Properties

Label 400.10.a.o.1.2
Level $400$
Weight $10$
Character 400.1
Self dual yes
Analytic conductor $206.014$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,10,Mod(1,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-92,0,0,0,-6908,0,13258] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(206.014334466\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6049}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-38.3877\) of defining polynomial
Character \(\chi\) \(=\) 400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+109.551 q^{3} -9209.37 q^{7} -7681.66 q^{9} +29861.4 q^{11} -16775.2 q^{13} +312472. q^{17} +36401.6 q^{19} -1.00889e6 q^{21} +951749. q^{23} -2.99782e6 q^{27} -3.02575e6 q^{29} +9.43462e6 q^{31} +3.27134e6 q^{33} +1.16984e7 q^{37} -1.83774e6 q^{39} +3.49741e7 q^{41} -2.26136e7 q^{43} -5.58030e6 q^{47} +4.44590e7 q^{49} +3.42316e7 q^{51} -5.54605e7 q^{53} +3.98782e6 q^{57} -8.51084e7 q^{59} +4.85791e7 q^{61} +7.07433e7 q^{63} -5.20748e7 q^{67} +1.04265e8 q^{69} +1.14674e8 q^{71} -4.47760e8 q^{73} -2.75005e8 q^{77} +9.18141e7 q^{79} -1.77215e8 q^{81} -5.87254e8 q^{83} -3.31472e8 q^{87} -4.81494e8 q^{89} +1.54489e8 q^{91} +1.03357e9 q^{93} -1.37193e9 q^{97} -2.29385e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 92 q^{3} - 6908 q^{7} + 13258 q^{9} + 8080 q^{11} - 111948 q^{13} + 327532 q^{17} + 1156680 q^{19} - 1472736 q^{21} - 1057252 q^{23} - 3251096 q^{27} - 4212260 q^{29} + 11361128 q^{31} + 7661392 q^{33}+ \cdots - 685480304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 109.551 0.780853 0.390426 0.920634i \(-0.372328\pi\)
0.390426 + 0.920634i \(0.372328\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −9209.37 −1.44974 −0.724868 0.688888i \(-0.758099\pi\)
−0.724868 + 0.688888i \(0.758099\pi\)
\(8\) 0 0
\(9\) −7681.66 −0.390269
\(10\) 0 0
\(11\) 29861.4 0.614955 0.307477 0.951555i \(-0.400515\pi\)
0.307477 + 0.951555i \(0.400515\pi\)
\(12\) 0 0
\(13\) −16775.2 −0.162901 −0.0814505 0.996677i \(-0.525955\pi\)
−0.0814505 + 0.996677i \(0.525955\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 312472. 0.907385 0.453692 0.891158i \(-0.350106\pi\)
0.453692 + 0.891158i \(0.350106\pi\)
\(18\) 0 0
\(19\) 36401.6 0.0640810 0.0320405 0.999487i \(-0.489799\pi\)
0.0320405 + 0.999487i \(0.489799\pi\)
\(20\) 0 0
\(21\) −1.00889e6 −1.13203
\(22\) 0 0
\(23\) 951749. 0.709165 0.354583 0.935025i \(-0.384623\pi\)
0.354583 + 0.935025i \(0.384623\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2.99782e6 −1.08560
\(28\) 0 0
\(29\) −3.02575e6 −0.794404 −0.397202 0.917731i \(-0.630019\pi\)
−0.397202 + 0.917731i \(0.630019\pi\)
\(30\) 0 0
\(31\) 9.43462e6 1.83483 0.917417 0.397926i \(-0.130270\pi\)
0.917417 + 0.397926i \(0.130270\pi\)
\(32\) 0 0
\(33\) 3.27134e6 0.480189
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.16984e7 1.02617 0.513084 0.858339i \(-0.328503\pi\)
0.513084 + 0.858339i \(0.328503\pi\)
\(38\) 0 0
\(39\) −1.83774e6 −0.127202
\(40\) 0 0
\(41\) 3.49741e7 1.93295 0.966473 0.256769i \(-0.0826578\pi\)
0.966473 + 0.256769i \(0.0826578\pi\)
\(42\) 0 0
\(43\) −2.26136e7 −1.00870 −0.504349 0.863500i \(-0.668268\pi\)
−0.504349 + 0.863500i \(0.668268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.58030e6 −0.166808 −0.0834041 0.996516i \(-0.526579\pi\)
−0.0834041 + 0.996516i \(0.526579\pi\)
\(48\) 0 0
\(49\) 4.44590e7 1.10173
\(50\) 0 0
\(51\) 3.42316e7 0.708534
\(52\) 0 0
\(53\) −5.54605e7 −0.965477 −0.482739 0.875765i \(-0.660358\pi\)
−0.482739 + 0.875765i \(0.660358\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.98782e6 0.0500378
\(58\) 0 0
\(59\) −8.51084e7 −0.914404 −0.457202 0.889363i \(-0.651148\pi\)
−0.457202 + 0.889363i \(0.651148\pi\)
\(60\) 0 0
\(61\) 4.85791e7 0.449226 0.224613 0.974448i \(-0.427888\pi\)
0.224613 + 0.974448i \(0.427888\pi\)
\(62\) 0 0
\(63\) 7.07433e7 0.565787
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.20748e7 −0.315712 −0.157856 0.987462i \(-0.550458\pi\)
−0.157856 + 0.987462i \(0.550458\pi\)
\(68\) 0 0
\(69\) 1.04265e8 0.553754
\(70\) 0 0
\(71\) 1.14674e8 0.535551 0.267776 0.963481i \(-0.413711\pi\)
0.267776 + 0.963481i \(0.413711\pi\)
\(72\) 0 0
\(73\) −4.47760e8 −1.84541 −0.922704 0.385508i \(-0.874026\pi\)
−0.922704 + 0.385508i \(0.874026\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.75005e8 −0.891522
\(78\) 0 0
\(79\) 9.18141e7 0.265208 0.132604 0.991169i \(-0.457666\pi\)
0.132604 + 0.991169i \(0.457666\pi\)
\(80\) 0 0
\(81\) −1.77215e8 −0.457422
\(82\) 0 0
\(83\) −5.87254e8 −1.35823 −0.679117 0.734030i \(-0.737637\pi\)
−0.679117 + 0.734030i \(0.737637\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.31472e8 −0.620313
\(88\) 0 0
\(89\) −4.81494e8 −0.813459 −0.406729 0.913549i \(-0.633331\pi\)
−0.406729 + 0.913549i \(0.633331\pi\)
\(90\) 0 0
\(91\) 1.54489e8 0.236163
\(92\) 0 0
\(93\) 1.03357e9 1.43274
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.37193e9 −1.57347 −0.786733 0.617293i \(-0.788229\pi\)
−0.786733 + 0.617293i \(0.788229\pi\)
\(98\) 0 0
\(99\) −2.29385e8 −0.239998
\(100\) 0 0
\(101\) −1.23051e9 −1.17662 −0.588312 0.808634i \(-0.700207\pi\)
−0.588312 + 0.808634i \(0.700207\pi\)
\(102\) 0 0
\(103\) −8.07913e8 −0.707289 −0.353645 0.935380i \(-0.615058\pi\)
−0.353645 + 0.935380i \(0.615058\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.59875e9 1.17911 0.589553 0.807730i \(-0.299304\pi\)
0.589553 + 0.807730i \(0.299304\pi\)
\(108\) 0 0
\(109\) −1.08078e9 −0.733361 −0.366680 0.930347i \(-0.619506\pi\)
−0.366680 + 0.930347i \(0.619506\pi\)
\(110\) 0 0
\(111\) 1.28157e9 0.801286
\(112\) 0 0
\(113\) −1.52041e9 −0.877217 −0.438608 0.898678i \(-0.644528\pi\)
−0.438608 + 0.898678i \(0.644528\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.28862e8 0.0635751
\(118\) 0 0
\(119\) −2.87768e9 −1.31547
\(120\) 0 0
\(121\) −1.46624e9 −0.621831
\(122\) 0 0
\(123\) 3.83144e9 1.50935
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.75891e9 1.62327 0.811634 0.584166i \(-0.198578\pi\)
0.811634 + 0.584166i \(0.198578\pi\)
\(128\) 0 0
\(129\) −2.47733e9 −0.787645
\(130\) 0 0
\(131\) 3.43225e9 1.01826 0.509129 0.860690i \(-0.329968\pi\)
0.509129 + 0.860690i \(0.329968\pi\)
\(132\) 0 0
\(133\) −3.35236e8 −0.0929005
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.21292e7 0.0126427 0.00632133 0.999980i \(-0.497988\pi\)
0.00632133 + 0.999980i \(0.497988\pi\)
\(138\) 0 0
\(139\) −5.87422e9 −1.33470 −0.667350 0.744744i \(-0.732571\pi\)
−0.667350 + 0.744744i \(0.732571\pi\)
\(140\) 0 0
\(141\) −6.11325e8 −0.130253
\(142\) 0 0
\(143\) −5.00932e8 −0.100177
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.87051e9 0.860292
\(148\) 0 0
\(149\) 9.63272e9 1.60107 0.800535 0.599285i \(-0.204549\pi\)
0.800535 + 0.599285i \(0.204549\pi\)
\(150\) 0 0
\(151\) 6.41660e9 1.00440 0.502202 0.864750i \(-0.332523\pi\)
0.502202 + 0.864750i \(0.332523\pi\)
\(152\) 0 0
\(153\) −2.40031e9 −0.354124
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.12424e10 −1.47676 −0.738381 0.674384i \(-0.764409\pi\)
−0.738381 + 0.674384i \(0.764409\pi\)
\(158\) 0 0
\(159\) −6.07573e9 −0.753896
\(160\) 0 0
\(161\) −8.76502e9 −1.02810
\(162\) 0 0
\(163\) −3.86388e9 −0.428726 −0.214363 0.976754i \(-0.568768\pi\)
−0.214363 + 0.976754i \(0.568768\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.78459e10 −1.77547 −0.887736 0.460353i \(-0.847723\pi\)
−0.887736 + 0.460353i \(0.847723\pi\)
\(168\) 0 0
\(169\) −1.03231e10 −0.973463
\(170\) 0 0
\(171\) −2.79625e8 −0.0250088
\(172\) 0 0
\(173\) 1.32509e10 1.12470 0.562351 0.826899i \(-0.309897\pi\)
0.562351 + 0.826899i \(0.309897\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.32367e9 −0.714015
\(178\) 0 0
\(179\) 5.98157e9 0.435488 0.217744 0.976006i \(-0.430130\pi\)
0.217744 + 0.976006i \(0.430130\pi\)
\(180\) 0 0
\(181\) −2.23916e10 −1.55071 −0.775355 0.631525i \(-0.782429\pi\)
−0.775355 + 0.631525i \(0.782429\pi\)
\(182\) 0 0
\(183\) 5.32187e9 0.350780
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.33087e9 0.558001
\(188\) 0 0
\(189\) 2.76080e10 1.57383
\(190\) 0 0
\(191\) 2.90074e10 1.57710 0.788549 0.614972i \(-0.210833\pi\)
0.788549 + 0.614972i \(0.210833\pi\)
\(192\) 0 0
\(193\) −2.00528e10 −1.04032 −0.520161 0.854068i \(-0.674128\pi\)
−0.520161 + 0.854068i \(0.674128\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.23440e10 −0.583928 −0.291964 0.956429i \(-0.594309\pi\)
−0.291964 + 0.956429i \(0.594309\pi\)
\(198\) 0 0
\(199\) 2.71589e10 1.22765 0.613823 0.789443i \(-0.289631\pi\)
0.613823 + 0.789443i \(0.289631\pi\)
\(200\) 0 0
\(201\) −5.70483e9 −0.246525
\(202\) 0 0
\(203\) 2.78652e10 1.15168
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.31101e9 −0.276765
\(208\) 0 0
\(209\) 1.08700e9 0.0394069
\(210\) 0 0
\(211\) −9.20982e9 −0.319875 −0.159937 0.987127i \(-0.551129\pi\)
−0.159937 + 0.987127i \(0.551129\pi\)
\(212\) 0 0
\(213\) 1.25626e10 0.418187
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −8.68870e10 −2.66003
\(218\) 0 0
\(219\) −4.90524e10 −1.44099
\(220\) 0 0
\(221\) −5.24180e9 −0.147814
\(222\) 0 0
\(223\) −2.43587e10 −0.659601 −0.329801 0.944051i \(-0.606982\pi\)
−0.329801 + 0.944051i \(0.606982\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.95512e9 0.148859 0.0744294 0.997226i \(-0.476286\pi\)
0.0744294 + 0.997226i \(0.476286\pi\)
\(228\) 0 0
\(229\) −1.97476e10 −0.474521 −0.237260 0.971446i \(-0.576249\pi\)
−0.237260 + 0.971446i \(0.576249\pi\)
\(230\) 0 0
\(231\) −3.01270e10 −0.696148
\(232\) 0 0
\(233\) 4.95653e10 1.10173 0.550866 0.834594i \(-0.314298\pi\)
0.550866 + 0.834594i \(0.314298\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.00583e10 0.207089
\(238\) 0 0
\(239\) 2.55103e10 0.505738 0.252869 0.967501i \(-0.418626\pi\)
0.252869 + 0.967501i \(0.418626\pi\)
\(240\) 0 0
\(241\) 4.72387e10 0.902031 0.451015 0.892516i \(-0.351062\pi\)
0.451015 + 0.892516i \(0.351062\pi\)
\(242\) 0 0
\(243\) 3.95920e10 0.728416
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.10645e8 −0.0104389
\(248\) 0 0
\(249\) −6.43340e10 −1.06058
\(250\) 0 0
\(251\) −3.60294e10 −0.572962 −0.286481 0.958086i \(-0.592485\pi\)
−0.286481 + 0.958086i \(0.592485\pi\)
\(252\) 0 0
\(253\) 2.84206e10 0.436104
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.80945e10 1.11666 0.558330 0.829619i \(-0.311442\pi\)
0.558330 + 0.829619i \(0.311442\pi\)
\(258\) 0 0
\(259\) −1.07735e11 −1.48767
\(260\) 0 0
\(261\) 2.32427e10 0.310031
\(262\) 0 0
\(263\) 1.93335e10 0.249178 0.124589 0.992208i \(-0.460239\pi\)
0.124589 + 0.992208i \(0.460239\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.27479e10 −0.635192
\(268\) 0 0
\(269\) −1.70381e11 −1.98398 −0.991989 0.126327i \(-0.959681\pi\)
−0.991989 + 0.126327i \(0.959681\pi\)
\(270\) 0 0
\(271\) 5.21132e10 0.586929 0.293465 0.955970i \(-0.405192\pi\)
0.293465 + 0.955970i \(0.405192\pi\)
\(272\) 0 0
\(273\) 1.69244e10 0.184409
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.96913e10 0.711245 0.355623 0.934630i \(-0.384269\pi\)
0.355623 + 0.934630i \(0.384269\pi\)
\(278\) 0 0
\(279\) −7.24736e10 −0.716078
\(280\) 0 0
\(281\) −1.23747e11 −1.18401 −0.592005 0.805935i \(-0.701663\pi\)
−0.592005 + 0.805935i \(0.701663\pi\)
\(282\) 0 0
\(283\) 1.02892e11 0.953544 0.476772 0.879027i \(-0.341807\pi\)
0.476772 + 0.879027i \(0.341807\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.22090e11 −2.80226
\(288\) 0 0
\(289\) −2.09489e10 −0.176653
\(290\) 0 0
\(291\) −1.50295e11 −1.22865
\(292\) 0 0
\(293\) 4.52713e10 0.358855 0.179427 0.983771i \(-0.442576\pi\)
0.179427 + 0.983771i \(0.442576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −8.95190e10 −0.667592
\(298\) 0 0
\(299\) −1.59658e10 −0.115524
\(300\) 0 0
\(301\) 2.08257e11 1.46235
\(302\) 0 0
\(303\) −1.34803e11 −0.918771
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.27144e11 −1.45941 −0.729707 0.683760i \(-0.760343\pi\)
−0.729707 + 0.683760i \(0.760343\pi\)
\(308\) 0 0
\(309\) −8.85074e10 −0.552289
\(310\) 0 0
\(311\) −1.15793e11 −0.701877 −0.350939 0.936398i \(-0.614137\pi\)
−0.350939 + 0.936398i \(0.614137\pi\)
\(312\) 0 0
\(313\) −1.00580e11 −0.592329 −0.296164 0.955137i \(-0.595708\pi\)
−0.296164 + 0.955137i \(0.595708\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.04758e10 −0.447609 −0.223805 0.974634i \(-0.571848\pi\)
−0.223805 + 0.974634i \(0.571848\pi\)
\(318\) 0 0
\(319\) −9.03530e10 −0.488522
\(320\) 0 0
\(321\) 1.75144e11 0.920709
\(322\) 0 0
\(323\) 1.13745e10 0.0581461
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.18400e11 −0.572647
\(328\) 0 0
\(329\) 5.13911e10 0.241828
\(330\) 0 0
\(331\) −3.95335e11 −1.81025 −0.905127 0.425141i \(-0.860225\pi\)
−0.905127 + 0.425141i \(0.860225\pi\)
\(332\) 0 0
\(333\) −8.98630e10 −0.400481
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.03418e11 −1.28146 −0.640732 0.767765i \(-0.721369\pi\)
−0.640732 + 0.767765i \(0.721369\pi\)
\(338\) 0 0
\(339\) −1.66562e11 −0.684977
\(340\) 0 0
\(341\) 2.81731e11 1.12834
\(342\) 0 0
\(343\) −3.78077e10 −0.147488
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.49981e11 −0.555332 −0.277666 0.960678i \(-0.589561\pi\)
−0.277666 + 0.960678i \(0.589561\pi\)
\(348\) 0 0
\(349\) −4.12719e11 −1.48916 −0.744578 0.667535i \(-0.767349\pi\)
−0.744578 + 0.667535i \(0.767349\pi\)
\(350\) 0 0
\(351\) 5.02891e10 0.176845
\(352\) 0 0
\(353\) 3.72053e11 1.27532 0.637659 0.770319i \(-0.279903\pi\)
0.637659 + 0.770319i \(0.279903\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.15251e11 −1.02719
\(358\) 0 0
\(359\) 1.29954e11 0.412920 0.206460 0.978455i \(-0.433806\pi\)
0.206460 + 0.978455i \(0.433806\pi\)
\(360\) 0 0
\(361\) −3.21363e11 −0.995894
\(362\) 0 0
\(363\) −1.60628e11 −0.485558
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.13597e11 −1.19009 −0.595045 0.803692i \(-0.702866\pi\)
−0.595045 + 0.803692i \(0.702866\pi\)
\(368\) 0 0
\(369\) −2.68659e11 −0.754368
\(370\) 0 0
\(371\) 5.10756e11 1.39969
\(372\) 0 0
\(373\) −4.96023e11 −1.32682 −0.663410 0.748256i \(-0.730891\pi\)
−0.663410 + 0.748256i \(0.730891\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.07576e10 0.129409
\(378\) 0 0
\(379\) −1.86834e11 −0.465135 −0.232567 0.972580i \(-0.574713\pi\)
−0.232567 + 0.972580i \(0.574713\pi\)
\(380\) 0 0
\(381\) 5.21341e11 1.26753
\(382\) 0 0
\(383\) 3.96068e11 0.940535 0.470267 0.882524i \(-0.344157\pi\)
0.470267 + 0.882524i \(0.344157\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.73710e11 0.393664
\(388\) 0 0
\(389\) −4.64849e11 −1.02929 −0.514646 0.857403i \(-0.672077\pi\)
−0.514646 + 0.857403i \(0.672077\pi\)
\(390\) 0 0
\(391\) 2.97395e11 0.643486
\(392\) 0 0
\(393\) 3.76005e11 0.795110
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.04945e11 0.818161 0.409080 0.912498i \(-0.365850\pi\)
0.409080 + 0.912498i \(0.365850\pi\)
\(398\) 0 0
\(399\) −3.67253e10 −0.0725416
\(400\) 0 0
\(401\) −9.10722e11 −1.75888 −0.879440 0.476010i \(-0.842083\pi\)
−0.879440 + 0.476010i \(0.842083\pi\)
\(402\) 0 0
\(403\) −1.58268e11 −0.298896
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.49330e11 0.631046
\(408\) 0 0
\(409\) 6.22611e11 1.10017 0.550087 0.835107i \(-0.314594\pi\)
0.550087 + 0.835107i \(0.314594\pi\)
\(410\) 0 0
\(411\) 5.71078e9 0.00987205
\(412\) 0 0
\(413\) 7.83795e11 1.32564
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −6.43525e11 −1.04220
\(418\) 0 0
\(419\) 5.77692e11 0.915657 0.457829 0.889040i \(-0.348627\pi\)
0.457829 + 0.889040i \(0.348627\pi\)
\(420\) 0 0
\(421\) 2.19223e11 0.340109 0.170054 0.985435i \(-0.445606\pi\)
0.170054 + 0.985435i \(0.445606\pi\)
\(422\) 0 0
\(423\) 4.28660e10 0.0651000
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.47383e11 −0.651259
\(428\) 0 0
\(429\) −5.48774e10 −0.0782233
\(430\) 0 0
\(431\) −7.43484e11 −1.03782 −0.518912 0.854828i \(-0.673663\pi\)
−0.518912 + 0.854828i \(0.673663\pi\)
\(432\) 0 0
\(433\) −2.19028e11 −0.299436 −0.149718 0.988729i \(-0.547837\pi\)
−0.149718 + 0.988729i \(0.547837\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.46452e10 0.0454440
\(438\) 0 0
\(439\) −9.31553e11 −1.19706 −0.598532 0.801099i \(-0.704249\pi\)
−0.598532 + 0.801099i \(0.704249\pi\)
\(440\) 0 0
\(441\) −3.41518e11 −0.429972
\(442\) 0 0
\(443\) 9.53901e11 1.17676 0.588378 0.808586i \(-0.299767\pi\)
0.588378 + 0.808586i \(0.299767\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.05527e12 1.25020
\(448\) 0 0
\(449\) 9.16478e11 1.06418 0.532088 0.846689i \(-0.321407\pi\)
0.532088 + 0.846689i \(0.321407\pi\)
\(450\) 0 0
\(451\) 1.04438e12 1.18867
\(452\) 0 0
\(453\) 7.02943e11 0.784292
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.25903e11 −0.885740 −0.442870 0.896586i \(-0.646040\pi\)
−0.442870 + 0.896586i \(0.646040\pi\)
\(458\) 0 0
\(459\) −9.36735e11 −0.985053
\(460\) 0 0
\(461\) −1.60225e12 −1.65225 −0.826125 0.563487i \(-0.809459\pi\)
−0.826125 + 0.563487i \(0.809459\pi\)
\(462\) 0 0
\(463\) 1.37910e12 1.39471 0.697353 0.716728i \(-0.254361\pi\)
0.697353 + 0.716728i \(0.254361\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.55852e11 0.929961 0.464980 0.885321i \(-0.346061\pi\)
0.464980 + 0.885321i \(0.346061\pi\)
\(468\) 0 0
\(469\) 4.79576e11 0.457699
\(470\) 0 0
\(471\) −1.23161e12 −1.15313
\(472\) 0 0
\(473\) −6.75274e11 −0.620304
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.26028e11 0.376795
\(478\) 0 0
\(479\) −1.16208e12 −1.00861 −0.504307 0.863524i \(-0.668252\pi\)
−0.504307 + 0.863524i \(0.668252\pi\)
\(480\) 0 0
\(481\) −1.96243e11 −0.167164
\(482\) 0 0
\(483\) −9.60213e11 −0.802797
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.30662e11 −0.669182 −0.334591 0.942364i \(-0.608598\pi\)
−0.334591 + 0.942364i \(0.608598\pi\)
\(488\) 0 0
\(489\) −4.23291e11 −0.334772
\(490\) 0 0
\(491\) −3.17729e11 −0.246712 −0.123356 0.992362i \(-0.539366\pi\)
−0.123356 + 0.992362i \(0.539366\pi\)
\(492\) 0 0
\(493\) −9.45462e11 −0.720830
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.05607e12 −0.776408
\(498\) 0 0
\(499\) 2.15696e12 1.55736 0.778680 0.627421i \(-0.215889\pi\)
0.778680 + 0.627421i \(0.215889\pi\)
\(500\) 0 0
\(501\) −1.95503e12 −1.38638
\(502\) 0 0
\(503\) 1.24185e12 0.864996 0.432498 0.901635i \(-0.357632\pi\)
0.432498 + 0.901635i \(0.357632\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.13090e12 −0.760132
\(508\) 0 0
\(509\) 2.49436e12 1.64713 0.823566 0.567220i \(-0.191981\pi\)
0.823566 + 0.567220i \(0.191981\pi\)
\(510\) 0 0
\(511\) 4.12359e12 2.67536
\(512\) 0 0
\(513\) −1.09125e11 −0.0695660
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.66636e11 −0.102579
\(518\) 0 0
\(519\) 1.45164e12 0.878227
\(520\) 0 0
\(521\) −6.12898e11 −0.364434 −0.182217 0.983258i \(-0.558327\pi\)
−0.182217 + 0.983258i \(0.558327\pi\)
\(522\) 0 0
\(523\) −3.03989e12 −1.77664 −0.888321 0.459223i \(-0.848128\pi\)
−0.888321 + 0.459223i \(0.848128\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.94806e12 1.66490
\(528\) 0 0
\(529\) −8.95326e11 −0.497085
\(530\) 0 0
\(531\) 6.53773e11 0.356863
\(532\) 0 0
\(533\) −5.86700e11 −0.314879
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.55285e11 0.340052
\(538\) 0 0
\(539\) 1.32761e12 0.677517
\(540\) 0 0
\(541\) 2.86670e12 1.43878 0.719390 0.694606i \(-0.244421\pi\)
0.719390 + 0.694606i \(0.244421\pi\)
\(542\) 0 0
\(543\) −2.45301e12 −1.21088
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.44503e12 1.16772 0.583862 0.811853i \(-0.301541\pi\)
0.583862 + 0.811853i \(0.301541\pi\)
\(548\) 0 0
\(549\) −3.73168e11 −0.175319
\(550\) 0 0
\(551\) −1.10142e11 −0.0509062
\(552\) 0 0
\(553\) −8.45550e11 −0.384482
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.40112e12 0.616777 0.308389 0.951260i \(-0.400210\pi\)
0.308389 + 0.951260i \(0.400210\pi\)
\(558\) 0 0
\(559\) 3.79348e11 0.164318
\(560\) 0 0
\(561\) 1.02220e12 0.435716
\(562\) 0 0
\(563\) −3.12352e11 −0.131026 −0.0655129 0.997852i \(-0.520868\pi\)
−0.0655129 + 0.997852i \(0.520868\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.63203e12 0.663141
\(568\) 0 0
\(569\) −1.50839e12 −0.603266 −0.301633 0.953424i \(-0.597532\pi\)
−0.301633 + 0.953424i \(0.597532\pi\)
\(570\) 0 0
\(571\) 1.77207e12 0.697621 0.348810 0.937193i \(-0.386586\pi\)
0.348810 + 0.937193i \(0.386586\pi\)
\(572\) 0 0
\(573\) 3.17778e12 1.23148
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5.81248e10 −0.0218308 −0.0109154 0.999940i \(-0.503475\pi\)
−0.0109154 + 0.999940i \(0.503475\pi\)
\(578\) 0 0
\(579\) −2.19680e12 −0.812338
\(580\) 0 0
\(581\) 5.40824e12 1.96908
\(582\) 0 0
\(583\) −1.65613e12 −0.593725
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.72424e11 −0.233761 −0.116880 0.993146i \(-0.537289\pi\)
−0.116880 + 0.993146i \(0.537289\pi\)
\(588\) 0 0
\(589\) 3.43435e11 0.117578
\(590\) 0 0
\(591\) −1.35230e12 −0.455962
\(592\) 0 0
\(593\) −4.33711e12 −1.44031 −0.720153 0.693816i \(-0.755928\pi\)
−0.720153 + 0.693816i \(0.755928\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.97527e12 0.958611
\(598\) 0 0
\(599\) 3.37288e11 0.107048 0.0535242 0.998567i \(-0.482955\pi\)
0.0535242 + 0.998567i \(0.482955\pi\)
\(600\) 0 0
\(601\) −3.13643e11 −0.0980619 −0.0490309 0.998797i \(-0.515613\pi\)
−0.0490309 + 0.998797i \(0.515613\pi\)
\(602\) 0 0
\(603\) 4.00021e11 0.123212
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.29060e12 0.385872 0.192936 0.981211i \(-0.438199\pi\)
0.192936 + 0.981211i \(0.438199\pi\)
\(608\) 0 0
\(609\) 3.05265e12 0.899290
\(610\) 0 0
\(611\) 9.36109e10 0.0271732
\(612\) 0 0
\(613\) −3.58380e12 −1.02511 −0.512556 0.858654i \(-0.671301\pi\)
−0.512556 + 0.858654i \(0.671301\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.46900e12 1.51923 0.759617 0.650370i \(-0.225386\pi\)
0.759617 + 0.650370i \(0.225386\pi\)
\(618\) 0 0
\(619\) 5.83483e12 1.59743 0.798713 0.601713i \(-0.205515\pi\)
0.798713 + 0.601713i \(0.205515\pi\)
\(620\) 0 0
\(621\) −2.85317e12 −0.769866
\(622\) 0 0
\(623\) 4.43426e12 1.17930
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.19082e11 0.0307710
\(628\) 0 0
\(629\) 3.65542e12 0.931129
\(630\) 0 0
\(631\) −4.43138e12 −1.11277 −0.556387 0.830923i \(-0.687813\pi\)
−0.556387 + 0.830923i \(0.687813\pi\)
\(632\) 0 0
\(633\) −1.00894e12 −0.249775
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −7.45810e11 −0.179474
\(638\) 0 0
\(639\) −8.80883e11 −0.209009
\(640\) 0 0
\(641\) 2.38785e12 0.558659 0.279329 0.960195i \(-0.409888\pi\)
0.279329 + 0.960195i \(0.409888\pi\)
\(642\) 0 0
\(643\) −1.42772e12 −0.329378 −0.164689 0.986346i \(-0.552662\pi\)
−0.164689 + 0.986346i \(0.552662\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.43250e12 −0.994443 −0.497221 0.867624i \(-0.665646\pi\)
−0.497221 + 0.867624i \(0.665646\pi\)
\(648\) 0 0
\(649\) −2.54146e12 −0.562317
\(650\) 0 0
\(651\) −9.51852e12 −2.07709
\(652\) 0 0
\(653\) 6.61930e11 0.142463 0.0712316 0.997460i \(-0.477307\pi\)
0.0712316 + 0.997460i \(0.477307\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.43954e12 0.720205
\(658\) 0 0
\(659\) −7.94755e12 −1.64153 −0.820765 0.571266i \(-0.806452\pi\)
−0.820765 + 0.571266i \(0.806452\pi\)
\(660\) 0 0
\(661\) 8.06071e11 0.164235 0.0821177 0.996623i \(-0.473832\pi\)
0.0821177 + 0.996623i \(0.473832\pi\)
\(662\) 0 0
\(663\) −5.74242e11 −0.115421
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.87975e12 −0.563364
\(668\) 0 0
\(669\) −2.66851e12 −0.515052
\(670\) 0 0
\(671\) 1.45064e12 0.276254
\(672\) 0 0
\(673\) 3.67873e12 0.691241 0.345621 0.938374i \(-0.387668\pi\)
0.345621 + 0.938374i \(0.387668\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.60384e12 1.39118 0.695591 0.718438i \(-0.255143\pi\)
0.695591 + 0.718438i \(0.255143\pi\)
\(678\) 0 0
\(679\) 1.26346e13 2.28111
\(680\) 0 0
\(681\) 6.52388e11 0.116237
\(682\) 0 0
\(683\) −6.89820e12 −1.21295 −0.606475 0.795103i \(-0.707417\pi\)
−0.606475 + 0.795103i \(0.707417\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.16336e12 −0.370531
\(688\) 0 0
\(689\) 9.30362e11 0.157277
\(690\) 0 0
\(691\) −4.45838e12 −0.743920 −0.371960 0.928249i \(-0.621314\pi\)
−0.371960 + 0.928249i \(0.621314\pi\)
\(692\) 0 0
\(693\) 2.11249e12 0.347933
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.09285e13 1.75393
\(698\) 0 0
\(699\) 5.42991e12 0.860291
\(700\) 0 0
\(701\) −2.34128e12 −0.366203 −0.183102 0.983094i \(-0.558614\pi\)
−0.183102 + 0.983094i \(0.558614\pi\)
\(702\) 0 0
\(703\) 4.25840e11 0.0657578
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.13322e13 1.70579
\(708\) 0 0
\(709\) 5.10575e12 0.758841 0.379421 0.925224i \(-0.376123\pi\)
0.379421 + 0.925224i \(0.376123\pi\)
\(710\) 0 0
\(711\) −7.05284e11 −0.103503
\(712\) 0 0
\(713\) 8.97940e12 1.30120
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.79467e12 0.394907
\(718\) 0 0
\(719\) 1.39438e12 0.194581 0.0972907 0.995256i \(-0.468982\pi\)
0.0972907 + 0.995256i \(0.468982\pi\)
\(720\) 0 0
\(721\) 7.44037e12 1.02538
\(722\) 0 0
\(723\) 5.17503e12 0.704353
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.87221e12 −0.381339 −0.190669 0.981654i \(-0.561066\pi\)
−0.190669 + 0.981654i \(0.561066\pi\)
\(728\) 0 0
\(729\) 7.82545e12 1.02621
\(730\) 0 0
\(731\) −7.06612e12 −0.915278
\(732\) 0 0
\(733\) −3.91043e12 −0.500330 −0.250165 0.968203i \(-0.580485\pi\)
−0.250165 + 0.968203i \(0.580485\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.55503e12 −0.194149
\(738\) 0 0
\(739\) 1.00098e12 0.123460 0.0617298 0.998093i \(-0.480338\pi\)
0.0617298 + 0.998093i \(0.480338\pi\)
\(740\) 0 0
\(741\) −6.68966e10 −0.00815121
\(742\) 0 0
\(743\) −5.19147e12 −0.624943 −0.312472 0.949927i \(-0.601157\pi\)
−0.312472 + 0.949927i \(0.601157\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.51108e12 0.530076
\(748\) 0 0
\(749\) −1.47235e13 −1.70939
\(750\) 0 0
\(751\) 1.48763e13 1.70654 0.853268 0.521473i \(-0.174617\pi\)
0.853268 + 0.521473i \(0.174617\pi\)
\(752\) 0 0
\(753\) −3.94705e12 −0.447399
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.03576e13 −1.14637 −0.573187 0.819425i \(-0.694293\pi\)
−0.573187 + 0.819425i \(0.694293\pi\)
\(758\) 0 0
\(759\) 3.11349e12 0.340533
\(760\) 0 0
\(761\) 2.88282e11 0.0311592 0.0155796 0.999879i \(-0.495041\pi\)
0.0155796 + 0.999879i \(0.495041\pi\)
\(762\) 0 0
\(763\) 9.95330e12 1.06318
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.42771e12 0.148957
\(768\) 0 0
\(769\) 1.28801e13 1.32816 0.664081 0.747661i \(-0.268823\pi\)
0.664081 + 0.747661i \(0.268823\pi\)
\(770\) 0 0
\(771\) 8.55530e12 0.871948
\(772\) 0 0
\(773\) −9.40486e12 −0.947425 −0.473712 0.880680i \(-0.657086\pi\)
−0.473712 + 0.880680i \(0.657086\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.18024e13 −1.16165
\(778\) 0 0
\(779\) 1.27311e12 0.123865
\(780\) 0 0
\(781\) 3.42431e12 0.329340
\(782\) 0 0
\(783\) 9.07063e12 0.862401
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 8.24747e12 0.766363 0.383181 0.923673i \(-0.374828\pi\)
0.383181 + 0.923673i \(0.374828\pi\)
\(788\) 0 0
\(789\) 2.11800e12 0.194572
\(790\) 0 0
\(791\) 1.40020e13 1.27173
\(792\) 0 0
\(793\) −8.14926e11 −0.0731794
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.35880e12 −0.294864 −0.147432 0.989072i \(-0.547101\pi\)
−0.147432 + 0.989072i \(0.547101\pi\)
\(798\) 0 0
\(799\) −1.74369e12 −0.151359
\(800\) 0 0
\(801\) 3.69867e12 0.317468
\(802\) 0 0
\(803\) −1.33707e13 −1.13484
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.86654e13 −1.54919
\(808\) 0 0
\(809\) −6.87559e12 −0.564341 −0.282171 0.959364i \(-0.591054\pi\)
−0.282171 + 0.959364i \(0.591054\pi\)
\(810\) 0 0
\(811\) −2.11160e13 −1.71402 −0.857012 0.515296i \(-0.827682\pi\)
−0.857012 + 0.515296i \(0.827682\pi\)
\(812\) 0 0
\(813\) 5.70903e12 0.458305
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.23171e11 −0.0646384
\(818\) 0 0
\(819\) −1.18674e12 −0.0921672
\(820\) 0 0
\(821\) −3.67955e12 −0.282651 −0.141325 0.989963i \(-0.545136\pi\)
−0.141325 + 0.989963i \(0.545136\pi\)
\(822\) 0 0
\(823\) 6.15696e12 0.467807 0.233904 0.972260i \(-0.424850\pi\)
0.233904 + 0.972260i \(0.424850\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.99295e12 0.296838 0.148419 0.988925i \(-0.452582\pi\)
0.148419 + 0.988925i \(0.452582\pi\)
\(828\) 0 0
\(829\) 1.16163e12 0.0854229 0.0427114 0.999087i \(-0.486400\pi\)
0.0427114 + 0.999087i \(0.486400\pi\)
\(830\) 0 0
\(831\) 7.63472e12 0.555378
\(832\) 0 0
\(833\) 1.38922e13 0.999697
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.82833e13 −1.99189
\(838\) 0 0
\(839\) −1.05218e13 −0.733099 −0.366550 0.930398i \(-0.619461\pi\)
−0.366550 + 0.930398i \(0.619461\pi\)
\(840\) 0 0
\(841\) −5.35201e12 −0.368922
\(842\) 0 0
\(843\) −1.35565e13 −0.924537
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.35032e13 0.901490
\(848\) 0 0
\(849\) 1.12718e13 0.744578
\(850\) 0 0
\(851\) 1.11339e13 0.727722
\(852\) 0 0
\(853\) −1.18899e13 −0.768967 −0.384484 0.923132i \(-0.625620\pi\)
−0.384484 + 0.923132i \(0.625620\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.57517e12 0.163077 0.0815385 0.996670i \(-0.474017\pi\)
0.0815385 + 0.996670i \(0.474017\pi\)
\(858\) 0 0
\(859\) −1.61942e13 −1.01482 −0.507411 0.861704i \(-0.669398\pi\)
−0.507411 + 0.861704i \(0.669398\pi\)
\(860\) 0 0
\(861\) −3.52852e13 −2.18815
\(862\) 0 0
\(863\) −4.94014e12 −0.303173 −0.151586 0.988444i \(-0.548438\pi\)
−0.151586 + 0.988444i \(0.548438\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.29496e12 −0.137940
\(868\) 0 0
\(869\) 2.74170e12 0.163091
\(870\) 0 0
\(871\) 8.73567e11 0.0514298
\(872\) 0 0
\(873\) 1.05387e13 0.614075
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.68472e12 0.495744 0.247872 0.968793i \(-0.420269\pi\)
0.247872 + 0.968793i \(0.420269\pi\)
\(878\) 0 0
\(879\) 4.95950e12 0.280213
\(880\) 0 0
\(881\) −1.02139e13 −0.571214 −0.285607 0.958347i \(-0.592195\pi\)
−0.285607 + 0.958347i \(0.592195\pi\)
\(882\) 0 0
\(883\) 3.58719e12 0.198578 0.0992891 0.995059i \(-0.468343\pi\)
0.0992891 + 0.995059i \(0.468343\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.72905e13 −1.48032 −0.740160 0.672431i \(-0.765250\pi\)
−0.740160 + 0.672431i \(0.765250\pi\)
\(888\) 0 0
\(889\) −4.38266e13 −2.35331
\(890\) 0 0
\(891\) −5.29187e12 −0.281294
\(892\) 0 0
\(893\) −2.03132e11 −0.0106892
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.74907e12 −0.0902070
\(898\) 0 0
\(899\) −2.85468e13 −1.45760
\(900\) 0 0
\(901\) −1.73299e13 −0.876059
\(902\) 0 0
\(903\) 2.28147e13 1.14188
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.79849e13 −0.882418 −0.441209 0.897404i \(-0.645450\pi\)
−0.441209 + 0.897404i \(0.645450\pi\)
\(908\) 0 0
\(909\) 9.45233e12 0.459200
\(910\) 0 0
\(911\) 1.80978e13 0.870549 0.435275 0.900298i \(-0.356651\pi\)
0.435275 + 0.900298i \(0.356651\pi\)
\(912\) 0 0
\(913\) −1.75362e13 −0.835252
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.16089e13 −1.47621
\(918\) 0 0
\(919\) −3.09898e13 −1.43317 −0.716586 0.697498i \(-0.754296\pi\)
−0.716586 + 0.697498i \(0.754296\pi\)
\(920\) 0 0
\(921\) −2.48838e13 −1.13959
\(922\) 0 0
\(923\) −1.92368e12 −0.0872418
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.20611e12 0.276033
\(928\) 0 0
\(929\) −2.53410e13 −1.11623 −0.558113 0.829765i \(-0.688475\pi\)
−0.558113 + 0.829765i \(0.688475\pi\)
\(930\) 0 0
\(931\) 1.61838e12 0.0706002
\(932\) 0 0
\(933\) −1.26852e13 −0.548063
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7.05858e12 −0.299150 −0.149575 0.988750i \(-0.547791\pi\)
−0.149575 + 0.988750i \(0.547791\pi\)
\(938\) 0 0
\(939\) −1.10186e13 −0.462522
\(940\) 0 0
\(941\) 4.06352e12 0.168947 0.0844733 0.996426i \(-0.473079\pi\)
0.0844733 + 0.996426i \(0.473079\pi\)
\(942\) 0 0
\(943\) 3.32866e13 1.37078
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.96392e12 0.160158 0.0800792 0.996789i \(-0.474483\pi\)
0.0800792 + 0.996789i \(0.474483\pi\)
\(948\) 0 0
\(949\) 7.51128e12 0.300619
\(950\) 0 0
\(951\) −8.81618e12 −0.349517
\(952\) 0 0
\(953\) 1.82636e12 0.0717246 0.0358623 0.999357i \(-0.488582\pi\)
0.0358623 + 0.999357i \(0.488582\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −9.89823e12 −0.381464
\(958\) 0 0
\(959\) −4.80077e11 −0.0183285
\(960\) 0 0
\(961\) 6.25725e13 2.36662
\(962\) 0 0
\(963\) −1.22810e13 −0.460168
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.71062e13 0.629122 0.314561 0.949237i \(-0.398143\pi\)
0.314561 + 0.949237i \(0.398143\pi\)
\(968\) 0 0
\(969\) 1.24608e12 0.0454036
\(970\) 0 0
\(971\) 6.43910e12 0.232455 0.116227 0.993223i \(-0.462920\pi\)
0.116227 + 0.993223i \(0.462920\pi\)
\(972\) 0 0
\(973\) 5.40979e13 1.93496
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.72264e13 −0.604880 −0.302440 0.953168i \(-0.597801\pi\)
−0.302440 + 0.953168i \(0.597801\pi\)
\(978\) 0 0
\(979\) −1.43781e13 −0.500240
\(980\) 0 0
\(981\) 8.30217e12 0.286208
\(982\) 0 0
\(983\) 1.22407e13 0.418134 0.209067 0.977901i \(-0.432957\pi\)
0.209067 + 0.977901i \(0.432957\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 5.62992e12 0.188832
\(988\) 0 0
\(989\) −2.15225e13 −0.715334
\(990\) 0 0
\(991\) 2.74736e13 0.904867 0.452434 0.891798i \(-0.350556\pi\)
0.452434 + 0.891798i \(0.350556\pi\)
\(992\) 0 0
\(993\) −4.33092e13 −1.41354
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.32279e13 −0.423996 −0.211998 0.977270i \(-0.567997\pi\)
−0.211998 + 0.977270i \(0.567997\pi\)
\(998\) 0 0
\(999\) −3.50696e13 −1.11400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.10.a.o.1.2 2
4.3 odd 2 200.10.a.d.1.1 2
5.2 odd 4 400.10.c.o.49.2 4
5.3 odd 4 400.10.c.o.49.3 4
5.4 even 2 80.10.a.h.1.1 2
20.3 even 4 200.10.c.e.49.2 4
20.7 even 4 200.10.c.e.49.3 4
20.19 odd 2 40.10.a.b.1.2 2
40.19 odd 2 320.10.a.p.1.1 2
40.29 even 2 320.10.a.o.1.2 2
60.59 even 2 360.10.a.a.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.10.a.b.1.2 2 20.19 odd 2
80.10.a.h.1.1 2 5.4 even 2
200.10.a.d.1.1 2 4.3 odd 2
200.10.c.e.49.2 4 20.3 even 4
200.10.c.e.49.3 4 20.7 even 4
320.10.a.o.1.2 2 40.29 even 2
320.10.a.p.1.1 2 40.19 odd 2
360.10.a.a.1.1 2 60.59 even 2
400.10.a.o.1.2 2 1.1 even 1 trivial
400.10.c.o.49.2 4 5.2 odd 4
400.10.c.o.49.3 4 5.3 odd 4