Properties

Label 400.10.a.y
Level $400$
Weight $10$
Character orbit 400.a
Self dual yes
Analytic conductor $206.014$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(206.014334466\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Defining polynomial: \(x^{3} - x^{2} - 652 x + 4000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 25)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 30 - \beta_{1} ) q^{3} + ( 1744 + 26 \beta_{1} - 23 \beta_{2} ) q^{7} + ( 19422 - 32 \beta_{1} - 153 \beta_{2} ) q^{9} +O(q^{10})\) \( q + ( 30 - \beta_{1} ) q^{3} + ( 1744 + 26 \beta_{1} - 23 \beta_{2} ) q^{7} + ( 19422 - 32 \beta_{1} - 153 \beta_{2} ) q^{9} + ( 18298 - 195 \beta_{1} + 95 \beta_{2} ) q^{11} + ( -71808 - 460 \beta_{1} - 209 \beta_{2} ) q^{13} + ( -111605 - 168 \beta_{1} - 835 \beta_{2} ) q^{17} + ( -273798 + 2549 \beta_{1} - 3254 \beta_{2} ) q^{19} + ( -790314 - 4452 \beta_{1} + 2667 \beta_{2} ) q^{21} + ( 1174476 + 3426 \beta_{1} + 1338 \beta_{2} ) q^{23} + ( 2217186 - 18163 \beta_{1} - 13617 \beta_{2} ) q^{27} + ( 727252 - 6276 \beta_{1} - 13429 \beta_{2} ) q^{29} + ( -1425052 + 1090 \beta_{1} - 7390 \beta_{2} ) q^{31} + ( 7376475 - 7288 \beta_{1} - 24420 \beta_{2} ) q^{33} + ( 3447538 - 37572 \beta_{1} - 3831 \beta_{2} ) q^{37} + ( 16789428 + 45808 \beta_{1} - 82293 \beta_{2} ) q^{39} + ( 1962517 + 38760 \beta_{1} + 110540 \beta_{2} ) q^{41} + ( -8142408 - 2732 \beta_{1} - 24439 \beta_{2} ) q^{43} + ( 22283108 + 9384 \beta_{1} - 83831 \beta_{2} ) q^{47} + ( -2224403 + 219280 \beta_{1} - 87880 \beta_{2} ) q^{49} + ( 8541210 + 11069 \beta_{1} - 73299 \beta_{2} ) q^{51} + ( -44311790 + 314856 \beta_{1} - 211780 \beta_{2} ) q^{53} + ( -84278277 - 111584 \beta_{1} + 204519 \beta_{2} ) q^{57} + ( -1775144 - 345528 \beta_{1} + 36413 \beta_{2} ) q^{59} + ( 41835342 - 199100 \beta_{1} - 533275 \beta_{2} ) q^{61} + ( 94577904 + 589692 \beta_{1} - 76428 \beta_{2} ) q^{63} + ( 29717410 - 322747 \beta_{1} + 1059625 \beta_{2} ) q^{67} + ( -104422626 - 1007064 \beta_{1} + 600444 \beta_{2} ) q^{69} + ( -98809132 - 1123200 \beta_{1} - 232175 \beta_{2} ) q^{71} + ( -60459531 + 56864 \beta_{1} + 1374247 \beta_{2} ) q^{73} + ( -186837678 - 701052 \beta_{1} + 70551 \beta_{2} ) q^{77} + ( 103098848 + 728626 \beta_{1} + 1813079 \beta_{2} ) q^{79} + ( 467368353 - 3257696 \beta_{1} - 543609 \beta_{2} ) q^{81} + ( -243751566 + 165897 \beta_{1} + 1002837 \beta_{2} ) q^{83} + ( 349578948 - 2351284 \beta_{1} - 1725681 \beta_{2} ) q^{87} + ( -367574409 - 1136808 \beta_{1} - 929457 \beta_{2} ) q^{89} + ( -393086120 - 3929296 \beta_{1} + 3554866 \beta_{2} ) q^{91} + ( -35975730 + 540432 \beta_{1} - 254460 \beta_{2} ) q^{93} + ( 110724742 + 62616 \beta_{1} - 4150494 \beta_{2} ) q^{97} + ( 299572596 - 6483266 \beta_{1} - 4376889 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 89q^{3} + 5258q^{7} + 58234q^{9} + O(q^{10}) \) \( 3q + 89q^{3} + 5258q^{7} + 58234q^{9} + 54699q^{11} - 215884q^{13} - 334983q^{17} - 818845q^{19} - 2375394q^{21} + 3526854q^{23} + 6633395q^{27} + 2175480q^{29} - 4274066q^{31} + 22122137q^{33} + 10305042q^{37} + 50414092q^{39} + 5926311q^{41} - 24429956q^{43} + 66858708q^{47} - 6453929q^{49} + 25634699q^{51} - 132620514q^{53} - 252946415q^{57} - 5670960q^{59} + 125306926q^{61} + 284323404q^{63} + 88829483q^{67} - 314274942q^{69} - 297550596q^{71} - 181321729q^{73} - 561214086q^{77} + 310025170q^{79} + 1398847363q^{81} - 731088801q^{83} + 1046385560q^{87} - 1103860035q^{89} - 1183187656q^{91} - 107386758q^{93} + 332236842q^{97} + 892234522q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 652 x + 4000\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{2} + 63 \nu - 454 \)\()/6\)
\(\beta_{2}\)\(=\)\((\)\( -2 \nu^{2} - 6 \nu + 872 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} + 4 \beta_{1} + 12\)\()/40\)
\(\nu^{2}\)\(=\)\((\)\(-63 \beta_{2} - 12 \beta_{1} + 17404\)\()/40\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.2334
6.48955
−27.7229
0 −210.171 0 0 0 9905.49 0 24489.0 0
1.2 0 30.5073 0 0 0 −4010.25 0 −18752.3 0
1.3 0 268.664 0 0 0 −637.237 0 52497.3 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.10.a.y 3
4.b odd 2 1 25.10.a.c 3
5.b even 2 1 400.10.a.u 3
5.c odd 4 2 400.10.c.q 6
12.b even 2 1 225.10.a.p 3
20.d odd 2 1 25.10.a.d yes 3
20.e even 4 2 25.10.b.c 6
60.h even 2 1 225.10.a.m 3
60.l odd 4 2 225.10.b.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.10.a.c 3 4.b odd 2 1
25.10.a.d yes 3 20.d odd 2 1
25.10.b.c 6 20.e even 4 2
225.10.a.m 3 60.h even 2 1
225.10.a.p 3 12.b even 2 1
225.10.b.m 6 60.l odd 4 2
400.10.a.u 3 5.b even 2 1
400.10.a.y 3 1.a even 1 1 trivial
400.10.c.q 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 89 T_{3}^{2} - 54681 T_{3} + 1722609 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(400))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( 1722609 - 54681 T - 89 T^{2} + T^{3} \)
$5$ \( T^{3} \)
$7$ \( -25313297688 - 43480164 T - 5258 T^{2} + T^{3} \)
$11$ \( 75283351667163 - 1257655633 T - 54699 T^{2} + T^{3} \)
$13$ \( -1483699912993984 - 588341776 T + 215884 T^{2} + T^{3} \)
$17$ \( -1773847472341707 - 732967429 T + 334983 T^{2} + T^{3} \)
$19$ \( -226123024842854125 - 499889436625 T + 818845 T^{2} + T^{3} \)
$23$ \( -381747315559395816 + 3297138740604 T - 3526854 T^{2} + T^{3} \)
$29$ \( 3964526545895424000 - 11063731072000 T - 2175480 T^{2} + T^{3} \)
$31$ \( 817098195664566648 + 3532627327452 T + 4274066 T^{2} + T^{3} \)
$37$ \( \)\(17\!\cdots\!28\)\( - 49043023094484 T - 10305042 T^{2} + T^{3} \)
$41$ \( \)\(15\!\cdots\!47\)\( - 750102076057093 T - 5926311 T^{2} + T^{3} \)
$43$ \( \)\(33\!\cdots\!84\)\( + 168272432263664 T + 24429956 T^{2} + T^{3} \)
$47$ \( -\)\(14\!\cdots\!08\)\( + 1159874710756976 T - 66858708 T^{2} + T^{3} \)
$53$ \( -\)\(40\!\cdots\!84\)\( - 690042287731156 T + 132620514 T^{2} + T^{3} \)
$59$ \( \)\(49\!\cdots\!00\)\( - 6651292273432000 T + 5670960 T^{2} + T^{3} \)
$61$ \( \)\(62\!\cdots\!12\)\( - 12890308075143508 T - 125306926 T^{2} + T^{3} \)
$67$ \( -\)\(27\!\cdots\!93\)\( - 51057218268990129 T - 88829483 T^{2} + T^{3} \)
$71$ \( -\)\(11\!\cdots\!32\)\( - 50509406137014928 T + 297550596 T^{2} + T^{3} \)
$73$ \( -\)\(13\!\cdots\!09\)\( - 82249507598185621 T + 181321729 T^{2} + T^{3} \)
$79$ \( \)\(26\!\cdots\!00\)\( - 183462234827962500 T - 310025170 T^{2} + T^{3} \)
$83$ \( -\)\(83\!\cdots\!41\)\( + 124612582244716359 T + 731088801 T^{2} + T^{3} \)
$89$ \( -\)\(19\!\cdots\!75\)\( + 269595002285863875 T + 1103860035 T^{2} + T^{3} \)
$97$ \( \)\(34\!\cdots\!08\)\( - 792948149717036724 T - 332236842 T^{2} + T^{3} \)
show more
show less