Properties

Label 400.10.a.y
Level $400$
Weight $10$
Character orbit 400.a
Self dual yes
Analytic conductor $206.014$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,10,Mod(1,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,89,0,0,0,5258,0,58234] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(206.014334466\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 652x + 4000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 25)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 30) q^{3} + ( - 23 \beta_{2} + 26 \beta_1 + 1744) q^{7} + ( - 153 \beta_{2} - 32 \beta_1 + 19422) q^{9} + (95 \beta_{2} - 195 \beta_1 + 18298) q^{11} + ( - 209 \beta_{2} - 460 \beta_1 - 71808) q^{13}+ \cdots + ( - 4376889 \beta_{2} + \cdots + 299572596) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 89 q^{3} + 5258 q^{7} + 58234 q^{9} + 54699 q^{11} - 215884 q^{13} - 334983 q^{17} - 818845 q^{19} - 2375394 q^{21} + 3526854 q^{23} + 6633395 q^{27} + 2175480 q^{29} - 4274066 q^{31} + 22122137 q^{33}+ \cdots + 892234522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 652x + 4000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 63\nu - 454 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{2} - 6\nu + 872 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 4\beta _1 + 12 ) / 40 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -63\beta_{2} - 12\beta _1 + 17404 ) / 40 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.2334
6.48955
−27.7229
0 −210.171 0 0 0 9905.49 0 24489.0 0
1.2 0 30.5073 0 0 0 −4010.25 0 −18752.3 0
1.3 0 268.664 0 0 0 −637.237 0 52497.3 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.10.a.y 3
4.b odd 2 1 25.10.a.c 3
5.b even 2 1 400.10.a.u 3
5.c odd 4 2 400.10.c.q 6
12.b even 2 1 225.10.a.p 3
20.d odd 2 1 25.10.a.d yes 3
20.e even 4 2 25.10.b.c 6
60.h even 2 1 225.10.a.m 3
60.l odd 4 2 225.10.b.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.10.a.c 3 4.b odd 2 1
25.10.a.d yes 3 20.d odd 2 1
25.10.b.c 6 20.e even 4 2
225.10.a.m 3 60.h even 2 1
225.10.a.p 3 12.b even 2 1
225.10.b.m 6 60.l odd 4 2
400.10.a.u 3 5.b even 2 1
400.10.a.y 3 1.a even 1 1 trivial
400.10.c.q 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 89T_{3}^{2} - 54681T_{3} + 1722609 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(400))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 89 T^{2} + \cdots + 1722609 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 25313297688 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 75283351667163 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 14\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 17\!\cdots\!07 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 22\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 38\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 81\!\cdots\!48 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 17\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 15\!\cdots\!47 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 33\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 14\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 40\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 62\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 27\!\cdots\!93 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 11\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 13\!\cdots\!09 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 83\!\cdots\!41 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 19\!\cdots\!75 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 34\!\cdots\!08 \) Copy content Toggle raw display
show more
show less