Properties

Label 400.2.q.e.349.5
Level $400$
Weight $2$
Character 400.349
Analytic conductor $3.194$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(149,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.4767670494822400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 7 x^{10} - 4 x^{9} - 8 x^{8} + 24 x^{7} - 38 x^{6} + 48 x^{5} - 32 x^{4} - 32 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 349.5
Root \(1.22306 + 0.710021i\) of defining polynomial
Character \(\chi\) \(=\) 400.349
Dual form 400.2.q.e.149.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.710021 + 1.22306i) q^{2} +(-1.09156 + 1.09156i) q^{3} +(-0.991741 + 1.73679i) q^{4} +(-2.11008 - 0.560012i) q^{6} -0.973926 q^{7} +(-2.82835 + 0.0202025i) q^{8} +0.616985i q^{9} +(1.40810 - 1.40810i) q^{11} +(-0.813270 - 2.97836i) q^{12} +(-4.60317 + 4.60317i) q^{13} +(-0.691508 - 1.19117i) q^{14} +(-2.03290 - 3.44490i) q^{16} +0.490104i q^{17} +(-0.754608 + 0.438072i) q^{18} +(-4.54863 - 4.54863i) q^{19} +(1.06310 - 1.06310i) q^{21} +(2.72196 + 0.722406i) q^{22} +1.94308 q^{23} +(3.06527 - 3.10938i) q^{24} +(-8.89828 - 2.36159i) q^{26} +(-3.94816 - 3.94816i) q^{27} +(0.965882 - 1.69151i) q^{28} +(3.74613 + 3.74613i) q^{29} +4.29021 q^{31} +(2.76991 - 4.93230i) q^{32} +3.07405i q^{33} +(-0.599426 + 0.347984i) q^{34} +(-1.07157 - 0.611889i) q^{36} +(4.55320 + 4.55320i) q^{37} +(2.33362 - 8.79286i) q^{38} -10.0493i q^{39} +10.1542i q^{41} +(2.05506 + 0.545410i) q^{42} +(1.79055 + 1.79055i) q^{43} +(1.04911 + 3.84204i) q^{44} +(1.37963 + 2.37650i) q^{46} +10.0162i q^{47} +(5.97936 + 1.54128i) q^{48} -6.05147 q^{49} +(-0.534979 - 0.534979i) q^{51} +(-3.42960 - 12.5599i) q^{52} +(-5.61412 - 5.61412i) q^{53} +(2.02555 - 7.63211i) q^{54} +(2.75461 - 0.0196757i) q^{56} +9.93022 q^{57} +(-1.92191 + 7.24157i) q^{58} +(-8.44185 + 8.44185i) q^{59} +(3.01095 + 3.01095i) q^{61} +(3.04614 + 5.24718i) q^{62} -0.600897i q^{63} +(7.99918 - 0.114280i) q^{64} +(-3.75974 + 2.18264i) q^{66} +(-7.07504 + 7.07504i) q^{67} +(-0.851209 - 0.486056i) q^{68} +(-2.12099 + 2.12099i) q^{69} -0.897891i q^{71} +(-0.0124646 - 1.74505i) q^{72} +9.71555 q^{73} +(-2.33596 + 8.80170i) q^{74} +(12.4111 - 3.38897i) q^{76} +(-1.37138 + 1.37138i) q^{77} +(12.2909 - 7.13520i) q^{78} +14.7857 q^{79} +6.76838 q^{81} +(-12.4192 + 7.20968i) q^{82} +(0.815000 - 0.815000i) q^{83} +(0.792065 + 2.90071i) q^{84} +(-0.918620 + 3.46128i) q^{86} -8.17827 q^{87} +(-3.95415 + 4.01105i) q^{88} +1.12404i q^{89} +(4.48314 - 4.48314i) q^{91} +(-1.92703 + 3.37472i) q^{92} +(-4.68303 + 4.68303i) q^{93} +(-12.2504 + 7.11174i) q^{94} +(2.36039 + 8.40744i) q^{96} -7.54442i q^{97} +(-4.29667 - 7.40130i) q^{98} +(0.868775 + 0.868775i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 6 q^{6} - 12 q^{7} - 2 q^{8} - 2 q^{11} + 6 q^{12} - 4 q^{13} - 14 q^{14} + 2 q^{16} + 18 q^{18} + 14 q^{19} - 20 q^{21} + 20 q^{22} - 12 q^{23} + 14 q^{24} - 16 q^{26}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.710021 + 1.22306i 0.502061 + 0.864832i
\(3\) −1.09156 + 1.09156i −0.630214 + 0.630214i −0.948122 0.317908i \(-0.897020\pi\)
0.317908 + 0.948122i \(0.397020\pi\)
\(4\) −0.991741 + 1.73679i −0.495870 + 0.868396i
\(5\) 0 0
\(6\) −2.11008 0.560012i −0.861435 0.228624i
\(7\) −0.973926 −0.368109 −0.184055 0.982916i \(-0.558922\pi\)
−0.184055 + 0.982916i \(0.558922\pi\)
\(8\) −2.82835 + 0.0202025i −0.999974 + 0.00714267i
\(9\) 0.616985i 0.205662i
\(10\) 0 0
\(11\) 1.40810 1.40810i 0.424558 0.424558i −0.462212 0.886769i \(-0.652944\pi\)
0.886769 + 0.462212i \(0.152944\pi\)
\(12\) −0.813270 2.97836i −0.234771 0.859780i
\(13\) −4.60317 + 4.60317i −1.27669 + 1.27669i −0.334179 + 0.942510i \(0.608459\pi\)
−0.942510 + 0.334179i \(0.891541\pi\)
\(14\) −0.691508 1.19117i −0.184813 0.318353i
\(15\) 0 0
\(16\) −2.03290 3.44490i −0.508225 0.861224i
\(17\) 0.490104i 0.118868i 0.998232 + 0.0594338i \(0.0189295\pi\)
−0.998232 + 0.0594338i \(0.981070\pi\)
\(18\) −0.754608 + 0.438072i −0.177863 + 0.103255i
\(19\) −4.54863 4.54863i −1.04353 1.04353i −0.999009 0.0445187i \(-0.985825\pi\)
−0.0445187 0.999009i \(-0.514175\pi\)
\(20\) 0 0
\(21\) 1.06310 1.06310i 0.231988 0.231988i
\(22\) 2.72196 + 0.722406i 0.580325 + 0.154018i
\(23\) 1.94308 0.405160 0.202580 0.979266i \(-0.435067\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(24\) 3.06527 3.10938i 0.625696 0.634699i
\(25\) 0 0
\(26\) −8.89828 2.36159i −1.74510 0.463147i
\(27\) −3.94816 3.94816i −0.759824 0.759824i
\(28\) 0.965882 1.69151i 0.182535 0.319665i
\(29\) 3.74613 + 3.74613i 0.695640 + 0.695640i 0.963467 0.267827i \(-0.0863057\pi\)
−0.267827 + 0.963467i \(0.586306\pi\)
\(30\) 0 0
\(31\) 4.29021 0.770545 0.385272 0.922803i \(-0.374107\pi\)
0.385272 + 0.922803i \(0.374107\pi\)
\(32\) 2.76991 4.93230i 0.489655 0.871916i
\(33\) 3.07405i 0.535124i
\(34\) −0.599426 + 0.347984i −0.102801 + 0.0596788i
\(35\) 0 0
\(36\) −1.07157 0.611889i −0.178596 0.101982i
\(37\) 4.55320 + 4.55320i 0.748542 + 0.748542i 0.974205 0.225663i \(-0.0724549\pi\)
−0.225663 + 0.974205i \(0.572455\pi\)
\(38\) 2.33362 8.79286i 0.378562 1.42639i
\(39\) 10.0493i 1.60917i
\(40\) 0 0
\(41\) 10.1542i 1.58582i 0.609341 + 0.792908i \(0.291434\pi\)
−0.609341 + 0.792908i \(0.708566\pi\)
\(42\) 2.05506 + 0.545410i 0.317102 + 0.0841586i
\(43\) 1.79055 + 1.79055i 0.273057 + 0.273057i 0.830329 0.557273i \(-0.188152\pi\)
−0.557273 + 0.830329i \(0.688152\pi\)
\(44\) 1.04911 + 3.84204i 0.158159 + 0.579210i
\(45\) 0 0
\(46\) 1.37963 + 2.37650i 0.203415 + 0.350395i
\(47\) 10.0162i 1.46102i 0.682902 + 0.730510i \(0.260717\pi\)
−0.682902 + 0.730510i \(0.739283\pi\)
\(48\) 5.97936 + 1.54128i 0.863046 + 0.222465i
\(49\) −6.05147 −0.864495
\(50\) 0 0
\(51\) −0.534979 0.534979i −0.0749120 0.0749120i
\(52\) −3.42960 12.5599i −0.475600 1.74174i
\(53\) −5.61412 5.61412i −0.771158 0.771158i 0.207151 0.978309i \(-0.433581\pi\)
−0.978309 + 0.207151i \(0.933581\pi\)
\(54\) 2.02555 7.63211i 0.275643 1.03860i
\(55\) 0 0
\(56\) 2.75461 0.0196757i 0.368100 0.00262928i
\(57\) 9.93022 1.31529
\(58\) −1.92191 + 7.24157i −0.252359 + 0.950865i
\(59\) −8.44185 + 8.44185i −1.09904 + 1.09904i −0.104512 + 0.994524i \(0.533328\pi\)
−0.994524 + 0.104512i \(0.966672\pi\)
\(60\) 0 0
\(61\) 3.01095 + 3.01095i 0.385513 + 0.385513i 0.873084 0.487571i \(-0.162117\pi\)
−0.487571 + 0.873084i \(0.662117\pi\)
\(62\) 3.04614 + 5.24718i 0.386860 + 0.666392i
\(63\) 0.600897i 0.0757060i
\(64\) 7.99918 0.114280i 0.999898 0.0142850i
\(65\) 0 0
\(66\) −3.75974 + 2.18264i −0.462793 + 0.268665i
\(67\) −7.07504 + 7.07504i −0.864354 + 0.864354i −0.991840 0.127486i \(-0.959309\pi\)
0.127486 + 0.991840i \(0.459309\pi\)
\(68\) −0.851209 0.486056i −0.103224 0.0589430i
\(69\) −2.12099 + 2.12099i −0.255337 + 0.255337i
\(70\) 0 0
\(71\) 0.897891i 0.106560i −0.998580 0.0532800i \(-0.983032\pi\)
0.998580 0.0532800i \(-0.0169676\pi\)
\(72\) −0.0124646 1.74505i −0.00146897 0.205656i
\(73\) 9.71555 1.13712 0.568559 0.822642i \(-0.307501\pi\)
0.568559 + 0.822642i \(0.307501\pi\)
\(74\) −2.33596 + 8.80170i −0.271550 + 1.02318i
\(75\) 0 0
\(76\) 12.4111 3.38897i 1.42365 0.388741i
\(77\) −1.37138 + 1.37138i −0.156284 + 0.156284i
\(78\) 12.2909 7.13520i 1.39166 0.807902i
\(79\) 14.7857 1.66352 0.831760 0.555135i \(-0.187334\pi\)
0.831760 + 0.555135i \(0.187334\pi\)
\(80\) 0 0
\(81\) 6.76838 0.752042
\(82\) −12.4192 + 7.20968i −1.37147 + 0.796176i
\(83\) 0.815000 0.815000i 0.0894579 0.0894579i −0.660962 0.750420i \(-0.729851\pi\)
0.750420 + 0.660962i \(0.229851\pi\)
\(84\) 0.792065 + 2.90071i 0.0864214 + 0.316493i
\(85\) 0 0
\(86\) −0.918620 + 3.46128i −0.0990573 + 0.373239i
\(87\) −8.17827 −0.876803
\(88\) −3.95415 + 4.01105i −0.421514 + 0.427579i
\(89\) 1.12404i 0.119148i 0.998224 + 0.0595739i \(0.0189742\pi\)
−0.998224 + 0.0595739i \(0.981026\pi\)
\(90\) 0 0
\(91\) 4.48314 4.48314i 0.469961 0.469961i
\(92\) −1.92703 + 3.37472i −0.200907 + 0.351839i
\(93\) −4.68303 + 4.68303i −0.485608 + 0.485608i
\(94\) −12.2504 + 7.11174i −1.26354 + 0.733520i
\(95\) 0 0
\(96\) 2.36039 + 8.40744i 0.240906 + 0.858081i
\(97\) 7.54442i 0.766019i −0.923744 0.383010i \(-0.874888\pi\)
0.923744 0.383010i \(-0.125112\pi\)
\(98\) −4.29667 7.40130i −0.434029 0.747644i
\(99\) 0.868775 + 0.868775i 0.0873152 + 0.0873152i
\(100\) 0 0
\(101\) −2.60535 + 2.60535i −0.259242 + 0.259242i −0.824746 0.565504i \(-0.808682\pi\)
0.565504 + 0.824746i \(0.308682\pi\)
\(102\) 0.274464 1.03416i 0.0271760 0.102397i
\(103\) 13.8146 1.36120 0.680598 0.732657i \(-0.261720\pi\)
0.680598 + 0.732657i \(0.261720\pi\)
\(104\) 12.9264 13.1124i 1.26754 1.28577i
\(105\) 0 0
\(106\) 2.88025 10.8525i 0.279755 1.05409i
\(107\) −9.89124 9.89124i −0.956222 0.956222i 0.0428589 0.999081i \(-0.486353\pi\)
−0.999081 + 0.0428589i \(0.986353\pi\)
\(108\) 10.7727 2.94159i 1.03660 0.283054i
\(109\) 11.5454 + 11.5454i 1.10584 + 1.10584i 0.993691 + 0.112154i \(0.0357750\pi\)
0.112154 + 0.993691i \(0.464225\pi\)
\(110\) 0 0
\(111\) −9.94021 −0.943483
\(112\) 1.97989 + 3.35507i 0.187082 + 0.317025i
\(113\) 17.2057i 1.61857i −0.587415 0.809286i \(-0.699854\pi\)
0.587415 0.809286i \(-0.300146\pi\)
\(114\) 7.05066 + 12.1452i 0.660355 + 1.13751i
\(115\) 0 0
\(116\) −10.2215 + 2.79106i −0.949038 + 0.259144i
\(117\) −2.84008 2.84008i −0.262566 0.262566i
\(118\) −16.3188 4.33098i −1.50226 0.398699i
\(119\) 0.477325i 0.0437563i
\(120\) 0 0
\(121\) 7.03452i 0.639502i
\(122\) −1.54473 + 5.82041i −0.139853 + 0.526955i
\(123\) −11.0839 11.0839i −0.999403 0.999403i
\(124\) −4.25478 + 7.45121i −0.382091 + 0.669139i
\(125\) 0 0
\(126\) 0.734932 0.426650i 0.0654730 0.0380090i
\(127\) 1.37608i 0.122107i −0.998134 0.0610535i \(-0.980554\pi\)
0.998134 0.0610535i \(-0.0194460\pi\)
\(128\) 5.81936 + 9.70232i 0.514363 + 0.857572i
\(129\) −3.90900 −0.344168
\(130\) 0 0
\(131\) −9.03973 9.03973i −0.789804 0.789804i 0.191657 0.981462i \(-0.438614\pi\)
−0.981462 + 0.191657i \(0.938614\pi\)
\(132\) −5.33899 3.04866i −0.464700 0.265352i
\(133\) 4.43003 + 4.43003i 0.384132 + 0.384132i
\(134\) −13.6766 3.62976i −1.18148 0.313563i
\(135\) 0 0
\(136\) −0.00990133 1.38619i −0.000849032 0.118865i
\(137\) 15.3056 1.30764 0.653822 0.756649i \(-0.273165\pi\)
0.653822 + 0.756649i \(0.273165\pi\)
\(138\) −4.10004 1.08815i −0.349018 0.0926291i
\(139\) 0.346824 0.346824i 0.0294173 0.0294173i −0.692245 0.721662i \(-0.743378\pi\)
0.721662 + 0.692245i \(0.243378\pi\)
\(140\) 0 0
\(141\) −10.9334 10.9334i −0.920754 0.920754i
\(142\) 1.09817 0.637521i 0.0921566 0.0534996i
\(143\) 12.9634i 1.08406i
\(144\) 2.12545 1.25427i 0.177121 0.104522i
\(145\) 0 0
\(146\) 6.89824 + 11.8827i 0.570902 + 0.983417i
\(147\) 6.60555 6.60555i 0.544817 0.544817i
\(148\) −12.4236 + 3.39237i −1.02121 + 0.278851i
\(149\) −4.30028 + 4.30028i −0.352293 + 0.352293i −0.860962 0.508669i \(-0.830138\pi\)
0.508669 + 0.860962i \(0.330138\pi\)
\(150\) 0 0
\(151\) 2.02102i 0.164468i −0.996613 0.0822341i \(-0.973794\pi\)
0.996613 0.0822341i \(-0.0262055\pi\)
\(152\) 12.9570 + 12.7732i 1.05095 + 1.03605i
\(153\) −0.302387 −0.0244465
\(154\) −2.65099 0.703570i −0.213623 0.0566953i
\(155\) 0 0
\(156\) 17.4535 + 9.96628i 1.39740 + 0.797941i
\(157\) 2.93327 2.93327i 0.234101 0.234101i −0.580301 0.814402i \(-0.697065\pi\)
0.814402 + 0.580301i \(0.197065\pi\)
\(158\) 10.4981 + 18.0838i 0.835188 + 1.43867i
\(159\) 12.2563 0.971989
\(160\) 0 0
\(161\) −1.89241 −0.149143
\(162\) 4.80569 + 8.27811i 0.377570 + 0.650390i
\(163\) 5.74697 5.74697i 0.450137 0.450137i −0.445263 0.895400i \(-0.646890\pi\)
0.895400 + 0.445263i \(0.146890\pi\)
\(164\) −17.6357 10.0703i −1.37712 0.786360i
\(165\) 0 0
\(166\) 1.57546 + 0.418125i 0.122279 + 0.0324528i
\(167\) 6.41553 0.496449 0.248224 0.968703i \(-0.420153\pi\)
0.248224 + 0.968703i \(0.420153\pi\)
\(168\) −2.98535 + 3.02830i −0.230325 + 0.233639i
\(169\) 29.3783i 2.25987i
\(170\) 0 0
\(171\) 2.80644 2.80644i 0.214613 0.214613i
\(172\) −4.88558 + 1.33405i −0.372522 + 0.101721i
\(173\) 0.545724 0.545724i 0.0414907 0.0414907i −0.686057 0.727548i \(-0.740660\pi\)
0.727548 + 0.686057i \(0.240660\pi\)
\(174\) −5.80674 10.0025i −0.440208 0.758288i
\(175\) 0 0
\(176\) −7.71328 1.98823i −0.581410 0.149869i
\(177\) 18.4296i 1.38525i
\(178\) −1.37476 + 0.798090i −0.103043 + 0.0598194i
\(179\) 3.57757 + 3.57757i 0.267400 + 0.267400i 0.828052 0.560652i \(-0.189449\pi\)
−0.560652 + 0.828052i \(0.689449\pi\)
\(180\) 0 0
\(181\) −1.64176 + 1.64176i −0.122031 + 0.122031i −0.765485 0.643454i \(-0.777501\pi\)
0.643454 + 0.765485i \(0.277501\pi\)
\(182\) 8.66627 + 2.30002i 0.642386 + 0.170489i
\(183\) −6.57328 −0.485911
\(184\) −5.49571 + 0.0392550i −0.405149 + 0.00289392i
\(185\) 0 0
\(186\) −9.05267 2.40257i −0.663774 0.176165i
\(187\) 0.690114 + 0.690114i 0.0504662 + 0.0504662i
\(188\) −17.3961 9.93352i −1.26874 0.724476i
\(189\) 3.84522 + 3.84522i 0.279698 + 0.279698i
\(190\) 0 0
\(191\) −15.3359 −1.10967 −0.554835 0.831960i \(-0.687219\pi\)
−0.554835 + 0.831960i \(0.687219\pi\)
\(192\) −8.60686 + 8.85635i −0.621147 + 0.639152i
\(193\) 0.0812703i 0.00584996i −0.999996 0.00292498i \(-0.999069\pi\)
0.999996 0.00292498i \(-0.000931052\pi\)
\(194\) 9.22726 5.35669i 0.662478 0.384588i
\(195\) 0 0
\(196\) 6.00149 10.5101i 0.428678 0.750725i
\(197\) −1.40711 1.40711i −0.100252 0.100252i 0.655202 0.755454i \(-0.272584\pi\)
−0.755454 + 0.655202i \(0.772584\pi\)
\(198\) −0.445714 + 1.67941i −0.0316755 + 0.119351i
\(199\) 14.3046i 1.01402i −0.861939 0.507011i \(-0.830750\pi\)
0.861939 0.507011i \(-0.169250\pi\)
\(200\) 0 0
\(201\) 15.4457i 1.08946i
\(202\) −5.03635 1.33664i −0.354356 0.0940458i
\(203\) −3.64846 3.64846i −0.256071 0.256071i
\(204\) 1.45971 0.398587i 0.102200 0.0279067i
\(205\) 0 0
\(206\) 9.80868 + 16.8961i 0.683403 + 1.17721i
\(207\) 1.19885i 0.0833258i
\(208\) 25.2152 + 6.49966i 1.74836 + 0.450670i
\(209\) −12.8098 −0.886075
\(210\) 0 0
\(211\) 8.70115 + 8.70115i 0.599012 + 0.599012i 0.940050 0.341038i \(-0.110778\pi\)
−0.341038 + 0.940050i \(0.610778\pi\)
\(212\) 15.3183 4.18281i 1.05207 0.287277i
\(213\) 0.980103 + 0.980103i 0.0671556 + 0.0671556i
\(214\) 5.07457 19.1205i 0.346891 1.30705i
\(215\) 0 0
\(216\) 11.2466 + 11.0870i 0.765232 + 0.754378i
\(217\) −4.17835 −0.283645
\(218\) −5.92320 + 22.3181i −0.401169 + 1.51157i
\(219\) −10.6051 + 10.6051i −0.716628 + 0.716628i
\(220\) 0 0
\(221\) −2.25603 2.25603i −0.151757 0.151757i
\(222\) −7.05776 12.1575i −0.473686 0.815955i
\(223\) 7.78095i 0.521051i 0.965467 + 0.260525i \(0.0838958\pi\)
−0.965467 + 0.260525i \(0.916104\pi\)
\(224\) −2.69769 + 4.80370i −0.180247 + 0.320961i
\(225\) 0 0
\(226\) 21.0435 12.2164i 1.39979 0.812621i
\(227\) 2.15443 2.15443i 0.142995 0.142995i −0.631986 0.774980i \(-0.717760\pi\)
0.774980 + 0.631986i \(0.217760\pi\)
\(228\) −9.84821 + 17.2467i −0.652214 + 1.14219i
\(229\) 7.63865 7.63865i 0.504776 0.504776i −0.408142 0.912918i \(-0.633823\pi\)
0.912918 + 0.408142i \(0.133823\pi\)
\(230\) 0 0
\(231\) 2.99390i 0.196984i
\(232\) −10.6711 10.5197i −0.700591 0.690653i
\(233\) −7.51503 −0.492326 −0.246163 0.969228i \(-0.579170\pi\)
−0.246163 + 0.969228i \(0.579170\pi\)
\(234\) 1.45707 5.49010i 0.0952515 0.358899i
\(235\) 0 0
\(236\) −6.28962 23.0339i −0.409419 1.49938i
\(237\) −16.1395 + 16.1395i −1.04837 + 1.04837i
\(238\) 0.583796 0.338911i 0.0378419 0.0219683i
\(239\) −20.5776 −1.33105 −0.665526 0.746375i \(-0.731793\pi\)
−0.665526 + 0.746375i \(0.731793\pi\)
\(240\) 0 0
\(241\) −23.2914 −1.50033 −0.750166 0.661250i \(-0.770026\pi\)
−0.750166 + 0.661250i \(0.770026\pi\)
\(242\) −8.60362 + 4.99466i −0.553062 + 0.321069i
\(243\) 4.45639 4.45639i 0.285877 0.285877i
\(244\) −8.21549 + 2.24332i −0.525943 + 0.143614i
\(245\) 0 0
\(246\) 5.68646 21.4261i 0.362556 1.36608i
\(247\) 41.8762 2.66452
\(248\) −12.1342 + 0.0866731i −0.770525 + 0.00550375i
\(249\) 1.77925i 0.112755i
\(250\) 0 0
\(251\) −3.34230 + 3.34230i −0.210964 + 0.210964i −0.804677 0.593713i \(-0.797661\pi\)
0.593713 + 0.804677i \(0.297661\pi\)
\(252\) 1.04363 + 0.595935i 0.0657428 + 0.0375404i
\(253\) 2.73604 2.73604i 0.172014 0.172014i
\(254\) 1.68302 0.977043i 0.105602 0.0613051i
\(255\) 0 0
\(256\) −7.73464 + 14.0063i −0.483415 + 0.875391i
\(257\) 22.4537i 1.40062i 0.713838 + 0.700311i \(0.246955\pi\)
−0.713838 + 0.700311i \(0.753045\pi\)
\(258\) −2.77547 4.78093i −0.172793 0.297648i
\(259\) −4.43448 4.43448i −0.275545 0.275545i
\(260\) 0 0
\(261\) −2.31131 + 2.31131i −0.143066 + 0.143066i
\(262\) 4.63771 17.4745i 0.286519 1.07958i
\(263\) −8.23670 −0.507897 −0.253948 0.967218i \(-0.581729\pi\)
−0.253948 + 0.967218i \(0.581729\pi\)
\(264\) −0.0621036 8.69451i −0.00382221 0.535110i
\(265\) 0 0
\(266\) −2.27277 + 8.56359i −0.139352 + 0.525068i
\(267\) −1.22696 1.22696i −0.0750885 0.0750885i
\(268\) −5.27128 19.3045i −0.321994 1.17921i
\(269\) 17.2960 + 17.2960i 1.05455 + 1.05455i 0.998423 + 0.0561306i \(0.0178763\pi\)
0.0561306 + 0.998423i \(0.482124\pi\)
\(270\) 0 0
\(271\) −12.4753 −0.757822 −0.378911 0.925433i \(-0.623701\pi\)
−0.378911 + 0.925433i \(0.623701\pi\)
\(272\) 1.68836 0.996332i 0.102372 0.0604115i
\(273\) 9.78726i 0.592352i
\(274\) 10.8673 + 18.7196i 0.656516 + 1.13089i
\(275\) 0 0
\(276\) −1.58025 5.78719i −0.0951197 0.348348i
\(277\) −10.2583 10.2583i −0.616363 0.616363i 0.328234 0.944597i \(-0.393547\pi\)
−0.944597 + 0.328234i \(0.893547\pi\)
\(278\) 0.670439 + 0.177934i 0.0402103 + 0.0106718i
\(279\) 2.64700i 0.158472i
\(280\) 0 0
\(281\) 21.4066i 1.27701i −0.769618 0.638505i \(-0.779553\pi\)
0.769618 0.638505i \(-0.220447\pi\)
\(282\) 5.60922 21.1350i 0.334024 1.25857i
\(283\) −7.39635 7.39635i −0.439668 0.439668i 0.452232 0.891900i \(-0.350628\pi\)
−0.891900 + 0.452232i \(0.850628\pi\)
\(284\) 1.55945 + 0.890475i 0.0925363 + 0.0528400i
\(285\) 0 0
\(286\) −15.8550 + 9.20430i −0.937526 + 0.544261i
\(287\) 9.88942i 0.583754i
\(288\) 3.04316 + 1.70899i 0.179320 + 0.100703i
\(289\) 16.7598 0.985870
\(290\) 0 0
\(291\) 8.23520 + 8.23520i 0.482756 + 0.482756i
\(292\) −9.63531 + 16.8739i −0.563864 + 0.987470i
\(293\) −0.556728 0.556728i −0.0325244 0.0325244i 0.690658 0.723182i \(-0.257321\pi\)
−0.723182 + 0.690658i \(0.757321\pi\)
\(294\) 12.7691 + 3.38889i 0.744706 + 0.197644i
\(295\) 0 0
\(296\) −12.9701 12.7861i −0.753870 0.743177i
\(297\) −11.1188 −0.645178
\(298\) −8.31278 2.20620i −0.481546 0.127802i
\(299\) −8.94430 + 8.94430i −0.517263 + 0.517263i
\(300\) 0 0
\(301\) −1.74387 1.74387i −0.100515 0.100515i
\(302\) 2.47182 1.43497i 0.142238 0.0825730i
\(303\) 5.68781i 0.326756i
\(304\) −6.42266 + 24.9165i −0.368365 + 1.42906i
\(305\) 0 0
\(306\) −0.214701 0.369836i −0.0122736 0.0211421i
\(307\) 9.76852 9.76852i 0.557519 0.557519i −0.371082 0.928600i \(-0.621013\pi\)
0.928600 + 0.371082i \(0.121013\pi\)
\(308\) −1.02175 3.74187i −0.0582197 0.213213i
\(309\) −15.0795 + 15.0795i −0.857844 + 0.857844i
\(310\) 0 0
\(311\) 30.6874i 1.74013i 0.492941 + 0.870063i \(0.335922\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(312\) 0.203021 + 28.4229i 0.0114938 + 1.60913i
\(313\) −1.71127 −0.0967268 −0.0483634 0.998830i \(-0.515401\pi\)
−0.0483634 + 0.998830i \(0.515401\pi\)
\(314\) 5.67024 + 1.50488i 0.319990 + 0.0849251i
\(315\) 0 0
\(316\) −14.6636 + 25.6797i −0.824891 + 1.44460i
\(317\) −10.0380 + 10.0380i −0.563790 + 0.563790i −0.930382 0.366592i \(-0.880524\pi\)
0.366592 + 0.930382i \(0.380524\pi\)
\(318\) 8.70224 + 14.9902i 0.487997 + 0.840608i
\(319\) 10.5498 0.590678
\(320\) 0 0
\(321\) 21.5938 1.20525
\(322\) −1.34365 2.31453i −0.0748788 0.128984i
\(323\) 2.22930 2.22930i 0.124042 0.124042i
\(324\) −6.71248 + 11.7553i −0.372915 + 0.653070i
\(325\) 0 0
\(326\) 11.1093 + 2.94841i 0.615290 + 0.163297i
\(327\) −25.2049 −1.39384
\(328\) −0.205140 28.7196i −0.0113270 1.58578i
\(329\) 9.75508i 0.537815i
\(330\) 0 0
\(331\) 7.89713 7.89713i 0.434066 0.434066i −0.455943 0.890009i \(-0.650698\pi\)
0.890009 + 0.455943i \(0.150698\pi\)
\(332\) 0.607218 + 2.22376i 0.0333254 + 0.122044i
\(333\) −2.80926 + 2.80926i −0.153946 + 0.153946i
\(334\) 4.55516 + 7.84656i 0.249247 + 0.429345i
\(335\) 0 0
\(336\) −5.82345 1.50110i −0.317695 0.0818915i
\(337\) 3.46077i 0.188520i 0.995548 + 0.0942601i \(0.0300485\pi\)
−0.995548 + 0.0942601i \(0.969951\pi\)
\(338\) 35.9313 20.8592i 1.95441 1.13459i
\(339\) 18.7810 + 18.7810i 1.02005 + 1.02005i
\(340\) 0 0
\(341\) 6.04104 6.04104i 0.327141 0.327141i
\(342\) 5.42506 + 1.43981i 0.293354 + 0.0778558i
\(343\) 12.7112 0.686338
\(344\) −5.10049 5.02814i −0.275000 0.271099i
\(345\) 0 0
\(346\) 1.05493 + 0.279977i 0.0567133 + 0.0150516i
\(347\) 17.4637 + 17.4637i 0.937498 + 0.937498i 0.998158 0.0606600i \(-0.0193205\pi\)
−0.0606600 + 0.998158i \(0.519321\pi\)
\(348\) 8.11073 14.2040i 0.434781 0.761413i
\(349\) −24.2159 24.2159i −1.29625 1.29625i −0.930852 0.365397i \(-0.880933\pi\)
−0.365397 0.930852i \(-0.619067\pi\)
\(350\) 0 0
\(351\) 36.3481 1.94012
\(352\) −3.04486 10.8455i −0.162292 0.578065i
\(353\) 10.7028i 0.569650i −0.958580 0.284825i \(-0.908065\pi\)
0.958580 0.284825i \(-0.0919355\pi\)
\(354\) 22.5405 13.0854i 1.19801 0.695482i
\(355\) 0 0
\(356\) −1.95222 1.11475i −0.103467 0.0590818i
\(357\) 0.521030 + 0.521030i 0.0275758 + 0.0275758i
\(358\) −1.83543 + 6.91573i −0.0970053 + 0.365507i
\(359\) 23.6390i 1.24762i 0.781577 + 0.623809i \(0.214416\pi\)
−0.781577 + 0.623809i \(0.785584\pi\)
\(360\) 0 0
\(361\) 22.3801i 1.17790i
\(362\) −3.17364 0.842282i −0.166803 0.0442693i
\(363\) −7.67861 7.67861i −0.403023 0.403023i
\(364\) 3.34017 + 12.2324i 0.175073 + 0.641152i
\(365\) 0 0
\(366\) −4.66717 8.03950i −0.243957 0.420232i
\(367\) 13.7431i 0.717386i 0.933456 + 0.358693i \(0.116777\pi\)
−0.933456 + 0.358693i \(0.883223\pi\)
\(368\) −3.95008 6.69370i −0.205912 0.348933i
\(369\) −6.26498 −0.326142
\(370\) 0 0
\(371\) 5.46773 + 5.46773i 0.283871 + 0.283871i
\(372\) −3.48910 12.7778i −0.180902 0.662499i
\(373\) 18.4703 + 18.4703i 0.956355 + 0.956355i 0.999087 0.0427313i \(-0.0136059\pi\)
−0.0427313 + 0.999087i \(0.513606\pi\)
\(374\) −0.354054 + 1.33405i −0.0183077 + 0.0689819i
\(375\) 0 0
\(376\) −0.202353 28.3295i −0.0104356 1.46098i
\(377\) −34.4881 −1.77623
\(378\) −1.97274 + 7.43311i −0.101467 + 0.382318i
\(379\) 16.1028 16.1028i 0.827143 0.827143i −0.159978 0.987121i \(-0.551142\pi\)
0.987121 + 0.159978i \(0.0511423\pi\)
\(380\) 0 0
\(381\) 1.50207 + 1.50207i 0.0769535 + 0.0769535i
\(382\) −10.8888 18.7568i −0.557122 0.959679i
\(383\) 23.1255i 1.18166i 0.806796 + 0.590830i \(0.201200\pi\)
−0.806796 + 0.590830i \(0.798800\pi\)
\(384\) −16.9429 4.23850i −0.864613 0.216295i
\(385\) 0 0
\(386\) 0.0993983 0.0577036i 0.00505924 0.00293704i
\(387\) −1.10474 + 1.10474i −0.0561573 + 0.0561573i
\(388\) 13.1031 + 7.48211i 0.665209 + 0.379846i
\(389\) 19.4044 19.4044i 0.983842 0.983842i −0.0160295 0.999872i \(-0.505103\pi\)
0.999872 + 0.0160295i \(0.00510257\pi\)
\(390\) 0 0
\(391\) 0.952310i 0.0481604i
\(392\) 17.1157 0.122255i 0.864473 0.00617480i
\(393\) 19.7348 0.995491
\(394\) 0.721898 2.72005i 0.0363687 0.137034i
\(395\) 0 0
\(396\) −2.37048 + 0.647283i −0.119121 + 0.0325272i
\(397\) −4.00102 + 4.00102i −0.200806 + 0.200806i −0.800345 0.599540i \(-0.795350\pi\)
0.599540 + 0.800345i \(0.295350\pi\)
\(398\) 17.4953 10.1565i 0.876960 0.509101i
\(399\) −9.67130 −0.484171
\(400\) 0 0
\(401\) 38.9287 1.94401 0.972003 0.234967i \(-0.0754980\pi\)
0.972003 + 0.234967i \(0.0754980\pi\)
\(402\) 18.8910 10.9668i 0.942197 0.546973i
\(403\) −19.7486 + 19.7486i −0.983746 + 0.983746i
\(404\) −1.94112 7.10879i −0.0965745 0.353676i
\(405\) 0 0
\(406\) 1.87179 7.05275i 0.0928955 0.350022i
\(407\) 12.8227 0.635598
\(408\) 1.52392 + 1.50230i 0.0754452 + 0.0743750i
\(409\) 4.59845i 0.227379i 0.993516 + 0.113689i \(0.0362669\pi\)
−0.993516 + 0.113689i \(0.963733\pi\)
\(410\) 0 0
\(411\) −16.7070 + 16.7070i −0.824095 + 0.824095i
\(412\) −13.7005 + 23.9932i −0.674977 + 1.18206i
\(413\) 8.22174 8.22174i 0.404565 0.404565i
\(414\) −1.46626 + 0.851208i −0.0720628 + 0.0418346i
\(415\) 0 0
\(416\) 9.95386 + 35.4546i 0.488028 + 1.73830i
\(417\) 0.757161i 0.0370783i
\(418\) −9.09525 15.6672i −0.444863 0.766306i
\(419\) −16.6774 16.6774i −0.814746 0.814746i 0.170595 0.985341i \(-0.445431\pi\)
−0.985341 + 0.170595i \(0.945431\pi\)
\(420\) 0 0
\(421\) 15.4169 15.4169i 0.751372 0.751372i −0.223364 0.974735i \(-0.571704\pi\)
0.974735 + 0.223364i \(0.0717037\pi\)
\(422\) −4.46401 + 16.8200i −0.217305 + 0.818786i
\(423\) −6.17987 −0.300476
\(424\) 15.9921 + 15.7653i 0.776647 + 0.765631i
\(425\) 0 0
\(426\) −0.502829 + 1.89462i −0.0243622 + 0.0917945i
\(427\) −2.93244 2.93244i −0.141911 0.141911i
\(428\) 26.9886 7.36949i 1.30454 0.356218i
\(429\) −14.1504 14.1504i −0.683186 0.683186i
\(430\) 0 0
\(431\) 20.2234 0.974126 0.487063 0.873367i \(-0.338068\pi\)
0.487063 + 0.873367i \(0.338068\pi\)
\(432\) −5.57480 + 21.6272i −0.268218 + 1.04054i
\(433\) 0.676118i 0.0324922i 0.999868 + 0.0162461i \(0.00517152\pi\)
−0.999868 + 0.0162461i \(0.994828\pi\)
\(434\) −2.96671 5.11036i −0.142407 0.245305i
\(435\) 0 0
\(436\) −31.5019 + 8.60189i −1.50867 + 0.411956i
\(437\) −8.83834 8.83834i −0.422795 0.422795i
\(438\) −20.5005 5.44082i −0.979553 0.259972i
\(439\) 13.3550i 0.637400i 0.947856 + 0.318700i \(0.103246\pi\)
−0.947856 + 0.318700i \(0.896754\pi\)
\(440\) 0 0
\(441\) 3.73366i 0.177794i
\(442\) 1.15743 4.36108i 0.0550532 0.207436i
\(443\) 28.1262 + 28.1262i 1.33631 + 1.33631i 0.899600 + 0.436714i \(0.143858\pi\)
0.436714 + 0.899600i \(0.356142\pi\)
\(444\) 9.85811 17.2641i 0.467845 0.819317i
\(445\) 0 0
\(446\) −9.51655 + 5.52464i −0.450622 + 0.261599i
\(447\) 9.38805i 0.444039i
\(448\) −7.79061 + 0.111300i −0.368072 + 0.00525843i
\(449\) 8.37972 0.395464 0.197732 0.980256i \(-0.436642\pi\)
0.197732 + 0.980256i \(0.436642\pi\)
\(450\) 0 0
\(451\) 14.2981 + 14.2981i 0.673271 + 0.673271i
\(452\) 29.8827 + 17.0635i 1.40556 + 0.802602i
\(453\) 2.20607 + 2.20607i 0.103650 + 0.103650i
\(454\) 4.16469 + 1.10530i 0.195458 + 0.0518745i
\(455\) 0 0
\(456\) −28.0862 + 0.200615i −1.31526 + 0.00939468i
\(457\) 5.66561 0.265026 0.132513 0.991181i \(-0.457695\pi\)
0.132513 + 0.991181i \(0.457695\pi\)
\(458\) 14.7661 + 3.91891i 0.689975 + 0.183119i
\(459\) 1.93501 1.93501i 0.0903186 0.0903186i
\(460\) 0 0
\(461\) 16.6375 + 16.6375i 0.774887 + 0.774887i 0.978956 0.204069i \(-0.0654168\pi\)
−0.204069 + 0.978956i \(0.565417\pi\)
\(462\) 3.66171 2.12573i 0.170358 0.0988979i
\(463\) 41.6835i 1.93720i −0.248631 0.968598i \(-0.579981\pi\)
0.248631 0.968598i \(-0.420019\pi\)
\(464\) 5.28953 20.5206i 0.245560 0.952643i
\(465\) 0 0
\(466\) −5.33583 9.19132i −0.247178 0.425780i
\(467\) 3.11020 3.11020i 0.143923 0.143923i −0.631474 0.775397i \(-0.717550\pi\)
0.775397 + 0.631474i \(0.217550\pi\)
\(468\) 7.74926 2.11601i 0.358210 0.0978126i
\(469\) 6.89057 6.89057i 0.318177 0.318177i
\(470\) 0 0
\(471\) 6.40370i 0.295067i
\(472\) 23.7060 24.0471i 1.09116 1.10686i
\(473\) 5.04255 0.231857
\(474\) −31.1989 8.28016i −1.43301 0.380320i
\(475\) 0 0
\(476\) 0.829015 + 0.473383i 0.0379978 + 0.0216975i
\(477\) 3.46383 3.46383i 0.158598 0.158598i
\(478\) −14.6105 25.1675i −0.668268 1.15114i
\(479\) 8.32325 0.380299 0.190149 0.981755i \(-0.439103\pi\)
0.190149 + 0.981755i \(0.439103\pi\)
\(480\) 0 0
\(481\) −41.9183 −1.91131
\(482\) −16.5374 28.4868i −0.753257 1.29754i
\(483\) 2.06569 2.06569i 0.0939920 0.0939920i
\(484\) −12.2175 6.97642i −0.555341 0.317110i
\(485\) 0 0
\(486\) 8.61455 + 2.28629i 0.390764 + 0.103708i
\(487\) −7.29577 −0.330603 −0.165301 0.986243i \(-0.552860\pi\)
−0.165301 + 0.986243i \(0.552860\pi\)
\(488\) −8.57687 8.45521i −0.388257 0.382750i
\(489\) 12.5463i 0.567365i
\(490\) 0 0
\(491\) 3.57528 3.57528i 0.161350 0.161350i −0.621815 0.783165i \(-0.713604\pi\)
0.783165 + 0.621815i \(0.213604\pi\)
\(492\) 30.2429 8.25810i 1.36345 0.372304i
\(493\) −1.83600 + 1.83600i −0.0826891 + 0.0826891i
\(494\) 29.7330 + 51.2170i 1.33775 + 2.30436i
\(495\) 0 0
\(496\) −8.72157 14.7793i −0.391610 0.663612i
\(497\) 0.874479i 0.0392257i
\(498\) −2.17612 + 1.26330i −0.0975143 + 0.0566099i
\(499\) 10.8833 + 10.8833i 0.487203 + 0.487203i 0.907422 0.420220i \(-0.138047\pi\)
−0.420220 + 0.907422i \(0.638047\pi\)
\(500\) 0 0
\(501\) −7.00295 + 7.00295i −0.312869 + 0.312869i
\(502\) −6.46093 1.71472i −0.288365 0.0765318i
\(503\) −29.3781 −1.30991 −0.654953 0.755670i \(-0.727312\pi\)
−0.654953 + 0.755670i \(0.727312\pi\)
\(504\) 0.0121396 + 1.69955i 0.000540742 + 0.0757040i
\(505\) 0 0
\(506\) 5.28899 + 1.40369i 0.235124 + 0.0624017i
\(507\) 32.0682 + 32.0682i 1.42420 + 1.42420i
\(508\) 2.38996 + 1.36471i 0.106037 + 0.0605493i
\(509\) −17.4592 17.4592i −0.773863 0.773863i 0.204916 0.978780i \(-0.434308\pi\)
−0.978780 + 0.204916i \(0.934308\pi\)
\(510\) 0 0
\(511\) −9.46222 −0.418584
\(512\) −22.6222 + 0.484827i −0.999770 + 0.0214265i
\(513\) 35.9175i 1.58579i
\(514\) −27.4621 + 15.9426i −1.21130 + 0.703197i
\(515\) 0 0
\(516\) 3.87671 6.78912i 0.170663 0.298874i
\(517\) 14.1039 + 14.1039i 0.620287 + 0.620287i
\(518\) 2.27505 8.57221i 0.0999602 0.376641i
\(519\) 1.19138i 0.0522959i
\(520\) 0 0
\(521\) 9.48578i 0.415580i −0.978174 0.207790i \(-0.933373\pi\)
0.978174 0.207790i \(-0.0666270\pi\)
\(522\) −4.46794 1.18579i −0.195556 0.0519005i
\(523\) 16.2705 + 16.2705i 0.711460 + 0.711460i 0.966841 0.255380i \(-0.0822006\pi\)
−0.255380 + 0.966841i \(0.582201\pi\)
\(524\) 24.6652 6.73507i 1.07750 0.294223i
\(525\) 0 0
\(526\) −5.84823 10.0740i −0.254995 0.439246i
\(527\) 2.10265i 0.0915929i
\(528\) 10.5898 6.24924i 0.460862 0.271963i
\(529\) −19.2245 −0.835846
\(530\) 0 0
\(531\) −5.20849 5.20849i −0.226029 0.226029i
\(532\) −12.0875 + 3.30060i −0.524059 + 0.143099i
\(533\) −46.7414 46.7414i −2.02459 2.02459i
\(534\) 0.629474 2.37180i 0.0272400 0.102638i
\(535\) 0 0
\(536\) 19.8678 20.1537i 0.858158 0.870506i
\(537\) −7.81028 −0.337039
\(538\) −8.87348 + 33.4345i −0.382563 + 1.44146i
\(539\) −8.52106 + 8.52106i −0.367028 + 0.367028i
\(540\) 0 0
\(541\) −2.55686 2.55686i −0.109928 0.109928i 0.650003 0.759931i \(-0.274767\pi\)
−0.759931 + 0.650003i \(0.774767\pi\)
\(542\) −8.85774 15.2580i −0.380472 0.655389i
\(543\) 3.58416i 0.153811i
\(544\) 2.41734 + 1.35754i 0.103643 + 0.0582042i
\(545\) 0 0
\(546\) −11.9704 + 6.94915i −0.512285 + 0.297396i
\(547\) −21.9660 + 21.9660i −0.939197 + 0.939197i −0.998255 0.0590579i \(-0.981190\pi\)
0.0590579 + 0.998255i \(0.481190\pi\)
\(548\) −15.1792 + 26.5826i −0.648422 + 1.13555i
\(549\) −1.85771 + 1.85771i −0.0792852 + 0.0792852i
\(550\) 0 0
\(551\) 34.0796i 1.45184i
\(552\) 5.95606 6.04176i 0.253507 0.257154i
\(553\) −14.4002 −0.612357
\(554\) 5.26290 19.8301i 0.223599 0.842502i
\(555\) 0 0
\(556\) 0.258402 + 0.946322i 0.0109587 + 0.0401330i
\(557\) 17.5409 17.5409i 0.743234 0.743234i −0.229965 0.973199i \(-0.573861\pi\)
0.973199 + 0.229965i \(0.0738612\pi\)
\(558\) −3.23743 + 1.87942i −0.137051 + 0.0795623i
\(559\) −16.4844 −0.697217
\(560\) 0 0
\(561\) −1.50661 −0.0636089
\(562\) 26.1815 15.1991i 1.10440 0.641136i
\(563\) −27.5975 + 27.5975i −1.16309 + 1.16309i −0.179300 + 0.983794i \(0.557383\pi\)
−0.983794 + 0.179300i \(0.942617\pi\)
\(564\) 29.8320 8.14592i 1.25615 0.343005i
\(565\) 0 0
\(566\) 3.79460 14.2977i 0.159499 0.600979i
\(567\) −6.59190 −0.276834
\(568\) 0.0181396 + 2.53955i 0.000761123 + 0.106557i
\(569\) 23.6390i 0.990998i 0.868608 + 0.495499i \(0.165015\pi\)
−0.868608 + 0.495499i \(0.834985\pi\)
\(570\) 0 0
\(571\) −21.7518 + 21.7518i −0.910284 + 0.910284i −0.996294 0.0860105i \(-0.972588\pi\)
0.0860105 + 0.996294i \(0.472588\pi\)
\(572\) −22.5148 12.8564i −0.941390 0.537551i
\(573\) 16.7401 16.7401i 0.699329 0.699329i
\(574\) 12.0953 7.02169i 0.504850 0.293080i
\(575\) 0 0
\(576\) 0.0705089 + 4.93537i 0.00293787 + 0.205641i
\(577\) 3.69585i 0.153860i 0.997036 + 0.0769302i \(0.0245119\pi\)
−0.997036 + 0.0769302i \(0.975488\pi\)
\(578\) 11.8998 + 20.4982i 0.494967 + 0.852613i
\(579\) 0.0887116 + 0.0887116i 0.00368673 + 0.00368673i
\(580\) 0 0
\(581\) −0.793750 + 0.793750i −0.0329303 + 0.0329303i
\(582\) −4.22496 + 15.9193i −0.175130 + 0.659876i
\(583\) −15.8105 −0.654802
\(584\) −27.4790 + 0.196278i −1.13709 + 0.00812206i
\(585\) 0 0
\(586\) 0.285622 1.07620i 0.0117989 0.0444573i
\(587\) −27.0313 27.0313i −1.11570 1.11570i −0.992365 0.123335i \(-0.960641\pi\)
−0.123335 0.992365i \(-0.539359\pi\)
\(588\) 4.92148 + 18.0235i 0.202958 + 0.743276i
\(589\) −19.5146 19.5146i −0.804085 0.804085i
\(590\) 0 0
\(591\) 3.07189 0.126361
\(592\) 6.42912 24.9415i 0.264235 1.02509i
\(593\) 4.55524i 0.187061i −0.995616 0.0935306i \(-0.970185\pi\)
0.995616 0.0935306i \(-0.0298153\pi\)
\(594\) −7.89458 13.5989i −0.323919 0.557971i
\(595\) 0 0
\(596\) −3.20393 11.7335i −0.131238 0.480621i
\(597\) 15.6143 + 15.6143i 0.639051 + 0.639051i
\(598\) −17.2900 4.58876i −0.707043 0.187648i
\(599\) 7.46846i 0.305153i 0.988292 + 0.152576i \(0.0487570\pi\)
−0.988292 + 0.152576i \(0.951243\pi\)
\(600\) 0 0
\(601\) 12.2638i 0.500250i 0.968214 + 0.250125i \(0.0804717\pi\)
−0.968214 + 0.250125i \(0.919528\pi\)
\(602\) 0.894668 3.37103i 0.0364639 0.137393i
\(603\) −4.36519 4.36519i −0.177764 0.177764i
\(604\) 3.51009 + 2.00433i 0.142824 + 0.0815550i
\(605\) 0 0
\(606\) 6.95652 4.03846i 0.282589 0.164051i
\(607\) 5.23884i 0.212638i −0.994332 0.106319i \(-0.966094\pi\)
0.994332 0.106319i \(-0.0339065\pi\)
\(608\) −35.0345 + 9.83593i −1.42084 + 0.398900i
\(609\) 7.96503 0.322759
\(610\) 0 0
\(611\) −46.1064 46.1064i −1.86527 1.86527i
\(612\) 0.299889 0.525183i 0.0121223 0.0212293i
\(613\) 20.7209 + 20.7209i 0.836910 + 0.836910i 0.988451 0.151541i \(-0.0484235\pi\)
−0.151541 + 0.988451i \(0.548424\pi\)
\(614\) 18.8833 + 5.01161i 0.762068 + 0.202252i
\(615\) 0 0
\(616\) 3.85105 3.90646i 0.155163 0.157396i
\(617\) −2.20286 −0.0886838 −0.0443419 0.999016i \(-0.514119\pi\)
−0.0443419 + 0.999016i \(0.514119\pi\)
\(618\) −29.1499 7.73636i −1.17258 0.311202i
\(619\) 31.4569 31.4569i 1.26436 1.26436i 0.315404 0.948958i \(-0.397860\pi\)
0.948958 0.315404i \(-0.102140\pi\)
\(620\) 0 0
\(621\) −7.67158 7.67158i −0.307850 0.307850i
\(622\) −37.5325 + 21.7887i −1.50492 + 0.873648i
\(623\) 1.09473i 0.0438594i
\(624\) −34.6187 + 20.4292i −1.38586 + 0.817822i
\(625\) 0 0
\(626\) −1.21504 2.09298i −0.0485627 0.0836525i
\(627\) 13.9827 13.9827i 0.558416 0.558416i
\(628\) 2.18544 + 8.00353i 0.0872085 + 0.319376i
\(629\) −2.23154 + 2.23154i −0.0889775 + 0.0889775i
\(630\) 0 0
\(631\) 16.8215i 0.669655i −0.942279 0.334828i \(-0.891322\pi\)
0.942279 0.334828i \(-0.108678\pi\)
\(632\) −41.8192 + 0.298708i −1.66348 + 0.0118820i
\(633\) −18.9957 −0.755011
\(634\) −19.4042 5.14986i −0.770640 0.204527i
\(635\) 0 0
\(636\) −12.1551 + 21.2867i −0.481981 + 0.844072i
\(637\) 27.8559 27.8559i 1.10369 1.10369i
\(638\) 7.49061 + 12.9031i 0.296556 + 0.510838i
\(639\) 0.553985 0.0219153
\(640\) 0 0
\(641\) −14.9208 −0.589336 −0.294668 0.955600i \(-0.595209\pi\)
−0.294668 + 0.955600i \(0.595209\pi\)
\(642\) 15.3320 + 26.4105i 0.605108 + 1.04234i
\(643\) 0.541845 0.541845i 0.0213683 0.0213683i −0.696342 0.717710i \(-0.745190\pi\)
0.717710 + 0.696342i \(0.245190\pi\)
\(644\) 1.87678 3.28673i 0.0739556 0.129515i
\(645\) 0 0
\(646\) 4.30942 + 1.14371i 0.169552 + 0.0449988i
\(647\) −32.6391 −1.28318 −0.641588 0.767049i \(-0.721724\pi\)
−0.641588 + 0.767049i \(0.721724\pi\)
\(648\) −19.1434 + 0.136738i −0.752023 + 0.00537158i
\(649\) 23.7739i 0.933208i
\(650\) 0 0
\(651\) 4.56093 4.56093i 0.178757 0.178757i
\(652\) 4.28179 + 15.6808i 0.167688 + 0.614108i
\(653\) −9.73805 + 9.73805i −0.381079 + 0.381079i −0.871491 0.490412i \(-0.836846\pi\)
0.490412 + 0.871491i \(0.336846\pi\)
\(654\) −17.8960 30.8271i −0.699790 1.20544i
\(655\) 0 0
\(656\) 34.9801 20.6424i 1.36574 0.805952i
\(657\) 5.99434i 0.233862i
\(658\) 11.9310 6.92631i 0.465120 0.270016i
\(659\) −1.26445 1.26445i −0.0492560 0.0492560i 0.682050 0.731306i \(-0.261089\pi\)
−0.731306 + 0.682050i \(0.761089\pi\)
\(660\) 0 0
\(661\) 22.6701 22.6701i 0.881763 0.881763i −0.111951 0.993714i \(-0.535710\pi\)
0.993714 + 0.111951i \(0.0357099\pi\)
\(662\) 15.2658 + 4.05152i 0.593321 + 0.157467i
\(663\) 4.92519 0.191279
\(664\) −2.28865 + 2.32158i −0.0888167 + 0.0900946i
\(665\) 0 0
\(666\) −5.43052 1.44125i −0.210428 0.0558474i
\(667\) 7.27903 + 7.27903i 0.281845 + 0.281845i
\(668\) −6.36254 + 11.1424i −0.246174 + 0.431114i
\(669\) −8.49339 8.49339i −0.328373 0.328373i
\(670\) 0 0
\(671\) 8.47943 0.327345
\(672\) −2.29884 8.18822i −0.0886798 0.315868i
\(673\) 3.58765i 0.138294i 0.997606 + 0.0691469i \(0.0220277\pi\)
−0.997606 + 0.0691469i \(0.977972\pi\)
\(674\) −4.23273 + 2.45722i −0.163038 + 0.0946486i
\(675\) 0 0
\(676\) 51.0240 + 29.1356i 1.96246 + 1.12060i
\(677\) −10.1507 10.1507i −0.390124 0.390124i 0.484608 0.874731i \(-0.338962\pi\)
−0.874731 + 0.484608i \(0.838962\pi\)
\(678\) −9.63537 + 36.3052i −0.370044 + 1.39429i
\(679\) 7.34770i 0.281979i
\(680\) 0 0
\(681\) 4.70339i 0.180234i
\(682\) 11.6778 + 3.09928i 0.447166 + 0.118677i
\(683\) 16.6805 + 16.6805i 0.638260 + 0.638260i 0.950126 0.311866i \(-0.100954\pi\)
−0.311866 + 0.950126i \(0.600954\pi\)
\(684\) 2.09094 + 7.65745i 0.0799491 + 0.292790i
\(685\) 0 0
\(686\) 9.02519 + 15.5465i 0.344583 + 0.593568i
\(687\) 16.6761i 0.636234i
\(688\) 2.52826 9.80828i 0.0963889 0.373937i
\(689\) 51.6854 1.96906
\(690\) 0 0
\(691\) 12.4781 + 12.4781i 0.474689 + 0.474689i 0.903428 0.428739i \(-0.141042\pi\)
−0.428739 + 0.903428i \(0.641042\pi\)
\(692\) 0.406593 + 1.48903i 0.0154563 + 0.0566043i
\(693\) −0.846123 0.846123i −0.0321415 0.0321415i
\(694\) −8.95951 + 33.7586i −0.340098 + 1.28146i
\(695\) 0 0
\(696\) 23.1311 0.165222i 0.876781 0.00626271i
\(697\) −4.97661 −0.188502
\(698\) 12.4237 46.8113i 0.470243 1.77183i
\(699\) 8.20312 8.20312i 0.310271 0.310271i
\(700\) 0 0
\(701\) 6.40945 + 6.40945i 0.242082 + 0.242082i 0.817711 0.575629i \(-0.195243\pi\)
−0.575629 + 0.817711i \(0.695243\pi\)
\(702\) 25.8079 + 44.4558i 0.974057 + 1.67788i
\(703\) 41.4217i 1.56225i
\(704\) 11.1027 11.4246i 0.418449 0.430579i
\(705\) 0 0
\(706\) 13.0901 7.59918i 0.492652 0.285999i
\(707\) 2.53742 2.53742i 0.0954295 0.0954295i
\(708\) 32.0084 + 18.2774i 1.20295 + 0.686907i
\(709\) −8.78514 + 8.78514i −0.329933 + 0.329933i −0.852561 0.522628i \(-0.824952\pi\)
0.522628 + 0.852561i \(0.324952\pi\)
\(710\) 0 0
\(711\) 9.12255i 0.342122i
\(712\) −0.0227084 3.17918i −0.000851033 0.119145i
\(713\) 8.33621 0.312194
\(714\) −0.267308 + 1.00719i −0.0100037 + 0.0376932i
\(715\) 0 0
\(716\) −9.76152 + 2.66548i −0.364805 + 0.0996135i
\(717\) 22.4617 22.4617i 0.838847 0.838847i
\(718\) −28.9119 + 16.7842i −1.07898 + 0.626380i
\(719\) −46.2329 −1.72420 −0.862099 0.506740i \(-0.830850\pi\)
−0.862099 + 0.506740i \(0.830850\pi\)
\(720\) 0 0
\(721\) −13.4544 −0.501069
\(722\) −27.3721 + 15.8903i −1.01868 + 0.591376i
\(723\) 25.4240 25.4240i 0.945530 0.945530i
\(724\) −1.22319 4.47959i −0.0454596 0.166483i
\(725\) 0 0
\(726\) 3.93941 14.8434i 0.146205 0.550889i
\(727\) 17.4640 0.647703 0.323852 0.946108i \(-0.395022\pi\)
0.323852 + 0.946108i \(0.395022\pi\)
\(728\) −12.5893 + 12.7705i −0.466592 + 0.473306i
\(729\) 30.0340i 1.11237i
\(730\) 0 0
\(731\) −0.877557 + 0.877557i −0.0324576 + 0.0324576i
\(732\) 6.51899 11.4164i 0.240949 0.421963i
\(733\) −7.89695 + 7.89695i −0.291680 + 0.291680i −0.837744 0.546063i \(-0.816126\pi\)
0.546063 + 0.837744i \(0.316126\pi\)
\(734\) −16.8086 + 9.75791i −0.620419 + 0.360171i
\(735\) 0 0
\(736\) 5.38214 9.58384i 0.198388 0.353265i
\(737\) 19.9247i 0.733936i
\(738\) −4.44826 7.66243i −0.163743 0.282058i
\(739\) −26.1724 26.1724i −0.962769 0.962769i 0.0365624 0.999331i \(-0.488359\pi\)
−0.999331 + 0.0365624i \(0.988359\pi\)
\(740\) 0 0
\(741\) −45.7105 + 45.7105i −1.67922 + 1.67922i
\(742\) −2.80515 + 10.5696i −0.102980 + 0.388021i
\(743\) 49.7660 1.82574 0.912868 0.408254i \(-0.133862\pi\)
0.912868 + 0.408254i \(0.133862\pi\)
\(744\) 13.1507 13.3399i 0.482127 0.489064i
\(745\) 0 0
\(746\) −9.47594 + 35.7045i −0.346939 + 1.30724i
\(747\) 0.502843 + 0.502843i 0.0183981 + 0.0183981i
\(748\) −1.88300 + 0.514171i −0.0688493 + 0.0188000i
\(749\) 9.63333 + 9.63333i 0.351994 + 0.351994i
\(750\) 0 0
\(751\) −24.2379 −0.884454 −0.442227 0.896903i \(-0.645811\pi\)
−0.442227 + 0.896903i \(0.645811\pi\)
\(752\) 34.5049 20.3620i 1.25827 0.742527i
\(753\) 7.29665i 0.265905i
\(754\) −24.4873 42.1810i −0.891775 1.53614i
\(755\) 0 0
\(756\) −10.4918 + 2.86489i −0.381583 + 0.104195i
\(757\) 15.4872 + 15.4872i 0.562890 + 0.562890i 0.930127 0.367237i \(-0.119696\pi\)
−0.367237 + 0.930127i \(0.619696\pi\)
\(758\) 31.1279 + 8.26131i 1.13062 + 0.300064i
\(759\) 5.97312i 0.216811i
\(760\) 0 0
\(761\) 25.9821i 0.941849i −0.882174 0.470924i \(-0.843920\pi\)
0.882174 0.470924i \(-0.156080\pi\)
\(762\) −0.770619 + 2.90363i −0.0279166 + 0.105187i
\(763\) −11.2443 11.2443i −0.407072 0.407072i
\(764\) 15.2093 26.6354i 0.550253 0.963634i
\(765\) 0 0
\(766\) −28.2839 + 16.4196i −1.02194 + 0.593265i
\(767\) 77.7185i 2.80625i
\(768\) −6.84587 23.7315i −0.247029 0.856338i
\(769\) 24.9737 0.900573 0.450287 0.892884i \(-0.351322\pi\)
0.450287 + 0.892884i \(0.351322\pi\)
\(770\) 0 0
\(771\) −24.5096 24.5096i −0.882691 0.882691i
\(772\) 0.141150 + 0.0805991i 0.00508009 + 0.00290082i
\(773\) −1.32495 1.32495i −0.0476550 0.0476550i 0.682878 0.730533i \(-0.260728\pi\)
−0.730533 + 0.682878i \(0.760728\pi\)
\(774\) −2.13556 0.566775i −0.0767610 0.0203723i
\(775\) 0 0
\(776\) 0.152416 + 21.3383i 0.00547142 + 0.766000i
\(777\) 9.68103 0.347305
\(778\) 37.5102 + 9.95518i 1.34481 + 0.356910i
\(779\) 46.1876 46.1876i 1.65484 1.65484i
\(780\) 0 0
\(781\) −1.26432 1.26432i −0.0452409 0.0452409i
\(782\) −1.16473 + 0.676160i −0.0416507 + 0.0241794i
\(783\) 29.5807i 1.05713i
\(784\) 12.3020 + 20.8467i 0.439358 + 0.744525i
\(785\) 0 0
\(786\) 14.0121 + 24.1369i 0.499797 + 0.860933i
\(787\) 0.647036 0.647036i 0.0230644 0.0230644i −0.695481 0.718545i \(-0.744808\pi\)
0.718545 + 0.695481i \(0.244808\pi\)
\(788\) 3.83934 1.04837i 0.136771 0.0373466i
\(789\) 8.99087 8.99087i 0.320084 0.320084i
\(790\) 0 0
\(791\) 16.7570i 0.595811i
\(792\) −2.47476 2.43965i −0.0879366 0.0866893i
\(793\) −27.7198 −0.984360
\(794\) −7.73429 2.05267i −0.274480 0.0728466i
\(795\) 0 0
\(796\) 24.8440 + 14.1864i 0.880574 + 0.502824i
\(797\) 18.3024 18.3024i 0.648303 0.648303i −0.304280 0.952583i \(-0.598416\pi\)
0.952583 + 0.304280i \(0.0984158\pi\)
\(798\) −6.86682 11.8286i −0.243083 0.418727i
\(799\) −4.90900 −0.173668
\(800\) 0 0
\(801\) −0.693514 −0.0245041
\(802\) 27.6402 + 47.6121i 0.976009 + 1.68124i
\(803\) 13.6804 13.6804i 0.482772 0.482772i
\(804\) 26.8260 + 15.3181i 0.946079 + 0.540229i
\(805\) 0 0
\(806\) −38.1755 10.1317i −1.34468 0.356875i
\(807\) −37.7593 −1.32919
\(808\) 7.31623 7.42150i 0.257384 0.261087i
\(809\) 32.4845i 1.14209i 0.820917 + 0.571047i \(0.193463\pi\)
−0.820917 + 0.571047i \(0.806537\pi\)
\(810\) 0 0
\(811\) 7.69149 7.69149i 0.270085 0.270085i −0.559049 0.829134i \(-0.688834\pi\)
0.829134 + 0.559049i \(0.188834\pi\)
\(812\) 9.95494 2.71829i 0.349350 0.0953933i
\(813\) 13.6176 13.6176i 0.477590 0.477590i
\(814\) 9.10440 + 15.6829i 0.319109 + 0.549686i
\(815\) 0 0
\(816\) −0.755389 + 2.93051i −0.0264439 + 0.102588i
\(817\) 16.2891i 0.569884i
\(818\) −5.62417 + 3.26499i −0.196644 + 0.114158i
\(819\) 2.76603 + 2.76603i 0.0966529 + 0.0966529i
\(820\) 0 0
\(821\) −10.5798 + 10.5798i −0.369238 + 0.369238i −0.867199 0.497961i \(-0.834082\pi\)
0.497961 + 0.867199i \(0.334082\pi\)
\(822\) −32.2959 8.57130i −1.12645 0.298958i
\(823\) −4.85817 −0.169345 −0.0846726 0.996409i \(-0.526984\pi\)
−0.0846726 + 0.996409i \(0.526984\pi\)
\(824\) −39.0727 + 0.279090i −1.36116 + 0.00972257i
\(825\) 0 0
\(826\) 15.8933 + 4.21806i 0.552997 + 0.146765i
\(827\) −8.02757 8.02757i −0.279146 0.279146i 0.553622 0.832768i \(-0.313245\pi\)
−0.832768 + 0.553622i \(0.813245\pi\)
\(828\) −2.08215 1.18895i −0.0723598 0.0413188i
\(829\) 24.3613 + 24.3613i 0.846102 + 0.846102i 0.989644 0.143542i \(-0.0458493\pi\)
−0.143542 + 0.989644i \(0.545849\pi\)
\(830\) 0 0
\(831\) 22.3952 0.776881
\(832\) −36.2955 + 37.3476i −1.25832 + 1.29480i
\(833\) 2.96585i 0.102761i
\(834\) −0.926051 + 0.537600i −0.0320665 + 0.0186156i
\(835\) 0 0
\(836\) 12.7040 22.2480i 0.439378 0.769464i
\(837\) −16.9385 16.9385i −0.585479 0.585479i
\(838\) 8.55615 32.2388i 0.295567 1.11367i
\(839\) 43.1207i 1.48869i −0.667794 0.744346i \(-0.732761\pi\)
0.667794 0.744346i \(-0.267239\pi\)
\(840\) 0 0
\(841\) 0.932964i 0.0321712i
\(842\) 29.8020 + 7.90942i 1.02704 + 0.272577i
\(843\) 23.3666 + 23.3666i 0.804789 + 0.804789i
\(844\) −23.7414 + 6.48281i −0.817213 + 0.223148i
\(845\) 0 0
\(846\) −4.38784 7.55834i −0.150857 0.259861i
\(847\) 6.85110i 0.235407i
\(848\) −7.92712 + 30.7530i −0.272219 + 1.05606i
\(849\) 16.1472 0.554169
\(850\) 0 0
\(851\) 8.84723 + 8.84723i 0.303279 + 0.303279i
\(852\) −2.67425 + 0.730228i −0.0916181 + 0.0250172i
\(853\) 18.0611 + 18.0611i 0.618401 + 0.618401i 0.945121 0.326720i \(-0.105943\pi\)
−0.326720 + 0.945121i \(0.605943\pi\)
\(854\) 1.50445 5.66865i 0.0514813 0.193977i
\(855\) 0 0
\(856\) 28.1758 + 27.7761i 0.963028 + 0.949368i
\(857\) 35.8346 1.22409 0.612043 0.790825i \(-0.290348\pi\)
0.612043 + 0.790825i \(0.290348\pi\)
\(858\) 7.25967 27.3538i 0.247841 0.933843i
\(859\) 0.619460 0.619460i 0.0211357 0.0211357i −0.696460 0.717596i \(-0.745243\pi\)
0.717596 + 0.696460i \(0.245243\pi\)
\(860\) 0 0
\(861\) 10.7949 + 10.7949i 0.367890 + 0.367890i
\(862\) 14.3590 + 24.7344i 0.489070 + 0.842456i
\(863\) 18.8270i 0.640878i 0.947269 + 0.320439i \(0.103830\pi\)
−0.947269 + 0.320439i \(0.896170\pi\)
\(864\) −30.4096 + 8.53749i −1.03456 + 0.290451i
\(865\) 0 0
\(866\) −0.826931 + 0.480058i −0.0281003 + 0.0163130i
\(867\) −18.2944 + 18.2944i −0.621309 + 0.621309i
\(868\) 4.14384 7.25693i 0.140651 0.246316i
\(869\) 20.8197 20.8197i 0.706260 0.706260i
\(870\) 0 0
\(871\) 65.1352i 2.20702i
\(872\) −32.8876 32.4211i −1.11372 1.09792i
\(873\) 4.65479 0.157541
\(874\) 4.53439 17.0852i 0.153378 0.577916i
\(875\) 0 0
\(876\) −7.90137 28.9364i −0.266962 0.977672i
\(877\) −7.77833 + 7.77833i −0.262656 + 0.262656i −0.826132 0.563476i \(-0.809464\pi\)
0.563476 + 0.826132i \(0.309464\pi\)
\(878\) −16.3339 + 9.48233i −0.551244 + 0.320013i
\(879\) 1.21541 0.0409946
\(880\) 0 0
\(881\) 13.6551 0.460052 0.230026 0.973184i \(-0.426119\pi\)
0.230026 + 0.973184i \(0.426119\pi\)
\(882\) 4.56649 2.65098i 0.153762 0.0892631i
\(883\) 25.7585 25.7585i 0.866844 0.866844i −0.125278 0.992122i \(-0.539982\pi\)
0.992122 + 0.125278i \(0.0399823\pi\)
\(884\) 6.15565 1.68086i 0.207037 0.0565334i
\(885\) 0 0
\(886\) −14.4298 + 54.3701i −0.484777 + 1.82660i
\(887\) −38.8982 −1.30607 −0.653037 0.757326i \(-0.726505\pi\)
−0.653037 + 0.757326i \(0.726505\pi\)
\(888\) 28.1144 0.200817i 0.943459 0.00673898i
\(889\) 1.34020i 0.0449488i
\(890\) 0 0
\(891\) 9.53054 9.53054i 0.319285 0.319285i
\(892\) −13.5139 7.71669i −0.452479 0.258374i
\(893\) 45.5602 45.5602i 1.52461 1.52461i
\(894\) 11.4821 6.66571i 0.384020 0.222935i
\(895\) 0 0
\(896\) −5.66762 9.44934i −0.189342 0.315680i
\(897\) 19.5265i 0.651972i
\(898\) 5.94978 + 10.2489i 0.198547 + 0.342010i
\(899\) 16.0717 + 16.0717i 0.536022 + 0.536022i
\(900\) 0 0
\(901\) 2.75150 2.75150i 0.0916658 0.0916658i
\(902\) −7.33545 + 27.6393i −0.244244 + 0.920289i
\(903\) 3.80707 0.126692
\(904\) 0.347597 + 48.6637i 0.0115609 + 1.61853i
\(905\) 0 0
\(906\) −1.13179 + 4.26450i −0.0376014 + 0.141679i
\(907\) 5.10220 + 5.10220i 0.169416 + 0.169416i 0.786723 0.617307i \(-0.211776\pi\)
−0.617307 + 0.786723i \(0.711776\pi\)
\(908\) 1.60516 + 5.87844i 0.0532692 + 0.195083i
\(909\) −1.60746 1.60746i −0.0533162 0.0533162i
\(910\) 0 0
\(911\) −46.7058 −1.54743 −0.773716 0.633533i \(-0.781604\pi\)
−0.773716 + 0.633533i \(0.781604\pi\)
\(912\) −20.1871 34.2086i −0.668463 1.13276i
\(913\) 2.29520i 0.0759601i
\(914\) 4.02270 + 6.92937i 0.133059 + 0.229203i
\(915\) 0 0
\(916\) 5.69119 + 20.8423i 0.188042 + 0.688650i
\(917\) 8.80402 + 8.80402i 0.290734 + 0.290734i
\(918\) 3.74053 + 0.992732i 0.123456 + 0.0327650i
\(919\) 53.4692i 1.76379i 0.471449 + 0.881893i \(0.343731\pi\)
−0.471449 + 0.881893i \(0.656269\pi\)
\(920\) 0 0
\(921\) 21.3259i 0.702712i
\(922\) −8.53567 + 32.1617i −0.281107 + 1.05919i
\(923\) 4.13314 + 4.13314i 0.136044 + 0.136044i
\(924\) 5.19978 + 2.96917i 0.171060 + 0.0976786i
\(925\) 0 0
\(926\) 50.9813 29.5961i 1.67535 0.972590i
\(927\) 8.52342i 0.279946i
\(928\) 28.8535 8.10062i 0.947163 0.265916i
\(929\) −14.2098 −0.466209 −0.233104 0.972452i \(-0.574888\pi\)
−0.233104 + 0.972452i \(0.574888\pi\)
\(930\) 0 0
\(931\) 27.5259 + 27.5259i 0.902125 + 0.902125i
\(932\) 7.45297 13.0521i 0.244130 0.427534i
\(933\) −33.4972 33.4972i −1.09665 1.09665i
\(934\) 6.01227 + 1.59565i 0.196728 + 0.0522113i
\(935\) 0 0
\(936\) 8.09014 + 7.97539i 0.264434 + 0.260684i
\(937\) −5.26656 −0.172051 −0.0860255 0.996293i \(-0.527417\pi\)
−0.0860255 + 0.996293i \(0.527417\pi\)
\(938\) 13.3200 + 3.53512i 0.434914 + 0.115426i
\(939\) 1.86796 1.86796i 0.0609585 0.0609585i
\(940\) 0 0
\(941\) 18.7780 + 18.7780i 0.612145 + 0.612145i 0.943505 0.331359i \(-0.107507\pi\)
−0.331359 + 0.943505i \(0.607507\pi\)
\(942\) −7.83209 + 4.54676i −0.255183 + 0.148141i
\(943\) 19.7304i 0.642509i
\(944\) 46.2428 + 11.9199i 1.50507 + 0.387959i
\(945\) 0 0
\(946\) 3.58031 + 6.16733i 0.116406 + 0.200517i
\(947\) 3.27572 3.27572i 0.106447 0.106447i −0.651878 0.758324i \(-0.726018\pi\)
0.758324 + 0.651878i \(0.226018\pi\)
\(948\) −12.0248 44.0372i −0.390546 1.43026i
\(949\) −44.7223 + 44.7223i −1.45175 + 1.45175i
\(950\) 0 0
\(951\) 21.9142i 0.710616i
\(952\) 0.00964316 + 1.35004i 0.000312537 + 0.0437552i
\(953\) −30.0292 −0.972741 −0.486371 0.873753i \(-0.661680\pi\)
−0.486371 + 0.873753i \(0.661680\pi\)
\(954\) 6.69585 + 1.77707i 0.216786 + 0.0575348i
\(955\) 0 0
\(956\) 20.4076 35.7390i 0.660029 1.15588i
\(957\) −11.5158 + 11.5158i −0.372253 + 0.372253i
\(958\) 5.90968 + 10.1798i 0.190933 + 0.328895i
\(959\) −14.9065 −0.481356
\(960\) 0 0
\(961\) −12.5941 −0.406260
\(962\) −29.7629 51.2685i −0.959593 1.65296i
\(963\) 6.10274 6.10274i 0.196658 0.196658i
\(964\) 23.0991 40.4524i 0.743970 1.30288i
\(965\) 0 0
\(966\) 3.99313 + 1.05977i 0.128477 + 0.0340977i
\(967\) −15.2196 −0.489429 −0.244715 0.969595i \(-0.578694\pi\)
−0.244715 + 0.969595i \(0.578694\pi\)
\(968\) −0.142115 19.8961i −0.00456775 0.639485i
\(969\) 4.86684i 0.156345i
\(970\) 0 0
\(971\) −18.4838 + 18.4838i −0.593173 + 0.593173i −0.938487 0.345314i \(-0.887772\pi\)
0.345314 + 0.938487i \(0.387772\pi\)
\(972\) 3.32024 + 12.1594i 0.106497 + 0.390013i
\(973\) −0.337781 + 0.337781i −0.0108288 + 0.0108288i
\(974\) −5.18014 8.92314i −0.165983 0.285916i
\(975\) 0 0
\(976\) 4.25146 16.4934i 0.136086 0.527940i
\(977\) 18.7912i 0.601183i 0.953753 + 0.300592i \(0.0971841\pi\)
−0.953753 + 0.300592i \(0.902816\pi\)
\(978\) −15.3449 + 8.90817i −0.490676 + 0.284852i
\(979\) 1.58276 + 1.58276i 0.0505851 + 0.0505851i
\(980\) 0 0
\(981\) −7.12331 + 7.12331i −0.227430 + 0.227430i
\(982\) 6.91129 + 1.83425i 0.220548 + 0.0585333i
\(983\) −56.5605 −1.80400 −0.901999 0.431738i \(-0.857901\pi\)
−0.901999 + 0.431738i \(0.857901\pi\)
\(984\) 31.5732 + 31.1253i 1.00652 + 0.992240i
\(985\) 0 0
\(986\) −3.54912 0.941933i −0.113027 0.0299973i
\(987\) 10.6483 + 10.6483i 0.338938 + 0.338938i
\(988\) −41.5303 + 72.7303i −1.32126 + 2.31386i
\(989\) 3.47918 + 3.47918i 0.110632 + 0.110632i
\(990\) 0 0
\(991\) 45.0866 1.43222 0.716112 0.697985i \(-0.245920\pi\)
0.716112 + 0.697985i \(0.245920\pi\)
\(992\) 11.8835 21.1606i 0.377301 0.671851i
\(993\) 17.2404i 0.547108i
\(994\) −1.06954 + 0.620898i −0.0339237 + 0.0196937i
\(995\) 0 0
\(996\) −3.09018 1.76455i −0.0979162 0.0559120i
\(997\) 35.1508 + 35.1508i 1.11324 + 1.11324i 0.992710 + 0.120528i \(0.0384588\pi\)
0.120528 + 0.992710i \(0.461541\pi\)
\(998\) −5.58353 + 21.0382i −0.176743 + 0.665954i
\(999\) 35.9536i 1.13752i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.q.e.349.5 12
4.3 odd 2 1600.2.q.e.849.5 12
5.2 odd 4 400.2.l.f.301.2 yes 12
5.3 odd 4 400.2.l.g.301.5 yes 12
5.4 even 2 400.2.q.f.349.2 12
16.5 even 4 400.2.q.f.149.2 12
16.11 odd 4 1600.2.q.f.49.2 12
20.3 even 4 1600.2.l.f.401.5 12
20.7 even 4 1600.2.l.g.401.2 12
20.19 odd 2 1600.2.q.f.849.2 12
80.27 even 4 1600.2.l.g.1201.2 12
80.37 odd 4 400.2.l.f.101.2 12
80.43 even 4 1600.2.l.f.1201.5 12
80.53 odd 4 400.2.l.g.101.5 yes 12
80.59 odd 4 1600.2.q.e.49.5 12
80.69 even 4 inner 400.2.q.e.149.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.l.f.101.2 12 80.37 odd 4
400.2.l.f.301.2 yes 12 5.2 odd 4
400.2.l.g.101.5 yes 12 80.53 odd 4
400.2.l.g.301.5 yes 12 5.3 odd 4
400.2.q.e.149.5 12 80.69 even 4 inner
400.2.q.e.349.5 12 1.1 even 1 trivial
400.2.q.f.149.2 12 16.5 even 4
400.2.q.f.349.2 12 5.4 even 2
1600.2.l.f.401.5 12 20.3 even 4
1600.2.l.f.1201.5 12 80.43 even 4
1600.2.l.g.401.2 12 20.7 even 4
1600.2.l.g.1201.2 12 80.27 even 4
1600.2.q.e.49.5 12 80.59 odd 4
1600.2.q.e.849.5 12 4.3 odd 2
1600.2.q.f.49.2 12 16.11 odd 4
1600.2.q.f.849.2 12 20.19 odd 2