Properties

Label 200.10.c.e.49.3
Level $200$
Weight $10$
Character 200.49
Analytic conductor $103.007$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,10,Mod(49,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.49"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-26516] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(103.007167233\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6049})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3025x^{2} + 2286144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(38.3877i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.10.c.e.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+109.551i q^{3} +9209.37i q^{7} +7681.66 q^{9} -29861.4 q^{11} +16775.2i q^{13} +312472. i q^{17} +36401.6 q^{19} -1.00889e6 q^{21} +951749. i q^{23} +2.99782e6i q^{27} +3.02575e6 q^{29} -9.43462e6 q^{31} -3.27134e6i q^{33} +1.16984e7i q^{37} -1.83774e6 q^{39} +3.49741e7 q^{41} -2.26136e7i q^{43} +5.58030e6i q^{47} -4.44590e7 q^{49} -3.42316e7 q^{51} +5.54605e7i q^{53} +3.98782e6i q^{57} -8.51084e7 q^{59} +4.85791e7 q^{61} +7.07433e7i q^{63} +5.20748e7i q^{67} -1.04265e8 q^{69} -1.14674e8 q^{71} +4.47760e8i q^{73} -2.75005e8i q^{77} +9.18141e7 q^{79} -1.77215e8 q^{81} -5.87254e8i q^{83} +3.31472e8i q^{87} +4.81494e8 q^{89} -1.54489e8 q^{91} -1.03357e9i q^{93} -1.37193e9i q^{97} -2.29385e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 26516 q^{9} - 16160 q^{11} + 2313360 q^{19} - 2945472 q^{21} + 8424520 q^{29} - 22722256 q^{31} + 34688784 q^{39} + 26060872 q^{41} - 18803332 q^{49} - 62392560 q^{51} + 94725072 q^{59} + 407268856 q^{61}+ \cdots - 1370960608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 109.551i 0.780853i 0.920634 + 0.390426i \(0.127672\pi\)
−0.920634 + 0.390426i \(0.872328\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 9209.37i 1.44974i 0.688888 + 0.724868i \(0.258099\pi\)
−0.688888 + 0.724868i \(0.741901\pi\)
\(8\) 0 0
\(9\) 7681.66 0.390269
\(10\) 0 0
\(11\) −29861.4 −0.614955 −0.307477 0.951555i \(-0.599485\pi\)
−0.307477 + 0.951555i \(0.599485\pi\)
\(12\) 0 0
\(13\) 16775.2i 0.162901i 0.996677 + 0.0814505i \(0.0259552\pi\)
−0.996677 + 0.0814505i \(0.974045\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 312472.i 0.907385i 0.891158 + 0.453692i \(0.149894\pi\)
−0.891158 + 0.453692i \(0.850106\pi\)
\(18\) 0 0
\(19\) 36401.6 0.0640810 0.0320405 0.999487i \(-0.489799\pi\)
0.0320405 + 0.999487i \(0.489799\pi\)
\(20\) 0 0
\(21\) −1.00889e6 −1.13203
\(22\) 0 0
\(23\) 951749.i 0.709165i 0.935025 + 0.354583i \(0.115377\pi\)
−0.935025 + 0.354583i \(0.884623\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.99782e6i 1.08560i
\(28\) 0 0
\(29\) 3.02575e6 0.794404 0.397202 0.917731i \(-0.369981\pi\)
0.397202 + 0.917731i \(0.369981\pi\)
\(30\) 0 0
\(31\) −9.43462e6 −1.83483 −0.917417 0.397926i \(-0.869730\pi\)
−0.917417 + 0.397926i \(0.869730\pi\)
\(32\) 0 0
\(33\) − 3.27134e6i − 0.480189i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.16984e7i 1.02617i 0.858339 + 0.513084i \(0.171497\pi\)
−0.858339 + 0.513084i \(0.828503\pi\)
\(38\) 0 0
\(39\) −1.83774e6 −0.127202
\(40\) 0 0
\(41\) 3.49741e7 1.93295 0.966473 0.256769i \(-0.0826578\pi\)
0.966473 + 0.256769i \(0.0826578\pi\)
\(42\) 0 0
\(43\) − 2.26136e7i − 1.00870i −0.863500 0.504349i \(-0.831732\pi\)
0.863500 0.504349i \(-0.168268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.58030e6i 0.166808i 0.996516 + 0.0834041i \(0.0265792\pi\)
−0.996516 + 0.0834041i \(0.973421\pi\)
\(48\) 0 0
\(49\) −4.44590e7 −1.10173
\(50\) 0 0
\(51\) −3.42316e7 −0.708534
\(52\) 0 0
\(53\) 5.54605e7i 0.965477i 0.875765 + 0.482739i \(0.160358\pi\)
−0.875765 + 0.482739i \(0.839642\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.98782e6i 0.0500378i
\(58\) 0 0
\(59\) −8.51084e7 −0.914404 −0.457202 0.889363i \(-0.651148\pi\)
−0.457202 + 0.889363i \(0.651148\pi\)
\(60\) 0 0
\(61\) 4.85791e7 0.449226 0.224613 0.974448i \(-0.427888\pi\)
0.224613 + 0.974448i \(0.427888\pi\)
\(62\) 0 0
\(63\) 7.07433e7i 0.565787i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.20748e7i 0.315712i 0.987462 + 0.157856i \(0.0504582\pi\)
−0.987462 + 0.157856i \(0.949542\pi\)
\(68\) 0 0
\(69\) −1.04265e8 −0.553754
\(70\) 0 0
\(71\) −1.14674e8 −0.535551 −0.267776 0.963481i \(-0.586289\pi\)
−0.267776 + 0.963481i \(0.586289\pi\)
\(72\) 0 0
\(73\) 4.47760e8i 1.84541i 0.385508 + 0.922704i \(0.374026\pi\)
−0.385508 + 0.922704i \(0.625974\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.75005e8i − 0.891522i
\(78\) 0 0
\(79\) 9.18141e7 0.265208 0.132604 0.991169i \(-0.457666\pi\)
0.132604 + 0.991169i \(0.457666\pi\)
\(80\) 0 0
\(81\) −1.77215e8 −0.457422
\(82\) 0 0
\(83\) − 5.87254e8i − 1.35823i −0.734030 0.679117i \(-0.762363\pi\)
0.734030 0.679117i \(-0.237637\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.31472e8i 0.620313i
\(88\) 0 0
\(89\) 4.81494e8 0.813459 0.406729 0.913549i \(-0.366669\pi\)
0.406729 + 0.913549i \(0.366669\pi\)
\(90\) 0 0
\(91\) −1.54489e8 −0.236163
\(92\) 0 0
\(93\) − 1.03357e9i − 1.43274i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.37193e9i − 1.57347i −0.617293 0.786733i \(-0.711771\pi\)
0.617293 0.786733i \(-0.288229\pi\)
\(98\) 0 0
\(99\) −2.29385e8 −0.239998
\(100\) 0 0
\(101\) −1.23051e9 −1.17662 −0.588312 0.808634i \(-0.700207\pi\)
−0.588312 + 0.808634i \(0.700207\pi\)
\(102\) 0 0
\(103\) − 8.07913e8i − 0.707289i −0.935380 0.353645i \(-0.884942\pi\)
0.935380 0.353645i \(-0.115058\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.59875e9i − 1.17911i −0.807730 0.589553i \(-0.799304\pi\)
0.807730 0.589553i \(-0.200696\pi\)
\(108\) 0 0
\(109\) 1.08078e9 0.733361 0.366680 0.930347i \(-0.380494\pi\)
0.366680 + 0.930347i \(0.380494\pi\)
\(110\) 0 0
\(111\) −1.28157e9 −0.801286
\(112\) 0 0
\(113\) 1.52041e9i 0.877217i 0.898678 + 0.438608i \(0.144528\pi\)
−0.898678 + 0.438608i \(0.855472\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.28862e8i 0.0635751i
\(118\) 0 0
\(119\) −2.87768e9 −1.31547
\(120\) 0 0
\(121\) −1.46624e9 −0.621831
\(122\) 0 0
\(123\) 3.83144e9i 1.50935i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 4.75891e9i − 1.62327i −0.584166 0.811634i \(-0.698578\pi\)
0.584166 0.811634i \(-0.301422\pi\)
\(128\) 0 0
\(129\) 2.47733e9 0.787645
\(130\) 0 0
\(131\) −3.43225e9 −1.01826 −0.509129 0.860690i \(-0.670032\pi\)
−0.509129 + 0.860690i \(0.670032\pi\)
\(132\) 0 0
\(133\) 3.35236e8i 0.0929005i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.21292e7i 0.0126427i 0.999980 + 0.00632133i \(0.00201215\pi\)
−0.999980 + 0.00632133i \(0.997988\pi\)
\(138\) 0 0
\(139\) −5.87422e9 −1.33470 −0.667350 0.744744i \(-0.732571\pi\)
−0.667350 + 0.744744i \(0.732571\pi\)
\(140\) 0 0
\(141\) −6.11325e8 −0.130253
\(142\) 0 0
\(143\) − 5.00932e8i − 0.100177i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 4.87051e9i − 0.860292i
\(148\) 0 0
\(149\) −9.63272e9 −1.60107 −0.800535 0.599285i \(-0.795451\pi\)
−0.800535 + 0.599285i \(0.795451\pi\)
\(150\) 0 0
\(151\) −6.41660e9 −1.00440 −0.502202 0.864750i \(-0.667477\pi\)
−0.502202 + 0.864750i \(0.667477\pi\)
\(152\) 0 0
\(153\) 2.40031e9i 0.354124i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1.12424e10i − 1.47676i −0.674384 0.738381i \(-0.735591\pi\)
0.674384 0.738381i \(-0.264409\pi\)
\(158\) 0 0
\(159\) −6.07573e9 −0.753896
\(160\) 0 0
\(161\) −8.76502e9 −1.02810
\(162\) 0 0
\(163\) − 3.86388e9i − 0.428726i −0.976754 0.214363i \(-0.931232\pi\)
0.976754 0.214363i \(-0.0687675\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.78459e10i 1.77547i 0.460353 + 0.887736i \(0.347723\pi\)
−0.460353 + 0.887736i \(0.652277\pi\)
\(168\) 0 0
\(169\) 1.03231e10 0.973463
\(170\) 0 0
\(171\) 2.79625e8 0.0250088
\(172\) 0 0
\(173\) − 1.32509e10i − 1.12470i −0.826899 0.562351i \(-0.809897\pi\)
0.826899 0.562351i \(-0.190103\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 9.32367e9i − 0.714015i
\(178\) 0 0
\(179\) 5.98157e9 0.435488 0.217744 0.976006i \(-0.430130\pi\)
0.217744 + 0.976006i \(0.430130\pi\)
\(180\) 0 0
\(181\) −2.23916e10 −1.55071 −0.775355 0.631525i \(-0.782429\pi\)
−0.775355 + 0.631525i \(0.782429\pi\)
\(182\) 0 0
\(183\) 5.32187e9i 0.350780i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 9.33087e9i − 0.558001i
\(188\) 0 0
\(189\) −2.76080e10 −1.57383
\(190\) 0 0
\(191\) −2.90074e10 −1.57710 −0.788549 0.614972i \(-0.789167\pi\)
−0.788549 + 0.614972i \(0.789167\pi\)
\(192\) 0 0
\(193\) 2.00528e10i 1.04032i 0.854068 + 0.520161i \(0.174128\pi\)
−0.854068 + 0.520161i \(0.825872\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.23440e10i − 0.583928i −0.956429 0.291964i \(-0.905691\pi\)
0.956429 0.291964i \(-0.0943087\pi\)
\(198\) 0 0
\(199\) 2.71589e10 1.22765 0.613823 0.789443i \(-0.289631\pi\)
0.613823 + 0.789443i \(0.289631\pi\)
\(200\) 0 0
\(201\) −5.70483e9 −0.246525
\(202\) 0 0
\(203\) 2.78652e10i 1.15168i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.31101e9i 0.276765i
\(208\) 0 0
\(209\) −1.08700e9 −0.0394069
\(210\) 0 0
\(211\) 9.20982e9 0.319875 0.159937 0.987127i \(-0.448871\pi\)
0.159937 + 0.987127i \(0.448871\pi\)
\(212\) 0 0
\(213\) − 1.25626e10i − 0.418187i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.68870e10i − 2.66003i
\(218\) 0 0
\(219\) −4.90524e10 −1.44099
\(220\) 0 0
\(221\) −5.24180e9 −0.147814
\(222\) 0 0
\(223\) − 2.43587e10i − 0.659601i −0.944051 0.329801i \(-0.893018\pi\)
0.944051 0.329801i \(-0.106982\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 5.95512e9i − 0.148859i −0.997226 0.0744294i \(-0.976286\pi\)
0.997226 0.0744294i \(-0.0237135\pi\)
\(228\) 0 0
\(229\) 1.97476e10 0.474521 0.237260 0.971446i \(-0.423751\pi\)
0.237260 + 0.971446i \(0.423751\pi\)
\(230\) 0 0
\(231\) 3.01270e10 0.696148
\(232\) 0 0
\(233\) − 4.95653e10i − 1.10173i −0.834594 0.550866i \(-0.814298\pi\)
0.834594 0.550866i \(-0.185702\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.00583e10i 0.207089i
\(238\) 0 0
\(239\) 2.55103e10 0.505738 0.252869 0.967501i \(-0.418626\pi\)
0.252869 + 0.967501i \(0.418626\pi\)
\(240\) 0 0
\(241\) 4.72387e10 0.902031 0.451015 0.892516i \(-0.351062\pi\)
0.451015 + 0.892516i \(0.351062\pi\)
\(242\) 0 0
\(243\) 3.95920e10i 0.728416i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.10645e8i 0.0104389i
\(248\) 0 0
\(249\) 6.43340e10 1.06058
\(250\) 0 0
\(251\) 3.60294e10 0.572962 0.286481 0.958086i \(-0.407515\pi\)
0.286481 + 0.958086i \(0.407515\pi\)
\(252\) 0 0
\(253\) − 2.84206e10i − 0.436104i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.80945e10i 1.11666i 0.829619 + 0.558330i \(0.188558\pi\)
−0.829619 + 0.558330i \(0.811442\pi\)
\(258\) 0 0
\(259\) −1.07735e11 −1.48767
\(260\) 0 0
\(261\) 2.32427e10 0.310031
\(262\) 0 0
\(263\) 1.93335e10i 0.249178i 0.992208 + 0.124589i \(0.0397613\pi\)
−0.992208 + 0.124589i \(0.960239\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.27479e10i 0.635192i
\(268\) 0 0
\(269\) 1.70381e11 1.98398 0.991989 0.126327i \(-0.0403187\pi\)
0.991989 + 0.126327i \(0.0403187\pi\)
\(270\) 0 0
\(271\) −5.21132e10 −0.586929 −0.293465 0.955970i \(-0.594808\pi\)
−0.293465 + 0.955970i \(0.594808\pi\)
\(272\) 0 0
\(273\) − 1.69244e10i − 0.184409i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.96913e10i 0.711245i 0.934630 + 0.355623i \(0.115731\pi\)
−0.934630 + 0.355623i \(0.884269\pi\)
\(278\) 0 0
\(279\) −7.24736e10 −0.716078
\(280\) 0 0
\(281\) −1.23747e11 −1.18401 −0.592005 0.805935i \(-0.701663\pi\)
−0.592005 + 0.805935i \(0.701663\pi\)
\(282\) 0 0
\(283\) 1.02892e11i 0.953544i 0.879027 + 0.476772i \(0.158193\pi\)
−0.879027 + 0.476772i \(0.841807\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.22090e11i 2.80226i
\(288\) 0 0
\(289\) 2.09489e10 0.176653
\(290\) 0 0
\(291\) 1.50295e11 1.22865
\(292\) 0 0
\(293\) − 4.52713e10i − 0.358855i −0.983771 0.179427i \(-0.942576\pi\)
0.983771 0.179427i \(-0.0574245\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 8.95190e10i − 0.667592i
\(298\) 0 0
\(299\) −1.59658e10 −0.115524
\(300\) 0 0
\(301\) 2.08257e11 1.46235
\(302\) 0 0
\(303\) − 1.34803e11i − 0.918771i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.27144e11i 1.45941i 0.683760 + 0.729707i \(0.260343\pi\)
−0.683760 + 0.729707i \(0.739657\pi\)
\(308\) 0 0
\(309\) 8.85074e10 0.552289
\(310\) 0 0
\(311\) 1.15793e11 0.701877 0.350939 0.936398i \(-0.385863\pi\)
0.350939 + 0.936398i \(0.385863\pi\)
\(312\) 0 0
\(313\) 1.00580e11i 0.592329i 0.955137 + 0.296164i \(0.0957076\pi\)
−0.955137 + 0.296164i \(0.904292\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 8.04758e10i − 0.447609i −0.974634 0.223805i \(-0.928152\pi\)
0.974634 0.223805i \(-0.0718477\pi\)
\(318\) 0 0
\(319\) −9.03530e10 −0.488522
\(320\) 0 0
\(321\) 1.75144e11 0.920709
\(322\) 0 0
\(323\) 1.13745e10i 0.0581461i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.18400e11i 0.572647i
\(328\) 0 0
\(329\) −5.13911e10 −0.241828
\(330\) 0 0
\(331\) 3.95335e11 1.81025 0.905127 0.425141i \(-0.139775\pi\)
0.905127 + 0.425141i \(0.139775\pi\)
\(332\) 0 0
\(333\) 8.98630e10i 0.400481i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3.03418e11i − 1.28146i −0.767765 0.640732i \(-0.778631\pi\)
0.767765 0.640732i \(-0.221369\pi\)
\(338\) 0 0
\(339\) −1.66562e11 −0.684977
\(340\) 0 0
\(341\) 2.81731e11 1.12834
\(342\) 0 0
\(343\) − 3.78077e10i − 0.147488i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.49981e11i 0.555332i 0.960678 + 0.277666i \(0.0895609\pi\)
−0.960678 + 0.277666i \(0.910439\pi\)
\(348\) 0 0
\(349\) 4.12719e11 1.48916 0.744578 0.667535i \(-0.232651\pi\)
0.744578 + 0.667535i \(0.232651\pi\)
\(350\) 0 0
\(351\) −5.02891e10 −0.176845
\(352\) 0 0
\(353\) − 3.72053e11i − 1.27532i −0.770319 0.637659i \(-0.779903\pi\)
0.770319 0.637659i \(-0.220097\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 3.15251e11i − 1.02719i
\(358\) 0 0
\(359\) 1.29954e11 0.412920 0.206460 0.978455i \(-0.433806\pi\)
0.206460 + 0.978455i \(0.433806\pi\)
\(360\) 0 0
\(361\) −3.21363e11 −0.995894
\(362\) 0 0
\(363\) − 1.60628e11i − 0.485558i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.13597e11i 1.19009i 0.803692 + 0.595045i \(0.202866\pi\)
−0.803692 + 0.595045i \(0.797134\pi\)
\(368\) 0 0
\(369\) 2.68659e11 0.754368
\(370\) 0 0
\(371\) −5.10756e11 −1.39969
\(372\) 0 0
\(373\) 4.96023e11i 1.32682i 0.748256 + 0.663410i \(0.230891\pi\)
−0.748256 + 0.663410i \(0.769109\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.07576e10i 0.129409i
\(378\) 0 0
\(379\) −1.86834e11 −0.465135 −0.232567 0.972580i \(-0.574713\pi\)
−0.232567 + 0.972580i \(0.574713\pi\)
\(380\) 0 0
\(381\) 5.21341e11 1.26753
\(382\) 0 0
\(383\) 3.96068e11i 0.940535i 0.882524 + 0.470267i \(0.155843\pi\)
−0.882524 + 0.470267i \(0.844157\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.73710e11i − 0.393664i
\(388\) 0 0
\(389\) 4.64849e11 1.02929 0.514646 0.857403i \(-0.327923\pi\)
0.514646 + 0.857403i \(0.327923\pi\)
\(390\) 0 0
\(391\) −2.97395e11 −0.643486
\(392\) 0 0
\(393\) − 3.76005e11i − 0.795110i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.04945e11i 0.818161i 0.912498 + 0.409080i \(0.134150\pi\)
−0.912498 + 0.409080i \(0.865850\pi\)
\(398\) 0 0
\(399\) −3.67253e10 −0.0725416
\(400\) 0 0
\(401\) −9.10722e11 −1.75888 −0.879440 0.476010i \(-0.842083\pi\)
−0.879440 + 0.476010i \(0.842083\pi\)
\(402\) 0 0
\(403\) − 1.58268e11i − 0.298896i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 3.49330e11i − 0.631046i
\(408\) 0 0
\(409\) −6.22611e11 −1.10017 −0.550087 0.835107i \(-0.685406\pi\)
−0.550087 + 0.835107i \(0.685406\pi\)
\(410\) 0 0
\(411\) −5.71078e9 −0.00987205
\(412\) 0 0
\(413\) − 7.83795e11i − 1.32564i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 6.43525e11i − 1.04220i
\(418\) 0 0
\(419\) 5.77692e11 0.915657 0.457829 0.889040i \(-0.348627\pi\)
0.457829 + 0.889040i \(0.348627\pi\)
\(420\) 0 0
\(421\) 2.19223e11 0.340109 0.170054 0.985435i \(-0.445606\pi\)
0.170054 + 0.985435i \(0.445606\pi\)
\(422\) 0 0
\(423\) 4.28660e10i 0.0651000i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.47383e11i 0.651259i
\(428\) 0 0
\(429\) 5.48774e10 0.0782233
\(430\) 0 0
\(431\) 7.43484e11 1.03782 0.518912 0.854828i \(-0.326337\pi\)
0.518912 + 0.854828i \(0.326337\pi\)
\(432\) 0 0
\(433\) 2.19028e11i 0.299436i 0.988729 + 0.149718i \(0.0478366\pi\)
−0.988729 + 0.149718i \(0.952163\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.46452e10i 0.0454440i
\(438\) 0 0
\(439\) −9.31553e11 −1.19706 −0.598532 0.801099i \(-0.704249\pi\)
−0.598532 + 0.801099i \(0.704249\pi\)
\(440\) 0 0
\(441\) −3.41518e11 −0.429972
\(442\) 0 0
\(443\) 9.53901e11i 1.17676i 0.808586 + 0.588378i \(0.200233\pi\)
−0.808586 + 0.588378i \(0.799767\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 1.05527e12i − 1.25020i
\(448\) 0 0
\(449\) −9.16478e11 −1.06418 −0.532088 0.846689i \(-0.678593\pi\)
−0.532088 + 0.846689i \(0.678593\pi\)
\(450\) 0 0
\(451\) −1.04438e12 −1.18867
\(452\) 0 0
\(453\) − 7.02943e11i − 0.784292i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.25903e11i − 0.885740i −0.896586 0.442870i \(-0.853960\pi\)
0.896586 0.442870i \(-0.146040\pi\)
\(458\) 0 0
\(459\) −9.36735e11 −0.985053
\(460\) 0 0
\(461\) −1.60225e12 −1.65225 −0.826125 0.563487i \(-0.809459\pi\)
−0.826125 + 0.563487i \(0.809459\pi\)
\(462\) 0 0
\(463\) 1.37910e12i 1.39471i 0.716728 + 0.697353i \(0.245639\pi\)
−0.716728 + 0.697353i \(0.754361\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 9.55852e11i − 0.929961i −0.885321 0.464980i \(-0.846061\pi\)
0.885321 0.464980i \(-0.153939\pi\)
\(468\) 0 0
\(469\) −4.79576e11 −0.457699
\(470\) 0 0
\(471\) 1.23161e12 1.15313
\(472\) 0 0
\(473\) 6.75274e11i 0.620304i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.26028e11i 0.376795i
\(478\) 0 0
\(479\) −1.16208e12 −1.00861 −0.504307 0.863524i \(-0.668252\pi\)
−0.504307 + 0.863524i \(0.668252\pi\)
\(480\) 0 0
\(481\) −1.96243e11 −0.167164
\(482\) 0 0
\(483\) − 9.60213e11i − 0.802797i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.30662e11i 0.669182i 0.942364 + 0.334591i \(0.108598\pi\)
−0.942364 + 0.334591i \(0.891402\pi\)
\(488\) 0 0
\(489\) 4.23291e11 0.334772
\(490\) 0 0
\(491\) 3.17729e11 0.246712 0.123356 0.992362i \(-0.460634\pi\)
0.123356 + 0.992362i \(0.460634\pi\)
\(492\) 0 0
\(493\) 9.45462e11i 0.720830i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1.05607e12i − 0.776408i
\(498\) 0 0
\(499\) 2.15696e12 1.55736 0.778680 0.627421i \(-0.215889\pi\)
0.778680 + 0.627421i \(0.215889\pi\)
\(500\) 0 0
\(501\) −1.95503e12 −1.38638
\(502\) 0 0
\(503\) 1.24185e12i 0.864996i 0.901635 + 0.432498i \(0.142368\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.13090e12i 0.760132i
\(508\) 0 0
\(509\) −2.49436e12 −1.64713 −0.823566 0.567220i \(-0.808019\pi\)
−0.823566 + 0.567220i \(0.808019\pi\)
\(510\) 0 0
\(511\) −4.12359e12 −2.67536
\(512\) 0 0
\(513\) 1.09125e11i 0.0695660i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.66636e11i − 0.102579i
\(518\) 0 0
\(519\) 1.45164e12 0.878227
\(520\) 0 0
\(521\) −6.12898e11 −0.364434 −0.182217 0.983258i \(-0.558327\pi\)
−0.182217 + 0.983258i \(0.558327\pi\)
\(522\) 0 0
\(523\) − 3.03989e12i − 1.77664i −0.459223 0.888321i \(-0.651872\pi\)
0.459223 0.888321i \(-0.348128\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 2.94806e12i − 1.66490i
\(528\) 0 0
\(529\) 8.95326e11 0.497085
\(530\) 0 0
\(531\) −6.53773e11 −0.356863
\(532\) 0 0
\(533\) 5.86700e11i 0.314879i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.55285e11i 0.340052i
\(538\) 0 0
\(539\) 1.32761e12 0.677517
\(540\) 0 0
\(541\) 2.86670e12 1.43878 0.719390 0.694606i \(-0.244421\pi\)
0.719390 + 0.694606i \(0.244421\pi\)
\(542\) 0 0
\(543\) − 2.45301e12i − 1.21088i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 2.44503e12i − 1.16772i −0.811853 0.583862i \(-0.801541\pi\)
0.811853 0.583862i \(-0.198459\pi\)
\(548\) 0 0
\(549\) 3.73168e11 0.175319
\(550\) 0 0
\(551\) 1.10142e11 0.0509062
\(552\) 0 0
\(553\) 8.45550e11i 0.384482i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.40112e12i 0.616777i 0.951260 + 0.308389i \(0.0997897\pi\)
−0.951260 + 0.308389i \(0.900210\pi\)
\(558\) 0 0
\(559\) 3.79348e11 0.164318
\(560\) 0 0
\(561\) 1.02220e12 0.435716
\(562\) 0 0
\(563\) − 3.12352e11i − 0.131026i −0.997852 0.0655129i \(-0.979132\pi\)
0.997852 0.0655129i \(-0.0208683\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.63203e12i − 0.663141i
\(568\) 0 0
\(569\) 1.50839e12 0.603266 0.301633 0.953424i \(-0.402468\pi\)
0.301633 + 0.953424i \(0.402468\pi\)
\(570\) 0 0
\(571\) −1.77207e12 −0.697621 −0.348810 0.937193i \(-0.613414\pi\)
−0.348810 + 0.937193i \(0.613414\pi\)
\(572\) 0 0
\(573\) − 3.17778e12i − 1.23148i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 5.81248e10i − 0.0218308i −0.999940 0.0109154i \(-0.996525\pi\)
0.999940 0.0109154i \(-0.00347455\pi\)
\(578\) 0 0
\(579\) −2.19680e12 −0.812338
\(580\) 0 0
\(581\) 5.40824e12 1.96908
\(582\) 0 0
\(583\) − 1.65613e12i − 0.593725i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.72424e11i 0.233761i 0.993146 + 0.116880i \(0.0372894\pi\)
−0.993146 + 0.116880i \(0.962711\pi\)
\(588\) 0 0
\(589\) −3.43435e11 −0.117578
\(590\) 0 0
\(591\) 1.35230e12 0.455962
\(592\) 0 0
\(593\) 4.33711e12i 1.44031i 0.693816 + 0.720153i \(0.255928\pi\)
−0.693816 + 0.720153i \(0.744072\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.97527e12i 0.958611i
\(598\) 0 0
\(599\) 3.37288e11 0.107048 0.0535242 0.998567i \(-0.482955\pi\)
0.0535242 + 0.998567i \(0.482955\pi\)
\(600\) 0 0
\(601\) −3.13643e11 −0.0980619 −0.0490309 0.998797i \(-0.515613\pi\)
−0.0490309 + 0.998797i \(0.515613\pi\)
\(602\) 0 0
\(603\) 4.00021e11i 0.123212i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.29060e12i − 0.385872i −0.981211 0.192936i \(-0.938199\pi\)
0.981211 0.192936i \(-0.0618009\pi\)
\(608\) 0 0
\(609\) −3.05265e12 −0.899290
\(610\) 0 0
\(611\) −9.36109e10 −0.0271732
\(612\) 0 0
\(613\) 3.58380e12i 1.02511i 0.858654 + 0.512556i \(0.171301\pi\)
−0.858654 + 0.512556i \(0.828699\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.46900e12i 1.51923i 0.650370 + 0.759617i \(0.274614\pi\)
−0.650370 + 0.759617i \(0.725386\pi\)
\(618\) 0 0
\(619\) 5.83483e12 1.59743 0.798713 0.601713i \(-0.205515\pi\)
0.798713 + 0.601713i \(0.205515\pi\)
\(620\) 0 0
\(621\) −2.85317e12 −0.769866
\(622\) 0 0
\(623\) 4.43426e12i 1.17930i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.19082e11i − 0.0307710i
\(628\) 0 0
\(629\) −3.65542e12 −0.931129
\(630\) 0 0
\(631\) 4.43138e12 1.11277 0.556387 0.830923i \(-0.312187\pi\)
0.556387 + 0.830923i \(0.312187\pi\)
\(632\) 0 0
\(633\) 1.00894e12i 0.249775i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 7.45810e11i − 0.179474i
\(638\) 0 0
\(639\) −8.80883e11 −0.209009
\(640\) 0 0
\(641\) 2.38785e12 0.558659 0.279329 0.960195i \(-0.409888\pi\)
0.279329 + 0.960195i \(0.409888\pi\)
\(642\) 0 0
\(643\) − 1.42772e12i − 0.329378i −0.986346 0.164689i \(-0.947338\pi\)
0.986346 0.164689i \(-0.0526620\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.43250e12i 0.994443i 0.867624 + 0.497221i \(0.165646\pi\)
−0.867624 + 0.497221i \(0.834354\pi\)
\(648\) 0 0
\(649\) 2.54146e12 0.562317
\(650\) 0 0
\(651\) 9.51852e12 2.07709
\(652\) 0 0
\(653\) − 6.61930e11i − 0.142463i −0.997460 0.0712316i \(-0.977307\pi\)
0.997460 0.0712316i \(-0.0226929\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.43954e12i 0.720205i
\(658\) 0 0
\(659\) −7.94755e12 −1.64153 −0.820765 0.571266i \(-0.806452\pi\)
−0.820765 + 0.571266i \(0.806452\pi\)
\(660\) 0 0
\(661\) 8.06071e11 0.164235 0.0821177 0.996623i \(-0.473832\pi\)
0.0821177 + 0.996623i \(0.473832\pi\)
\(662\) 0 0
\(663\) − 5.74242e11i − 0.115421i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.87975e12i 0.563364i
\(668\) 0 0
\(669\) 2.66851e12 0.515052
\(670\) 0 0
\(671\) −1.45064e12 −0.276254
\(672\) 0 0
\(673\) − 3.67873e12i − 0.691241i −0.938374 0.345621i \(-0.887668\pi\)
0.938374 0.345621i \(-0.112332\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.60384e12i 1.39118i 0.718438 + 0.695591i \(0.244857\pi\)
−0.718438 + 0.695591i \(0.755143\pi\)
\(678\) 0 0
\(679\) 1.26346e13 2.28111
\(680\) 0 0
\(681\) 6.52388e11 0.116237
\(682\) 0 0
\(683\) − 6.89820e12i − 1.21295i −0.795103 0.606475i \(-0.792583\pi\)
0.795103 0.606475i \(-0.207417\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.16336e12i 0.370531i
\(688\) 0 0
\(689\) −9.30362e11 −0.157277
\(690\) 0 0
\(691\) 4.45838e12 0.743920 0.371960 0.928249i \(-0.378686\pi\)
0.371960 + 0.928249i \(0.378686\pi\)
\(692\) 0 0
\(693\) − 2.11249e12i − 0.347933i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.09285e13i 1.75393i
\(698\) 0 0
\(699\) 5.42991e12 0.860291
\(700\) 0 0
\(701\) −2.34128e12 −0.366203 −0.183102 0.983094i \(-0.558614\pi\)
−0.183102 + 0.983094i \(0.558614\pi\)
\(702\) 0 0
\(703\) 4.25840e11i 0.0657578i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.13322e13i − 1.70579i
\(708\) 0 0
\(709\) −5.10575e12 −0.758841 −0.379421 0.925224i \(-0.623877\pi\)
−0.379421 + 0.925224i \(0.623877\pi\)
\(710\) 0 0
\(711\) 7.05284e11 0.103503
\(712\) 0 0
\(713\) − 8.97940e12i − 1.30120i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.79467e12i 0.394907i
\(718\) 0 0
\(719\) 1.39438e12 0.194581 0.0972907 0.995256i \(-0.468982\pi\)
0.0972907 + 0.995256i \(0.468982\pi\)
\(720\) 0 0
\(721\) 7.44037e12 1.02538
\(722\) 0 0
\(723\) 5.17503e12i 0.704353i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.87221e12i 0.381339i 0.981654 + 0.190669i \(0.0610659\pi\)
−0.981654 + 0.190669i \(0.938934\pi\)
\(728\) 0 0
\(729\) −7.82545e12 −1.02621
\(730\) 0 0
\(731\) 7.06612e12 0.915278
\(732\) 0 0
\(733\) 3.91043e12i 0.500330i 0.968203 + 0.250165i \(0.0804849\pi\)
−0.968203 + 0.250165i \(0.919515\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 1.55503e12i − 0.194149i
\(738\) 0 0
\(739\) 1.00098e12 0.123460 0.0617298 0.998093i \(-0.480338\pi\)
0.0617298 + 0.998093i \(0.480338\pi\)
\(740\) 0 0
\(741\) −6.68966e10 −0.00815121
\(742\) 0 0
\(743\) − 5.19147e12i − 0.624943i −0.949927 0.312472i \(-0.898843\pi\)
0.949927 0.312472i \(-0.101157\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 4.51108e12i − 0.530076i
\(748\) 0 0
\(749\) 1.47235e13 1.70939
\(750\) 0 0
\(751\) −1.48763e13 −1.70654 −0.853268 0.521473i \(-0.825383\pi\)
−0.853268 + 0.521473i \(0.825383\pi\)
\(752\) 0 0
\(753\) 3.94705e12i 0.447399i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.03576e13i − 1.14637i −0.819425 0.573187i \(-0.805707\pi\)
0.819425 0.573187i \(-0.194293\pi\)
\(758\) 0 0
\(759\) 3.11349e12 0.340533
\(760\) 0 0
\(761\) 2.88282e11 0.0311592 0.0155796 0.999879i \(-0.495041\pi\)
0.0155796 + 0.999879i \(0.495041\pi\)
\(762\) 0 0
\(763\) 9.95330e12i 1.06318i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.42771e12i − 0.148957i
\(768\) 0 0
\(769\) −1.28801e13 −1.32816 −0.664081 0.747661i \(-0.731177\pi\)
−0.664081 + 0.747661i \(0.731177\pi\)
\(770\) 0 0
\(771\) −8.55530e12 −0.871948
\(772\) 0 0
\(773\) 9.40486e12i 0.947425i 0.880680 + 0.473712i \(0.157086\pi\)
−0.880680 + 0.473712i \(0.842914\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.18024e13i − 1.16165i
\(778\) 0 0
\(779\) 1.27311e12 0.123865
\(780\) 0 0
\(781\) 3.42431e12 0.329340
\(782\) 0 0
\(783\) 9.07063e12i 0.862401i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 8.24747e12i − 0.766363i −0.923673 0.383181i \(-0.874828\pi\)
0.923673 0.383181i \(-0.125172\pi\)
\(788\) 0 0
\(789\) −2.11800e12 −0.194572
\(790\) 0 0
\(791\) −1.40020e13 −1.27173
\(792\) 0 0
\(793\) 8.14926e11i 0.0731794i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.35880e12i − 0.294864i −0.989072 0.147432i \(-0.952899\pi\)
0.989072 0.147432i \(-0.0471008\pi\)
\(798\) 0 0
\(799\) −1.74369e12 −0.151359
\(800\) 0 0
\(801\) 3.69867e12 0.317468
\(802\) 0 0
\(803\) − 1.33707e13i − 1.13484i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.86654e13i 1.54919i
\(808\) 0 0
\(809\) 6.87559e12 0.564341 0.282171 0.959364i \(-0.408946\pi\)
0.282171 + 0.959364i \(0.408946\pi\)
\(810\) 0 0
\(811\) 2.11160e13 1.71402 0.857012 0.515296i \(-0.172318\pi\)
0.857012 + 0.515296i \(0.172318\pi\)
\(812\) 0 0
\(813\) − 5.70903e12i − 0.458305i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8.23171e11i − 0.0646384i
\(818\) 0 0
\(819\) −1.18674e12 −0.0921672
\(820\) 0 0
\(821\) −3.67955e12 −0.282651 −0.141325 0.989963i \(-0.545136\pi\)
−0.141325 + 0.989963i \(0.545136\pi\)
\(822\) 0 0
\(823\) 6.15696e12i 0.467807i 0.972260 + 0.233904i \(0.0751500\pi\)
−0.972260 + 0.233904i \(0.924850\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.99295e12i − 0.296838i −0.988925 0.148419i \(-0.952582\pi\)
0.988925 0.148419i \(-0.0474184\pi\)
\(828\) 0 0
\(829\) −1.16163e12 −0.0854229 −0.0427114 0.999087i \(-0.513600\pi\)
−0.0427114 + 0.999087i \(0.513600\pi\)
\(830\) 0 0
\(831\) −7.63472e12 −0.555378
\(832\) 0 0
\(833\) − 1.38922e13i − 0.999697i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.82833e13i − 1.99189i
\(838\) 0 0
\(839\) −1.05218e13 −0.733099 −0.366550 0.930398i \(-0.619461\pi\)
−0.366550 + 0.930398i \(0.619461\pi\)
\(840\) 0 0
\(841\) −5.35201e12 −0.368922
\(842\) 0 0
\(843\) − 1.35565e13i − 0.924537i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1.35032e13i − 0.901490i
\(848\) 0 0
\(849\) −1.12718e13 −0.744578
\(850\) 0 0
\(851\) −1.11339e13 −0.727722
\(852\) 0 0
\(853\) 1.18899e13i 0.768967i 0.923132 + 0.384484i \(0.125620\pi\)
−0.923132 + 0.384484i \(0.874380\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.57517e12i 0.163077i 0.996670 + 0.0815385i \(0.0259834\pi\)
−0.996670 + 0.0815385i \(0.974017\pi\)
\(858\) 0 0
\(859\) −1.61942e13 −1.01482 −0.507411 0.861704i \(-0.669398\pi\)
−0.507411 + 0.861704i \(0.669398\pi\)
\(860\) 0 0
\(861\) −3.52852e13 −2.18815
\(862\) 0 0
\(863\) − 4.94014e12i − 0.303173i −0.988444 0.151586i \(-0.951562\pi\)
0.988444 0.151586i \(-0.0484382\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2.29496e12i 0.137940i
\(868\) 0 0
\(869\) −2.74170e12 −0.163091
\(870\) 0 0
\(871\) −8.73567e11 −0.0514298
\(872\) 0 0
\(873\) − 1.05387e13i − 0.614075i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.68472e12i 0.495744i 0.968793 + 0.247872i \(0.0797313\pi\)
−0.968793 + 0.247872i \(0.920269\pi\)
\(878\) 0 0
\(879\) 4.95950e12 0.280213
\(880\) 0 0
\(881\) −1.02139e13 −0.571214 −0.285607 0.958347i \(-0.592195\pi\)
−0.285607 + 0.958347i \(0.592195\pi\)
\(882\) 0 0
\(883\) 3.58719e12i 0.198578i 0.995059 + 0.0992891i \(0.0316569\pi\)
−0.995059 + 0.0992891i \(0.968343\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.72905e13i 1.48032i 0.672431 + 0.740160i \(0.265250\pi\)
−0.672431 + 0.740160i \(0.734750\pi\)
\(888\) 0 0
\(889\) 4.38266e13 2.35331
\(890\) 0 0
\(891\) 5.29187e12 0.281294
\(892\) 0 0
\(893\) 2.03132e11i 0.0106892i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.74907e12i − 0.0902070i
\(898\) 0 0
\(899\) −2.85468e13 −1.45760
\(900\) 0 0
\(901\) −1.73299e13 −0.876059
\(902\) 0 0
\(903\) 2.28147e13i 1.14188i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.79849e13i 0.882418i 0.897404 + 0.441209i \(0.145450\pi\)
−0.897404 + 0.441209i \(0.854550\pi\)
\(908\) 0 0
\(909\) −9.45233e12 −0.459200
\(910\) 0 0
\(911\) −1.80978e13 −0.870549 −0.435275 0.900298i \(-0.643349\pi\)
−0.435275 + 0.900298i \(0.643349\pi\)
\(912\) 0 0
\(913\) 1.75362e13i 0.835252i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 3.16089e13i − 1.47621i
\(918\) 0 0
\(919\) −3.09898e13 −1.43317 −0.716586 0.697498i \(-0.754296\pi\)
−0.716586 + 0.697498i \(0.754296\pi\)
\(920\) 0 0
\(921\) −2.48838e13 −1.13959
\(922\) 0 0
\(923\) − 1.92368e12i − 0.0872418i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 6.20611e12i − 0.276033i
\(928\) 0 0
\(929\) 2.53410e13 1.11623 0.558113 0.829765i \(-0.311525\pi\)
0.558113 + 0.829765i \(0.311525\pi\)
\(930\) 0 0
\(931\) −1.61838e12 −0.0706002
\(932\) 0 0
\(933\) 1.26852e13i 0.548063i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 7.05858e12i − 0.299150i −0.988750 0.149575i \(-0.952209\pi\)
0.988750 0.149575i \(-0.0477905\pi\)
\(938\) 0 0
\(939\) −1.10186e13 −0.462522
\(940\) 0 0
\(941\) 4.06352e12 0.168947 0.0844733 0.996426i \(-0.473079\pi\)
0.0844733 + 0.996426i \(0.473079\pi\)
\(942\) 0 0
\(943\) 3.32866e13i 1.37078i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 3.96392e12i − 0.160158i −0.996789 0.0800792i \(-0.974483\pi\)
0.996789 0.0800792i \(-0.0255173\pi\)
\(948\) 0 0
\(949\) −7.51128e12 −0.300619
\(950\) 0 0
\(951\) 8.81618e12 0.349517
\(952\) 0 0
\(953\) − 1.82636e12i − 0.0717246i −0.999357 0.0358623i \(-0.988582\pi\)
0.999357 0.0358623i \(-0.0114178\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 9.89823e12i − 0.381464i
\(958\) 0 0
\(959\) −4.80077e11 −0.0183285
\(960\) 0 0
\(961\) 6.25725e13 2.36662
\(962\) 0 0
\(963\) − 1.22810e13i − 0.460168i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.71062e13i − 0.629122i −0.949237 0.314561i \(-0.898143\pi\)
0.949237 0.314561i \(-0.101857\pi\)
\(968\) 0 0
\(969\) −1.24608e12 −0.0454036
\(970\) 0 0
\(971\) −6.43910e12 −0.232455 −0.116227 0.993223i \(-0.537080\pi\)
−0.116227 + 0.993223i \(0.537080\pi\)
\(972\) 0 0
\(973\) − 5.40979e13i − 1.93496i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.72264e13i − 0.604880i −0.953168 0.302440i \(-0.902199\pi\)
0.953168 0.302440i \(-0.0978011\pi\)
\(978\) 0 0
\(979\) −1.43781e13 −0.500240
\(980\) 0 0
\(981\) 8.30217e12 0.286208
\(982\) 0 0
\(983\) 1.22407e13i 0.418134i 0.977901 + 0.209067i \(0.0670426\pi\)
−0.977901 + 0.209067i \(0.932957\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 5.62992e12i − 0.188832i
\(988\) 0 0
\(989\) 2.15225e13 0.715334
\(990\) 0 0
\(991\) −2.74736e13 −0.904867 −0.452434 0.891798i \(-0.649444\pi\)
−0.452434 + 0.891798i \(0.649444\pi\)
\(992\) 0 0
\(993\) 4.33092e13i 1.41354i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.32279e13i − 0.423996i −0.977270 0.211998i \(-0.932003\pi\)
0.977270 0.211998i \(-0.0679970\pi\)
\(998\) 0 0
\(999\) −3.50696e13 −1.11400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.10.c.e.49.3 4
4.3 odd 2 400.10.c.o.49.2 4
5.2 odd 4 40.10.a.b.1.2 2
5.3 odd 4 200.10.a.d.1.1 2
5.4 even 2 inner 200.10.c.e.49.2 4
15.2 even 4 360.10.a.a.1.1 2
20.3 even 4 400.10.a.o.1.2 2
20.7 even 4 80.10.a.h.1.1 2
20.19 odd 2 400.10.c.o.49.3 4
40.27 even 4 320.10.a.o.1.2 2
40.37 odd 4 320.10.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.10.a.b.1.2 2 5.2 odd 4
80.10.a.h.1.1 2 20.7 even 4
200.10.a.d.1.1 2 5.3 odd 4
200.10.c.e.49.2 4 5.4 even 2 inner
200.10.c.e.49.3 4 1.1 even 1 trivial
320.10.a.o.1.2 2 40.27 even 4
320.10.a.p.1.1 2 40.37 odd 4
360.10.a.a.1.1 2 15.2 even 4
400.10.a.o.1.2 2 20.3 even 4
400.10.c.o.49.2 4 4.3 odd 2
400.10.c.o.49.3 4 20.19 odd 2