675\) −1048.35 + 485.864i −1.55311 + 0.719798i
\(676\) 0 0
\(677\) −216.291 + 424.495i −0.319484 + 0.627023i −0.993770 0.111447i \(-0.964451\pi\)
0.674286 + 0.738470i \(0.264451\pi\)
\(678\) 0 0
\(679\) 284.876 + 392.098i 0.419552 + 0.577464i
\(680\) 0 0
\(681\) 147.741 + 107.340i 0.216947 + 0.157621i
\(682\) 0 0
\(683\) 107.172 16.9744i 0.156914 0.0248527i −0.0774831 0.996994i \(-0.524688\pi\)
0.234397 + 0.972141i \(0.424688\pi\)
\(684\) 0 0
\(685\) −67.3085 483.034i −0.0982605 0.705159i
\(686\) 0 0
\(687\) 341.543 174.025i 0.497152 0.253312i
\(688\) 0 0
\(689\) −442.099 + 143.647i −0.641653 + 0.208486i
\(690\) 0 0
\(691\) 264.865 815.171i 0.383307 1.17970i −0.554394 0.832254i \(-0.687050\pi\)
0.937701 0.347443i \(-0.112950\pi\)
\(692\) 0 0
\(693\) −316.317 + 316.317i −0.456446 + 0.456446i
\(694\) 0 0
\(695\) 6.08582 326.702i 0.00875658 0.470075i
\(696\) 0 0
\(697\) 409.820 + 64.9091i 0.587977 + 0.0931264i
\(698\) 0 0
\(699\) 2013.14i 2.88003i
\(700\) 0 0
\(701\) −794.231 −1.13300 −0.566498 0.824063i \(-0.691702\pi\)
−0.566498 + 0.824063i \(0.691702\pi\)
\(702\) 0 0
\(703\) −16.8770 + 106.557i −0.0240070 + 0.151575i
\(704\) 0 0
\(705\) −1347.84 1018.15i −1.91183 1.44419i
\(706\) 0 0
\(707\) 667.063 + 667.063i 0.943511 + 0.943511i
\(708\) 0 0
\(709\) 648.747 + 210.791i 0.915016 + 0.297307i 0.728421 0.685130i \(-0.240255\pi\)
0.186596 + 0.982437i \(0.440255\pi\)
\(710\) 0 0
\(711\) 555.417 + 1709.40i 0.781177 + 2.40422i
\(712\) 0 0
\(713\) −56.9042 111.681i −0.0798095 0.156635i
\(714\) 0 0
\(715\) −197.662 406.476i −0.276450 0.568497i
\(716\) 0 0
\(717\) 380.812 + 2404.35i 0.531119 + 3.35335i
\(718\) 0 0
\(719\) −203.408 + 279.967i −0.282904 + 0.389384i −0.926693 0.375819i \(-0.877361\pi\)
0.643789 + 0.765203i \(0.277361\pi\)
\(720\) 0 0
\(721\) 255.436 185.585i 0.354280 0.257399i
\(722\) 0 0
\(723\) 1781.56 + 907.752i 2.46413 + 1.25553i
\(724\) 0 0
\(725\) −31.1325 + 835.346i −0.0429414 + 1.15220i
\(726\) 0 0
\(727\) −254.328 + 499.147i −0.349832 + 0.686584i −0.997134 0.0756492i \(-0.975897\pi\)
0.647302 + 0.762233i \(0.275897\pi\)
\(728\) 0 0
\(729\) 441.222 + 607.291i 0.605243 + 0.833046i
\(730\) 0 0
\(731\) −358.340 260.349i −0.490205 0.356155i
\(732\) 0 0
\(733\) −717.891 + 113.703i −0.979387 + 0.155120i −0.625547 0.780186i \(-0.715124\pi\)
−0.353840 + 0.935306i \(0.615124\pi\)
\(734\) 0 0
\(735\) 82.4949 154.712i 0.112238 0.210493i
\(736\) 0 0
\(737\) 19.3704 9.86972i 0.0262828 0.0133918i
\(738\) 0 0
\(739\) −491.795 + 159.794i −0.665487 + 0.216230i −0.622230 0.782834i \(-0.713773\pi\)
−0.0432565 + 0.999064i \(0.513773\pi\)
\(740\) 0 0
\(741\) 1193.32 3672.66i 1.61042 4.95636i
\(742\) 0 0
\(743\) −453.726 + 453.726i −0.610668 + 0.610668i −0.943120 0.332452i \(-0.892124\pi\)
0.332452 + 0.943120i \(0.392124\pi\)
\(744\) 0 0
\(745\) −128.064 44.2639i −0.171898 0.0594147i
\(746\) 0 0
\(747\) −505.713 80.0970i −0.676991 0.107225i
\(748\) 0 0
\(749\) 629.240i 0.840107i
\(750\) 0 0
\(751\) −330.489 −0.440066 −0.220033 0.975492i \(-0.570616\pi\)
−0.220033 + 0.975492i \(0.570616\pi\)
\(752\) 0 0
\(753\) −154.029 + 972.500i −0.204554 + 1.29150i
\(754\) 0 0
\(755\) 75.7943 219.287i 0.100390 0.290446i
\(756\) 0 0
\(757\) 474.195 + 474.195i 0.626413 + 0.626413i 0.947164 0.320751i \(-0.103935\pi\)
−0.320751 + 0.947164i \(0.603935\pi\)
\(758\) 0 0
\(759\) −94.7980 30.8017i −0.124899 0.0405820i
\(760\) 0 0
\(761\) 116.998 + 360.083i 0.153743 + 0.473171i 0.998031 0.0627176i \(-0.0199767\pi\)
−0.844289 + 0.535889i \(0.819977\pi\)
\(762\) 0 0
\(763\) 296.413 + 581.743i 0.388483 + 0.762442i
\(764\) 0 0
\(765\) −988.457 527.060i −1.29210 0.688967i
\(766\) 0 0
\(767\) 357.569 + 2257.60i 0.466192 + 2.94342i
\(768\) 0 0
\(769\) 666.984 918.024i 0.867339 1.19379i −0.112431 0.993660i \(-0.535864\pi\)
0.979769 0.200130i \(-0.0641364\pi\)
\(770\) 0 0
\(771\) −909.026 + 660.446i −1.17902 + 0.856610i
\(772\) 0 0
\(773\) 872.145 + 444.380i 1.12826 + 0.574877i 0.915536 0.402235i \(-0.131767\pi\)
0.212724 + 0.977112i \(0.431767\pi\)
\(774\) 0 0
\(775\) −171.339 602.862i −0.221082 0.777887i
\(776\) 0 0
\(777\) −52.1764 + 102.402i −0.0671511 + 0.131792i
\(778\) 0 0
\(779\) 617.031 + 849.270i 0.792081 + 1.09021i
\(780\) 0 0
\(781\) 151.923 + 110.378i 0.194524 + 0.141330i
\(782\) 0 0
\(783\) −1526.39 + 241.756i −1.94941 + 0.308756i
\(784\) 0 0
\(785\) 395.595 192.371i 0.503943 0.245058i
\(786\) 0 0
\(787\) 749.916 382.101i 0.952880 0.485516i 0.0928048 0.995684i \(-0.470417\pi\)
0.860075 + 0.510168i \(0.170417\pi\)
\(788\) 0 0
\(789\) 205.079 66.6343i 0.259923 0.0844542i
\(790\) 0 0
\(791\) 93.4302 287.548i 0.118117 0.363525i
\(792\) 0 0
\(793\) −1873.25 + 1873.25i −2.36223 + 2.36223i
\(794\) 0 0
\(795\) −308.963 + 409.008i −0.388632 + 0.514476i
\(796\) 0 0
\(797\) −657.692 104.168i −0.825209 0.130700i −0.270474 0.962727i \(-0.587180\pi\)
−0.554735 + 0.832027i \(0.687180\pi\)
\(798\) 0 0
\(799\) 814.678i 1.01962i
\(800\) 0 0
\(801\) 2378.52 2.96944
\(802\) 0 0
\(803\) 52.1075 328.994i 0.0648910 0.409706i
\(804\) 0 0
\(805\) −162.446 3.02605i −0.201796 0.00375907i
\(806\) 0 0
\(807\) −748.221 748.221i −0.927164 0.927164i
\(808\) 0 0
\(809\) 138.121 + 44.8783i 0.170731 + 0.0554738i 0.393135 0.919481i \(-0.371390\pi\)
−0.222404 + 0.974955i \(0.571390\pi\)
\(810\) 0 0
\(811\) 27.1844 + 83.6648i 0.0335195 + 0.103163i 0.966416 0.256981i \(-0.0827277\pi\)
−0.932897 + 0.360143i \(0.882728\pi\)
\(812\) 0 0
\(813\) −127.124 249.496i −0.156365 0.306883i
\(814\) 0 0
\(815\) −1232.07 + 171.684i −1.51175 + 0.210655i
\(816\) 0 0
\(817\) −175.301 1106.81i −0.214567 1.35472i
\(818\) 0 0
\(819\) 1609.31 2215.02i 1.96497 2.70454i
\(820\) 0 0
\(821\) −416.935 + 302.921i −0.507838 + 0.368966i −0.812003 0.583654i \(-0.801623\pi\)
0.304165 + 0.952619i \(0.401623\pi\)
\(822\) 0 0
\(823\) 294.492 + 150.051i 0.357828 + 0.182322i 0.623658 0.781698i \(-0.285646\pi\)
−0.265830 + 0.964020i \(0.585646\pi\)
\(824\) 0 0
\(825\) −435.346 242.652i −0.527692 0.294124i
\(826\) 0 0
\(827\) −118.542 + 232.652i −0.143340 + 0.281320i −0.951504 0.307637i \(-0.900462\pi\)
0.808164 + 0.588958i \(0.200462\pi\)
\(828\) 0 0
\(829\) −568.612 782.627i −0.685901 0.944061i 0.314085 0.949395i \(-0.398302\pi\)
−0.999986 + 0.00533357i \(0.998302\pi\)
\(830\) 0 0
\(831\) −1681.92 1221.99i −2.02397 1.47050i
\(832\) 0 0
\(833\) 83.5205 13.2283i 0.100265 0.0158804i
\(834\) 0 0
\(835\) 1042.82 + 185.138i 1.24889 + 0.221723i
\(836\) 0 0
\(837\) 1032.39 526.029i 1.23344 0.628469i
\(838\) 0 0
\(839\) 453.985 147.509i 0.541102 0.175815i −0.0256983 0.999670i \(-0.508181\pi\)
0.566801 + 0.823855i \(0.308181\pi\)
\(840\) 0 0
\(841\) −85.6085 + 263.476i −0.101794 + 0.313289i
\(842\) 0 0
\(843\) 1385.16 1385.16i 1.64313 1.64313i
\(844\) 0 0
\(845\) 1100.20 + 1575.18i 1.30201 + 1.86412i
\(846\) 0 0
\(847\) 681.916 + 108.005i 0.805095 + 0.127515i
\(848\) 0 0
\(849\) 1464.04i 1.72443i
\(850\) 0 0
\(851\) −17.0436 −0.0200278
\(852\) 0 0
\(853\) 44.8521 283.185i 0.0525816 0.331987i −0.947349 0.320203i \(-0.896249\pi\)
0.999931 0.0117843i \(-0.00375115\pi\)
\(854\) 0 0
\(855\) −825.420 2711.19i −0.965404 3.17099i
\(856\) 0 0
\(857\) −1046.45 1046.45i −1.22106 1.22106i −0.967255 0.253805i \(-0.918318\pi\)
−0.253805 0.967255i \(-0.581682\pi\)
\(858\) 0 0
\(859\) −680.918 221.244i −0.792687 0.257559i −0.115439 0.993315i \(-0.536827\pi\)
−0.677248 + 0.735755i \(0.736827\pi\)
\(860\) 0 0
\(861\) 345.571 + 1063.56i 0.401360 + 1.23526i
\(862\) 0 0
\(863\) 304.239 + 597.102i 0.352536 + 0.691892i 0.997374 0.0724283i \(-0.0230749\pi\)
−0.644837 + 0.764320i \(0.723075\pi\)
\(864\) 0 0
\(865\) −45.4362 + 43.7744i −0.0525274 + 0.0506063i
\(866\) 0 0
\(867\) 107.536 + 678.954i 0.124032 + 0.783107i
\(868\) 0 0
\(869\) −226.701 + 312.028i −0.260876 + 0.359065i
\(870\) 0 0
\(871\) −107.646 + 78.2095i −0.123589 + 0.0897928i
\(872\) 0 0
\(873\) −1189.99 606.330i −1.36310 0.694536i
\(874\) 0 0
\(875\) −794.053 171.703i −0.907489 0.196232i
\(876\) 0 0
\(877\) −517.263 + 1015.18i −0.589809 + 1.15757i 0.382519 + 0.923947i \(0.375057\pi\)
−0.972328 + 0.233618i \(0.924943\pi\)
\(878\) 0 0
\(879\) −584.056 803.884i −0.664455 0.914543i
\(880\) 0 0
\(881\) −884.683 642.760i −1.00418 0.729580i −0.0411997 0.999151i \(-0.513118\pi\)
−0.962980 + 0.269571i \(0.913118\pi\)
\(882\) 0 0
\(883\) −911.135 + 144.310i −1.03186 + 0.163431i −0.649327 0.760509i \(-0.724949\pi\)
−0.382536 + 0.923941i \(0.624949\pi\)
\(884\) 0 0
\(885\) 1748.74 + 1815.13i 1.97598 + 2.05100i
\(886\) 0 0
\(887\) −654.851 + 333.663i −0.738276 + 0.376171i −0.782335 0.622858i \(-0.785971\pi\)
0.0440584 + 0.999029i \(0.485971\pi\)
\(888\) 0 0
\(889\) 831.029 270.018i 0.934790 0.303732i
\(890\) 0 0
\(891\) 93.3093 287.176i 0.104724 0.322308i
\(892\) 0 0
\(893\) 1457.42 1457.42i 1.63205 1.63205i
\(894\) 0 0
\(895\) −7.48465 + 2.27869i −0.00836274 + 0.00254603i
\(896\) 0 0
\(897\) 602.553 + 95.4351i 0.671743 + 0.106394i
\(898\) 0 0
\(899\) 838.249i 0.932424i
\(900\) 0 0
\(901\) −247.218 −0.274381
\(902\) 0 0
\(903\) 186.746 1179.07i 0.206806 1.30572i
\(904\) 0 0
\(905\) 806.205 563.103i 0.890835 0.622214i
\(906\) 0 0
\(907\) 32.5490 + 32.5490i 0.0358865 + 0.0358865i 0.724822 0.688936i \(-0.241922\pi\)
−0.688936 + 0.724822i \(0.741922\pi\)
\(908\) 0 0
\(909\) −2472.37 803.321i −2.71988 0.883742i
\(910\) 0 0
\(911\) −251.500 774.038i −0.276070 0.849657i −0.988934 0.148355i \(-0.952602\pi\)
0.712864 0.701302i \(-0.247398\pi\)
\(912\) 0 0
\(913\) −49.8803 97.8957i −0.0546334 0.107224i
\(914\) 0 0
\(915\) −510.639 + 2876.25i −0.558075 + 3.14344i
\(916\) 0 0
\(917\) −24.4881 154.612i −0.0267046 0.168606i
\(918\) 0 0
\(919\) 66.2153 91.1376i 0.0720515 0.0991704i −0.771470 0.636265i \(-0.780478\pi\)
0.843522 + 0.537095i \(0.180478\pi\)
\(920\) 0 0
\(921\) 96.7029 70.2588i 0.104998 0.0762853i
\(922\) 0 0
\(923\) −1024.07 521.789i −1.10950 0.565319i
\(924\) 0 0
\(925\) −83.6177 16.4572i −0.0903975 0.0177916i
\(926\) 0 0
\(927\) −394.999 + 775.230i −0.426105 + 0.836278i
\(928\) 0 0
\(929\) 215.850 + 297.092i 0.232346 + 0.319797i 0.909231 0.416292i \(-0.136670\pi\)
−0.676885 + 0.736089i \(0.736670\pi\)
\(930\) 0 0
\(931\) 173.080 + 125.750i 0.185907 + 0.135069i
\(932\) 0 0
\(933\) −558.341 + 88.4326i −0.598437 + 0.0947830i
\(934\) 0 0
\(935\) −33.1748 238.077i −0.0354811 0.254627i
\(936\) 0 0
\(937\) −535.092 + 272.643i −0.571070 + 0.290975i −0.715582 0.698528i \(-0.753839\pi\)
0.144513 + 0.989503i \(0.453839\pi\)
\(938\) 0 0
\(939\) −452.071 + 146.887i −0.481439 + 0.156429i
\(940\) 0 0
\(941\) −118.490 + 364.675i −0.125919 + 0.387540i −0.994067 0.108765i \(-0.965310\pi\)
0.868148 + 0.496305i \(0.165310\pi\)
\(942\) 0 0
\(943\) −117.266 + 117.266i −0.124355 + 0.124355i
\(944\) 0 0
\(945\) 27.9731 1501.67i 0.0296012 1.58907i
\(946\) 0 0
\(947\) −854.212 135.294i −0.902019 0.142866i −0.311837 0.950136i \(-0.600944\pi\)
−0.590183 + 0.807270i \(0.700944\pi\)
\(948\) 0 0
\(949\) 2038.69i 2.14825i
\(950\) 0 0
\(951\) 522.099 0.549000
\(952\) 0 0
\(953\) 217.886 1375.68i 0.228631 1.44352i −0.559917 0.828549i \(-0.689167\pi\)
0.788548 0.614973i \(-0.210833\pi\)
\(954\) 0 0
\(955\) −686.972 518.935i −0.719343 0.543387i
\(956\) 0 0
\(957\) −471.361 471.361i −0.492540 0.492540i
\(958\) 0 0
\(959\) 602.910 + 195.897i 0.628686 + 0.204272i
\(960\) 0 0
\(961\) −102.754 316.246i −0.106925 0.329080i
\(962\) 0 0
\(963\) −787.206 1544.98i −0.817452 1.60434i
\(964\) 0 0
\(965\) −106.346 218.691i −0.110203 0.226623i
\(966\) 0 0
\(967\) 72.6463 + 458.670i 0.0751254 + 0.474323i 0.996355 + 0.0853037i \(0.0271861\pi\)
−0.921230 + 0.389019i \(0.872814\pi\)
\(968\) 0 0
\(969\) 1207.15 1661.49i 1.24576 1.71465i
\(970\) 0 0
\(971\) −359.473 + 261.172i −0.370209 + 0.268973i −0.757298 0.653070i \(-0.773481\pi\)
0.387089 + 0.922043i \(0.373481\pi\)
\(972\) 0 0
\(973\) 378.444 + 192.827i 0.388945 + 0.198177i
\(974\) 0 0
\(975\) 2864.03 + 1050.03i 2.93747 + 1.07696i
\(976\) 0 0
\(977\) 614.326 1205.68i 0.628788 1.23407i −0.328384 0.944544i \(-0.606504\pi\)
0.957172 0.289521i \(-0.0934961\pi\)
\(978\) 0 0
\(979\) 300.002 + 412.917i 0.306437 + 0.421775i
\(980\) 0 0
\(981\) −1455.57 1057.53i −1.48376 1.07802i
\(982\) 0 0
\(983\) 1379.29 218.458i 1.40314 0.222236i 0.591460 0.806334i \(-0.298552\pi\)
0.811683 + 0.584098i \(0.198552\pi\)
\(984\) 0 0
\(985\) 185.519 347.925i 0.188344 0.353223i
\(986\) 0 0
\(987\) 1956.36 996.813i 1.98212 1.00994i
\(988\) 0 0
\(989\) 168.368 54.7060i 0.170241 0.0553145i
\(990\) 0 0
\(991\) 55.8527 171.897i 0.0563599 0.173458i −0.918914 0.394458i \(-0.870932\pi\)
0.975274 + 0.221000i \(0.0709322\pi\)
\(992\) 0 0
\(993\) 1564.42 1564.42i 1.57544 1.57544i
\(994\) 0 0
\(995\) 1124.85 + 388.794i 1.13051 + 0.390748i
\(996\) 0 0
\(997\) 1758.10 + 278.455i 1.76339 + 0.279293i 0.952196 0.305488i \(-0.0988197\pi\)
0.811191 + 0.584781i \(0.198820\pi\)
\(998\) 0 0
\(999\) 157.553i 0.157711i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.bg.f.17.1 64
4.3 odd 2 200.3.u.b.17.8 64
25.3 odd 20 inner 400.3.bg.f.353.1 64
100.3 even 20 200.3.u.b.153.8 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.3.u.b.17.8 64 4.3 odd 2
200.3.u.b.153.8 yes 64 100.3 even 20
400.3.bg.f.17.1 64 1.1 even 1 trivial
400.3.bg.f.353.1 64 25.3 odd 20 inner