Properties

Label 3969.2.a.bc.1.5
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3969,2,Mod(1,3969)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3969, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3969.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2,0,4,4,0,0,3,0,7,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.574857.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 3x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.38687\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38687 q^{2} +3.69714 q^{4} +2.92087 q^{5} +4.05086 q^{8} +6.97172 q^{10} +1.35371 q^{11} +1.46600 q^{13} +2.27458 q^{16} +3.31027 q^{17} +2.20659 q^{19} +10.7989 q^{20} +3.23114 q^{22} -2.62830 q^{23} +3.53146 q^{25} +3.49916 q^{26} +1.04344 q^{29} +3.27458 q^{31} -2.67259 q^{32} +7.90119 q^{34} -10.8755 q^{37} +5.26683 q^{38} +11.8320 q^{40} -1.80858 q^{41} +4.34257 q^{43} +5.00488 q^{44} -6.27340 q^{46} -3.97914 q^{47} +8.42913 q^{50} +5.42002 q^{52} -6.45486 q^{53} +3.95402 q^{55} +2.49056 q^{58} +12.2140 q^{59} +0.559734 q^{61} +7.81600 q^{62} -10.9283 q^{64} +4.28200 q^{65} +12.8118 q^{67} +12.2386 q^{68} -12.9177 q^{71} -10.4554 q^{73} -25.9583 q^{74} +8.15807 q^{76} +0.767677 q^{79} +6.64375 q^{80} -4.31684 q^{82} -1.96741 q^{83} +9.66887 q^{85} +10.3652 q^{86} +5.48371 q^{88} +6.40711 q^{89} -9.71719 q^{92} -9.49769 q^{94} +6.44514 q^{95} +8.28285 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 4 q^{4} + 4 q^{5} + 3 q^{8} + 7 q^{10} + 4 q^{11} + 8 q^{13} - 2 q^{16} + 12 q^{17} - q^{19} + 5 q^{20} + q^{22} + 3 q^{23} + q^{25} + 11 q^{26} + 7 q^{29} + 3 q^{31} - 2 q^{32} - 3 q^{34}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38687 1.68777 0.843886 0.536523i \(-0.180263\pi\)
0.843886 + 0.536523i \(0.180263\pi\)
\(3\) 0 0
\(4\) 3.69714 1.84857
\(5\) 2.92087 1.30625 0.653125 0.757250i \(-0.273457\pi\)
0.653125 + 0.757250i \(0.273457\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 4.05086 1.43219
\(9\) 0 0
\(10\) 6.97172 2.20465
\(11\) 1.35371 0.408160 0.204080 0.978954i \(-0.434580\pi\)
0.204080 + 0.978954i \(0.434580\pi\)
\(12\) 0 0
\(13\) 1.46600 0.406596 0.203298 0.979117i \(-0.434834\pi\)
0.203298 + 0.979117i \(0.434834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.27458 0.568645
\(17\) 3.31027 0.802859 0.401430 0.915890i \(-0.368513\pi\)
0.401430 + 0.915890i \(0.368513\pi\)
\(18\) 0 0
\(19\) 2.20659 0.506226 0.253113 0.967437i \(-0.418546\pi\)
0.253113 + 0.967437i \(0.418546\pi\)
\(20\) 10.7989 2.41470
\(21\) 0 0
\(22\) 3.23114 0.688881
\(23\) −2.62830 −0.548038 −0.274019 0.961724i \(-0.588353\pi\)
−0.274019 + 0.961724i \(0.588353\pi\)
\(24\) 0 0
\(25\) 3.53146 0.706292
\(26\) 3.49916 0.686241
\(27\) 0 0
\(28\) 0 0
\(29\) 1.04344 0.193762 0.0968810 0.995296i \(-0.469113\pi\)
0.0968810 + 0.995296i \(0.469113\pi\)
\(30\) 0 0
\(31\) 3.27458 0.588132 0.294066 0.955785i \(-0.404991\pi\)
0.294066 + 0.955785i \(0.404991\pi\)
\(32\) −2.67259 −0.472452
\(33\) 0 0
\(34\) 7.90119 1.35504
\(35\) 0 0
\(36\) 0 0
\(37\) −10.8755 −1.78791 −0.893957 0.448153i \(-0.852082\pi\)
−0.893957 + 0.448153i \(0.852082\pi\)
\(38\) 5.26683 0.854393
\(39\) 0 0
\(40\) 11.8320 1.87081
\(41\) −1.80858 −0.282452 −0.141226 0.989977i \(-0.545104\pi\)
−0.141226 + 0.989977i \(0.545104\pi\)
\(42\) 0 0
\(43\) 4.34257 0.662236 0.331118 0.943589i \(-0.392574\pi\)
0.331118 + 0.943589i \(0.392574\pi\)
\(44\) 5.00488 0.754514
\(45\) 0 0
\(46\) −6.27340 −0.924962
\(47\) −3.97914 −0.580417 −0.290209 0.956963i \(-0.593725\pi\)
−0.290209 + 0.956963i \(0.593725\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 8.42913 1.19206
\(51\) 0 0
\(52\) 5.42002 0.751622
\(53\) −6.45486 −0.886644 −0.443322 0.896363i \(-0.646200\pi\)
−0.443322 + 0.896363i \(0.646200\pi\)
\(54\) 0 0
\(55\) 3.95402 0.533160
\(56\) 0 0
\(57\) 0 0
\(58\) 2.49056 0.327026
\(59\) 12.2140 1.59013 0.795064 0.606526i \(-0.207437\pi\)
0.795064 + 0.606526i \(0.207437\pi\)
\(60\) 0 0
\(61\) 0.559734 0.0716666 0.0358333 0.999358i \(-0.488591\pi\)
0.0358333 + 0.999358i \(0.488591\pi\)
\(62\) 7.81600 0.992632
\(63\) 0 0
\(64\) −10.9283 −1.36604
\(65\) 4.28200 0.531117
\(66\) 0 0
\(67\) 12.8118 1.56521 0.782603 0.622521i \(-0.213891\pi\)
0.782603 + 0.622521i \(0.213891\pi\)
\(68\) 12.2386 1.48414
\(69\) 0 0
\(70\) 0 0
\(71\) −12.9177 −1.53305 −0.766525 0.642214i \(-0.778016\pi\)
−0.766525 + 0.642214i \(0.778016\pi\)
\(72\) 0 0
\(73\) −10.4554 −1.22372 −0.611858 0.790968i \(-0.709578\pi\)
−0.611858 + 0.790968i \(0.709578\pi\)
\(74\) −25.9583 −3.01759
\(75\) 0 0
\(76\) 8.15807 0.935794
\(77\) 0 0
\(78\) 0 0
\(79\) 0.767677 0.0863704 0.0431852 0.999067i \(-0.486249\pi\)
0.0431852 + 0.999067i \(0.486249\pi\)
\(80\) 6.64375 0.742793
\(81\) 0 0
\(82\) −4.31684 −0.476715
\(83\) −1.96741 −0.215952 −0.107976 0.994154i \(-0.534437\pi\)
−0.107976 + 0.994154i \(0.534437\pi\)
\(84\) 0 0
\(85\) 9.66887 1.04874
\(86\) 10.3652 1.11770
\(87\) 0 0
\(88\) 5.48371 0.584565
\(89\) 6.40711 0.679153 0.339576 0.940579i \(-0.389716\pi\)
0.339576 + 0.940579i \(0.389716\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −9.71719 −1.01309
\(93\) 0 0
\(94\) −9.49769 −0.979612
\(95\) 6.44514 0.661258
\(96\) 0 0
\(97\) 8.28285 0.840996 0.420498 0.907293i \(-0.361855\pi\)
0.420498 + 0.907293i \(0.361855\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 13.0563 1.30563
\(101\) 16.2266 1.61461 0.807305 0.590134i \(-0.200925\pi\)
0.807305 + 0.590134i \(0.200925\pi\)
\(102\) 0 0
\(103\) −2.22683 −0.219416 −0.109708 0.993964i \(-0.534992\pi\)
−0.109708 + 0.993964i \(0.534992\pi\)
\(104\) 5.93857 0.582325
\(105\) 0 0
\(106\) −15.4069 −1.49645
\(107\) −17.5081 −1.69257 −0.846284 0.532732i \(-0.821165\pi\)
−0.846284 + 0.532732i \(0.821165\pi\)
\(108\) 0 0
\(109\) 15.5983 1.49405 0.747025 0.664796i \(-0.231482\pi\)
0.747025 + 0.664796i \(0.231482\pi\)
\(110\) 9.43773 0.899852
\(111\) 0 0
\(112\) 0 0
\(113\) −1.68911 −0.158898 −0.0794491 0.996839i \(-0.525316\pi\)
−0.0794491 + 0.996839i \(0.525316\pi\)
\(114\) 0 0
\(115\) −7.67690 −0.715875
\(116\) 3.85775 0.358183
\(117\) 0 0
\(118\) 29.1532 2.68377
\(119\) 0 0
\(120\) 0 0
\(121\) −9.16746 −0.833405
\(122\) 1.33601 0.120957
\(123\) 0 0
\(124\) 12.1066 1.08720
\(125\) −4.28942 −0.383657
\(126\) 0 0
\(127\) −3.96918 −0.352208 −0.176104 0.984372i \(-0.556350\pi\)
−0.176104 + 0.984372i \(0.556350\pi\)
\(128\) −20.7392 −1.83310
\(129\) 0 0
\(130\) 10.2206 0.896403
\(131\) −5.32863 −0.465565 −0.232782 0.972529i \(-0.574783\pi\)
−0.232782 + 0.972529i \(0.574783\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 30.5800 2.64171
\(135\) 0 0
\(136\) 13.4095 1.14985
\(137\) 7.49543 0.640378 0.320189 0.947354i \(-0.396254\pi\)
0.320189 + 0.947354i \(0.396254\pi\)
\(138\) 0 0
\(139\) −14.0657 −1.19304 −0.596518 0.802600i \(-0.703450\pi\)
−0.596518 + 0.802600i \(0.703450\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −30.8329 −2.58744
\(143\) 1.98455 0.165956
\(144\) 0 0
\(145\) 3.04775 0.253102
\(146\) −24.9557 −2.06535
\(147\) 0 0
\(148\) −40.2081 −3.30509
\(149\) −2.17971 −0.178569 −0.0892846 0.996006i \(-0.528458\pi\)
−0.0892846 + 0.996006i \(0.528458\pi\)
\(150\) 0 0
\(151\) 14.0277 1.14156 0.570781 0.821102i \(-0.306641\pi\)
0.570781 + 0.821102i \(0.306641\pi\)
\(152\) 8.93857 0.725014
\(153\) 0 0
\(154\) 0 0
\(155\) 9.56461 0.768248
\(156\) 0 0
\(157\) 2.96623 0.236731 0.118365 0.992970i \(-0.462235\pi\)
0.118365 + 0.992970i \(0.462235\pi\)
\(158\) 1.83234 0.145773
\(159\) 0 0
\(160\) −7.80628 −0.617140
\(161\) 0 0
\(162\) 0 0
\(163\) 0.388555 0.0304340 0.0152170 0.999884i \(-0.495156\pi\)
0.0152170 + 0.999884i \(0.495156\pi\)
\(164\) −6.68657 −0.522133
\(165\) 0 0
\(166\) −4.69596 −0.364477
\(167\) 7.29778 0.564719 0.282360 0.959309i \(-0.408883\pi\)
0.282360 + 0.959309i \(0.408883\pi\)
\(168\) 0 0
\(169\) −10.8508 −0.834680
\(170\) 23.0783 1.77003
\(171\) 0 0
\(172\) 16.0551 1.22419
\(173\) 4.05508 0.308302 0.154151 0.988047i \(-0.450736\pi\)
0.154151 + 0.988047i \(0.450736\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.07913 0.232098
\(177\) 0 0
\(178\) 15.2929 1.14625
\(179\) 10.5849 0.791149 0.395575 0.918434i \(-0.370545\pi\)
0.395575 + 0.918434i \(0.370545\pi\)
\(180\) 0 0
\(181\) −19.6312 −1.45917 −0.729586 0.683889i \(-0.760287\pi\)
−0.729586 + 0.683889i \(0.760287\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −10.6469 −0.784896
\(185\) −31.7657 −2.33546
\(186\) 0 0
\(187\) 4.48117 0.327695
\(188\) −14.7115 −1.07294
\(189\) 0 0
\(190\) 15.3837 1.11605
\(191\) −8.28714 −0.599637 −0.299818 0.953996i \(-0.596926\pi\)
−0.299818 + 0.953996i \(0.596926\pi\)
\(192\) 0 0
\(193\) −18.7848 −1.35216 −0.676082 0.736827i \(-0.736323\pi\)
−0.676082 + 0.736827i \(0.736323\pi\)
\(194\) 19.7701 1.41941
\(195\) 0 0
\(196\) 0 0
\(197\) −5.99634 −0.427222 −0.213611 0.976919i \(-0.568522\pi\)
−0.213611 + 0.976919i \(0.568522\pi\)
\(198\) 0 0
\(199\) −14.4087 −1.02140 −0.510702 0.859758i \(-0.670615\pi\)
−0.510702 + 0.859758i \(0.670615\pi\)
\(200\) 14.3054 1.01155
\(201\) 0 0
\(202\) 38.7308 2.72509
\(203\) 0 0
\(204\) 0 0
\(205\) −5.28261 −0.368954
\(206\) −5.31515 −0.370324
\(207\) 0 0
\(208\) 3.33454 0.231209
\(209\) 2.98709 0.206621
\(210\) 0 0
\(211\) 13.8484 0.953360 0.476680 0.879077i \(-0.341840\pi\)
0.476680 + 0.879077i \(0.341840\pi\)
\(212\) −23.8646 −1.63902
\(213\) 0 0
\(214\) −41.7894 −2.85667
\(215\) 12.6841 0.865047
\(216\) 0 0
\(217\) 0 0
\(218\) 37.2312 2.52161
\(219\) 0 0
\(220\) 14.6186 0.985584
\(221\) 4.85287 0.326439
\(222\) 0 0
\(223\) −4.67513 −0.313070 −0.156535 0.987672i \(-0.550032\pi\)
−0.156535 + 0.987672i \(0.550032\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.03169 −0.268184
\(227\) −19.7126 −1.30837 −0.654187 0.756333i \(-0.726989\pi\)
−0.654187 + 0.756333i \(0.726989\pi\)
\(228\) 0 0
\(229\) 28.0728 1.85510 0.927552 0.373694i \(-0.121909\pi\)
0.927552 + 0.373694i \(0.121909\pi\)
\(230\) −18.3238 −1.20823
\(231\) 0 0
\(232\) 4.22683 0.277505
\(233\) −13.8023 −0.904216 −0.452108 0.891963i \(-0.649328\pi\)
−0.452108 + 0.891963i \(0.649328\pi\)
\(234\) 0 0
\(235\) −11.6225 −0.758171
\(236\) 45.1569 2.93947
\(237\) 0 0
\(238\) 0 0
\(239\) 11.0614 0.715501 0.357751 0.933817i \(-0.383544\pi\)
0.357751 + 0.933817i \(0.383544\pi\)
\(240\) 0 0
\(241\) −23.1697 −1.49249 −0.746247 0.665669i \(-0.768146\pi\)
−0.746247 + 0.665669i \(0.768146\pi\)
\(242\) −21.8815 −1.40660
\(243\) 0 0
\(244\) 2.06942 0.132481
\(245\) 0 0
\(246\) 0 0
\(247\) 3.23486 0.205829
\(248\) 13.2649 0.842320
\(249\) 0 0
\(250\) −10.2383 −0.647525
\(251\) 7.78402 0.491323 0.245662 0.969356i \(-0.420995\pi\)
0.245662 + 0.969356i \(0.420995\pi\)
\(252\) 0 0
\(253\) −3.55796 −0.223687
\(254\) −9.47392 −0.594447
\(255\) 0 0
\(256\) −27.6452 −1.72782
\(257\) −10.3760 −0.647235 −0.323618 0.946188i \(-0.604899\pi\)
−0.323618 + 0.946188i \(0.604899\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 15.8312 0.981807
\(261\) 0 0
\(262\) −12.7187 −0.785767
\(263\) 19.1331 1.17980 0.589898 0.807478i \(-0.299168\pi\)
0.589898 + 0.807478i \(0.299168\pi\)
\(264\) 0 0
\(265\) −18.8538 −1.15818
\(266\) 0 0
\(267\) 0 0
\(268\) 47.3669 2.89340
\(269\) −8.83681 −0.538790 −0.269395 0.963030i \(-0.586824\pi\)
−0.269395 + 0.963030i \(0.586824\pi\)
\(270\) 0 0
\(271\) 18.3391 1.11402 0.557010 0.830506i \(-0.311948\pi\)
0.557010 + 0.830506i \(0.311948\pi\)
\(272\) 7.52949 0.456542
\(273\) 0 0
\(274\) 17.8906 1.08081
\(275\) 4.78059 0.288280
\(276\) 0 0
\(277\) 5.10482 0.306719 0.153360 0.988170i \(-0.450991\pi\)
0.153360 + 0.988170i \(0.450991\pi\)
\(278\) −33.5730 −2.01357
\(279\) 0 0
\(280\) 0 0
\(281\) −1.70636 −0.101793 −0.0508964 0.998704i \(-0.516208\pi\)
−0.0508964 + 0.998704i \(0.516208\pi\)
\(282\) 0 0
\(283\) −12.4883 −0.742352 −0.371176 0.928562i \(-0.621045\pi\)
−0.371176 + 0.928562i \(0.621045\pi\)
\(284\) −47.7586 −2.83395
\(285\) 0 0
\(286\) 4.73686 0.280096
\(287\) 0 0
\(288\) 0 0
\(289\) −6.04208 −0.355417
\(290\) 7.27458 0.427178
\(291\) 0 0
\(292\) −38.6552 −2.26213
\(293\) −5.20405 −0.304024 −0.152012 0.988379i \(-0.548575\pi\)
−0.152012 + 0.988379i \(0.548575\pi\)
\(294\) 0 0
\(295\) 35.6755 2.07711
\(296\) −44.0549 −2.56064
\(297\) 0 0
\(298\) −5.20269 −0.301384
\(299\) −3.85309 −0.222830
\(300\) 0 0
\(301\) 0 0
\(302\) 33.4824 1.92669
\(303\) 0 0
\(304\) 5.01906 0.287863
\(305\) 1.63491 0.0936145
\(306\) 0 0
\(307\) 5.00136 0.285442 0.142721 0.989763i \(-0.454415\pi\)
0.142721 + 0.989763i \(0.454415\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 22.8295 1.29663
\(311\) 32.3968 1.83706 0.918528 0.395355i \(-0.129379\pi\)
0.918528 + 0.395355i \(0.129379\pi\)
\(312\) 0 0
\(313\) 1.51907 0.0858629 0.0429315 0.999078i \(-0.486330\pi\)
0.0429315 + 0.999078i \(0.486330\pi\)
\(314\) 7.08000 0.399548
\(315\) 0 0
\(316\) 2.83821 0.159662
\(317\) 21.5089 1.20806 0.604029 0.796962i \(-0.293561\pi\)
0.604029 + 0.796962i \(0.293561\pi\)
\(318\) 0 0
\(319\) 1.41252 0.0790860
\(320\) −31.9200 −1.78439
\(321\) 0 0
\(322\) 0 0
\(323\) 7.30441 0.406428
\(324\) 0 0
\(325\) 5.17713 0.287175
\(326\) 0.927430 0.0513656
\(327\) 0 0
\(328\) −7.32629 −0.404527
\(329\) 0 0
\(330\) 0 0
\(331\) 19.4780 1.07061 0.535305 0.844659i \(-0.320197\pi\)
0.535305 + 0.844659i \(0.320197\pi\)
\(332\) −7.27381 −0.399202
\(333\) 0 0
\(334\) 17.4188 0.953116
\(335\) 37.4215 2.04455
\(336\) 0 0
\(337\) −9.69484 −0.528112 −0.264056 0.964507i \(-0.585060\pi\)
−0.264056 + 0.964507i \(0.585060\pi\)
\(338\) −25.8995 −1.40875
\(339\) 0 0
\(340\) 35.7472 1.93866
\(341\) 4.43285 0.240052
\(342\) 0 0
\(343\) 0 0
\(344\) 17.5912 0.948451
\(345\) 0 0
\(346\) 9.67895 0.520344
\(347\) −2.02604 −0.108763 −0.0543817 0.998520i \(-0.517319\pi\)
−0.0543817 + 0.998520i \(0.517319\pi\)
\(348\) 0 0
\(349\) −16.2915 −0.872066 −0.436033 0.899931i \(-0.643617\pi\)
−0.436033 + 0.899931i \(0.643617\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.61792 −0.192836
\(353\) −17.0614 −0.908089 −0.454045 0.890979i \(-0.650019\pi\)
−0.454045 + 0.890979i \(0.650019\pi\)
\(354\) 0 0
\(355\) −37.7309 −2.00255
\(356\) 23.6880 1.25546
\(357\) 0 0
\(358\) 25.2647 1.33528
\(359\) 2.96726 0.156606 0.0783030 0.996930i \(-0.475050\pi\)
0.0783030 + 0.996930i \(0.475050\pi\)
\(360\) 0 0
\(361\) −14.1310 −0.743736
\(362\) −46.8570 −2.46275
\(363\) 0 0
\(364\) 0 0
\(365\) −30.5389 −1.59848
\(366\) 0 0
\(367\) −10.1575 −0.530216 −0.265108 0.964219i \(-0.585408\pi\)
−0.265108 + 0.964219i \(0.585408\pi\)
\(368\) −5.97827 −0.311639
\(369\) 0 0
\(370\) −75.8207 −3.94173
\(371\) 0 0
\(372\) 0 0
\(373\) −25.4846 −1.31954 −0.659771 0.751467i \(-0.729347\pi\)
−0.659771 + 0.751467i \(0.729347\pi\)
\(374\) 10.6960 0.553075
\(375\) 0 0
\(376\) −16.1189 −0.831271
\(377\) 1.52969 0.0787829
\(378\) 0 0
\(379\) 9.85497 0.506216 0.253108 0.967438i \(-0.418547\pi\)
0.253108 + 0.967438i \(0.418547\pi\)
\(380\) 23.8286 1.22238
\(381\) 0 0
\(382\) −19.7803 −1.01205
\(383\) 27.3127 1.39561 0.697806 0.716286i \(-0.254160\pi\)
0.697806 + 0.716286i \(0.254160\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −44.8370 −2.28214
\(387\) 0 0
\(388\) 30.6229 1.55464
\(389\) −4.18446 −0.212161 −0.106080 0.994358i \(-0.533830\pi\)
−0.106080 + 0.994358i \(0.533830\pi\)
\(390\) 0 0
\(391\) −8.70038 −0.439997
\(392\) 0 0
\(393\) 0 0
\(394\) −14.3125 −0.721053
\(395\) 2.24228 0.112821
\(396\) 0 0
\(397\) −30.6709 −1.53933 −0.769664 0.638450i \(-0.779576\pi\)
−0.769664 + 0.638450i \(0.779576\pi\)
\(398\) −34.3916 −1.72390
\(399\) 0 0
\(400\) 8.03259 0.401629
\(401\) 6.84803 0.341974 0.170987 0.985273i \(-0.445304\pi\)
0.170987 + 0.985273i \(0.445304\pi\)
\(402\) 0 0
\(403\) 4.80055 0.239132
\(404\) 59.9922 2.98472
\(405\) 0 0
\(406\) 0 0
\(407\) −14.7223 −0.729756
\(408\) 0 0
\(409\) −18.2698 −0.903384 −0.451692 0.892174i \(-0.649179\pi\)
−0.451692 + 0.892174i \(0.649179\pi\)
\(410\) −12.6089 −0.622709
\(411\) 0 0
\(412\) −8.23291 −0.405606
\(413\) 0 0
\(414\) 0 0
\(415\) −5.74655 −0.282087
\(416\) −3.91802 −0.192097
\(417\) 0 0
\(418\) 7.12979 0.348729
\(419\) 22.4619 1.09734 0.548669 0.836040i \(-0.315135\pi\)
0.548669 + 0.836040i \(0.315135\pi\)
\(420\) 0 0
\(421\) −20.8354 −1.01546 −0.507728 0.861517i \(-0.669515\pi\)
−0.507728 + 0.861517i \(0.669515\pi\)
\(422\) 33.0542 1.60905
\(423\) 0 0
\(424\) −26.1477 −1.26985
\(425\) 11.6901 0.567053
\(426\) 0 0
\(427\) 0 0
\(428\) −64.7298 −3.12883
\(429\) 0 0
\(430\) 30.2752 1.46000
\(431\) −20.2427 −0.975055 −0.487527 0.873108i \(-0.662101\pi\)
−0.487527 + 0.873108i \(0.662101\pi\)
\(432\) 0 0
\(433\) −21.6764 −1.04170 −0.520851 0.853648i \(-0.674385\pi\)
−0.520851 + 0.853648i \(0.674385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 57.6693 2.76186
\(437\) −5.79956 −0.277431
\(438\) 0 0
\(439\) −35.4781 −1.69328 −0.846639 0.532168i \(-0.821377\pi\)
−0.846639 + 0.532168i \(0.821377\pi\)
\(440\) 16.0172 0.763589
\(441\) 0 0
\(442\) 11.5832 0.550955
\(443\) 19.2063 0.912517 0.456258 0.889847i \(-0.349189\pi\)
0.456258 + 0.889847i \(0.349189\pi\)
\(444\) 0 0
\(445\) 18.7143 0.887144
\(446\) −11.1589 −0.528390
\(447\) 0 0
\(448\) 0 0
\(449\) 29.6082 1.39730 0.698648 0.715465i \(-0.253785\pi\)
0.698648 + 0.715465i \(0.253785\pi\)
\(450\) 0 0
\(451\) −2.44830 −0.115286
\(452\) −6.24488 −0.293735
\(453\) 0 0
\(454\) −47.0515 −2.20823
\(455\) 0 0
\(456\) 0 0
\(457\) −9.56196 −0.447290 −0.223645 0.974671i \(-0.571796\pi\)
−0.223645 + 0.974671i \(0.571796\pi\)
\(458\) 67.0062 3.13099
\(459\) 0 0
\(460\) −28.3826 −1.32335
\(461\) 21.8374 1.01707 0.508536 0.861041i \(-0.330187\pi\)
0.508536 + 0.861041i \(0.330187\pi\)
\(462\) 0 0
\(463\) −26.1489 −1.21524 −0.607621 0.794227i \(-0.707876\pi\)
−0.607621 + 0.794227i \(0.707876\pi\)
\(464\) 2.37339 0.110182
\(465\) 0 0
\(466\) −32.9442 −1.52611
\(467\) −34.9527 −1.61742 −0.808709 0.588209i \(-0.799833\pi\)
−0.808709 + 0.588209i \(0.799833\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −27.7415 −1.27962
\(471\) 0 0
\(472\) 49.4772 2.27737
\(473\) 5.87861 0.270299
\(474\) 0 0
\(475\) 7.79247 0.357543
\(476\) 0 0
\(477\) 0 0
\(478\) 26.4021 1.20760
\(479\) 29.8109 1.36209 0.681047 0.732240i \(-0.261525\pi\)
0.681047 + 0.732240i \(0.261525\pi\)
\(480\) 0 0
\(481\) −15.9434 −0.726959
\(482\) −55.3031 −2.51899
\(483\) 0 0
\(484\) −33.8934 −1.54061
\(485\) 24.1931 1.09855
\(486\) 0 0
\(487\) 22.4506 1.01733 0.508667 0.860964i \(-0.330139\pi\)
0.508667 + 0.860964i \(0.330139\pi\)
\(488\) 2.26740 0.102640
\(489\) 0 0
\(490\) 0 0
\(491\) 35.0444 1.58153 0.790767 0.612118i \(-0.209682\pi\)
0.790767 + 0.612118i \(0.209682\pi\)
\(492\) 0 0
\(493\) 3.45407 0.155564
\(494\) 7.72119 0.347393
\(495\) 0 0
\(496\) 7.44830 0.334438
\(497\) 0 0
\(498\) 0 0
\(499\) −8.93520 −0.399994 −0.199997 0.979796i \(-0.564093\pi\)
−0.199997 + 0.979796i \(0.564093\pi\)
\(500\) −15.8586 −0.709217
\(501\) 0 0
\(502\) 18.5794 0.829241
\(503\) 12.6403 0.563603 0.281802 0.959473i \(-0.409068\pi\)
0.281802 + 0.959473i \(0.409068\pi\)
\(504\) 0 0
\(505\) 47.3958 2.10909
\(506\) −8.49239 −0.377533
\(507\) 0 0
\(508\) −14.6746 −0.651082
\(509\) 28.1110 1.24600 0.623000 0.782222i \(-0.285914\pi\)
0.623000 + 0.782222i \(0.285914\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −24.5070 −1.08307
\(513\) 0 0
\(514\) −24.7661 −1.09238
\(515\) −6.50427 −0.286613
\(516\) 0 0
\(517\) −5.38662 −0.236903
\(518\) 0 0
\(519\) 0 0
\(520\) 17.3458 0.760662
\(521\) 8.47536 0.371312 0.185656 0.982615i \(-0.440559\pi\)
0.185656 + 0.982615i \(0.440559\pi\)
\(522\) 0 0
\(523\) −33.4473 −1.46255 −0.731273 0.682085i \(-0.761074\pi\)
−0.731273 + 0.682085i \(0.761074\pi\)
\(524\) −19.7007 −0.860630
\(525\) 0 0
\(526\) 45.6681 1.99123
\(527\) 10.8398 0.472187
\(528\) 0 0
\(529\) −16.0921 −0.699655
\(530\) −45.0015 −1.95474
\(531\) 0 0
\(532\) 0 0
\(533\) −2.65138 −0.114844
\(534\) 0 0
\(535\) −51.1387 −2.21092
\(536\) 51.8987 2.24168
\(537\) 0 0
\(538\) −21.0923 −0.909354
\(539\) 0 0
\(540\) 0 0
\(541\) 18.2586 0.784998 0.392499 0.919752i \(-0.371611\pi\)
0.392499 + 0.919752i \(0.371611\pi\)
\(542\) 43.7730 1.88021
\(543\) 0 0
\(544\) −8.84701 −0.379312
\(545\) 45.5606 1.95160
\(546\) 0 0
\(547\) 5.77199 0.246792 0.123396 0.992357i \(-0.460621\pi\)
0.123396 + 0.992357i \(0.460621\pi\)
\(548\) 27.7117 1.18378
\(549\) 0 0
\(550\) 11.4106 0.486551
\(551\) 2.30244 0.0980874
\(552\) 0 0
\(553\) 0 0
\(554\) 12.1845 0.517672
\(555\) 0 0
\(556\) −52.0029 −2.20541
\(557\) 33.3821 1.41445 0.707223 0.706991i \(-0.249948\pi\)
0.707223 + 0.706991i \(0.249948\pi\)
\(558\) 0 0
\(559\) 6.36623 0.269263
\(560\) 0 0
\(561\) 0 0
\(562\) −4.07286 −0.171803
\(563\) −2.19131 −0.0923528 −0.0461764 0.998933i \(-0.514704\pi\)
−0.0461764 + 0.998933i \(0.514704\pi\)
\(564\) 0 0
\(565\) −4.93367 −0.207561
\(566\) −29.8079 −1.25292
\(567\) 0 0
\(568\) −52.3278 −2.19563
\(569\) −18.9860 −0.795936 −0.397968 0.917399i \(-0.630284\pi\)
−0.397968 + 0.917399i \(0.630284\pi\)
\(570\) 0 0
\(571\) −21.7380 −0.909709 −0.454854 0.890566i \(-0.650309\pi\)
−0.454854 + 0.890566i \(0.650309\pi\)
\(572\) 7.33717 0.306782
\(573\) 0 0
\(574\) 0 0
\(575\) −9.28172 −0.387074
\(576\) 0 0
\(577\) 30.9032 1.28652 0.643258 0.765649i \(-0.277582\pi\)
0.643258 + 0.765649i \(0.277582\pi\)
\(578\) −14.4217 −0.599862
\(579\) 0 0
\(580\) 11.2680 0.467877
\(581\) 0 0
\(582\) 0 0
\(583\) −8.73804 −0.361893
\(584\) −42.3535 −1.75260
\(585\) 0 0
\(586\) −12.4214 −0.513122
\(587\) −18.3666 −0.758072 −0.379036 0.925382i \(-0.623744\pi\)
−0.379036 + 0.925382i \(0.623744\pi\)
\(588\) 0 0
\(589\) 7.22565 0.297728
\(590\) 85.1527 3.50568
\(591\) 0 0
\(592\) −24.7371 −1.01669
\(593\) 27.7550 1.13976 0.569880 0.821728i \(-0.306990\pi\)
0.569880 + 0.821728i \(0.306990\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.05871 −0.330098
\(597\) 0 0
\(598\) −9.19682 −0.376086
\(599\) −0.402823 −0.0164589 −0.00822945 0.999966i \(-0.502620\pi\)
−0.00822945 + 0.999966i \(0.502620\pi\)
\(600\) 0 0
\(601\) −24.7466 −1.00943 −0.504717 0.863285i \(-0.668403\pi\)
−0.504717 + 0.863285i \(0.668403\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 51.8626 2.11026
\(605\) −26.7769 −1.08864
\(606\) 0 0
\(607\) 24.0697 0.976957 0.488479 0.872576i \(-0.337552\pi\)
0.488479 + 0.872576i \(0.337552\pi\)
\(608\) −5.89730 −0.239167
\(609\) 0 0
\(610\) 3.90231 0.158000
\(611\) −5.83343 −0.235995
\(612\) 0 0
\(613\) −20.3815 −0.823200 −0.411600 0.911365i \(-0.635030\pi\)
−0.411600 + 0.911365i \(0.635030\pi\)
\(614\) 11.9376 0.481762
\(615\) 0 0
\(616\) 0 0
\(617\) −41.8629 −1.68534 −0.842669 0.538431i \(-0.819017\pi\)
−0.842669 + 0.538431i \(0.819017\pi\)
\(618\) 0 0
\(619\) 14.8219 0.595743 0.297871 0.954606i \(-0.403723\pi\)
0.297871 + 0.954606i \(0.403723\pi\)
\(620\) 35.3617 1.42016
\(621\) 0 0
\(622\) 77.3270 3.10053
\(623\) 0 0
\(624\) 0 0
\(625\) −30.1861 −1.20744
\(626\) 3.62582 0.144917
\(627\) 0 0
\(628\) 10.9666 0.437614
\(629\) −36.0007 −1.43544
\(630\) 0 0
\(631\) −21.0294 −0.837169 −0.418585 0.908178i \(-0.637474\pi\)
−0.418585 + 0.908178i \(0.637474\pi\)
\(632\) 3.10975 0.123699
\(633\) 0 0
\(634\) 51.3388 2.03893
\(635\) −11.5935 −0.460072
\(636\) 0 0
\(637\) 0 0
\(638\) 3.37150 0.133479
\(639\) 0 0
\(640\) −60.5764 −2.39449
\(641\) −11.9318 −0.471279 −0.235640 0.971840i \(-0.575719\pi\)
−0.235640 + 0.971840i \(0.575719\pi\)
\(642\) 0 0
\(643\) 39.9355 1.57490 0.787452 0.616377i \(-0.211400\pi\)
0.787452 + 0.616377i \(0.211400\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 17.4347 0.685958
\(647\) 0.988954 0.0388798 0.0194399 0.999811i \(-0.493812\pi\)
0.0194399 + 0.999811i \(0.493812\pi\)
\(648\) 0 0
\(649\) 16.5343 0.649027
\(650\) 12.3571 0.484686
\(651\) 0 0
\(652\) 1.43654 0.0562594
\(653\) −22.7147 −0.888894 −0.444447 0.895805i \(-0.646600\pi\)
−0.444447 + 0.895805i \(0.646600\pi\)
\(654\) 0 0
\(655\) −15.5642 −0.608144
\(656\) −4.11376 −0.160615
\(657\) 0 0
\(658\) 0 0
\(659\) −38.3885 −1.49540 −0.747702 0.664035i \(-0.768843\pi\)
−0.747702 + 0.664035i \(0.768843\pi\)
\(660\) 0 0
\(661\) 33.9258 1.31956 0.659780 0.751459i \(-0.270649\pi\)
0.659780 + 0.751459i \(0.270649\pi\)
\(662\) 46.4915 1.80694
\(663\) 0 0
\(664\) −7.96972 −0.309285
\(665\) 0 0
\(666\) 0 0
\(667\) −2.74247 −0.106189
\(668\) 26.9809 1.04392
\(669\) 0 0
\(670\) 89.3201 3.45074
\(671\) 0.757720 0.0292514
\(672\) 0 0
\(673\) 32.2060 1.24145 0.620725 0.784028i \(-0.286838\pi\)
0.620725 + 0.784028i \(0.286838\pi\)
\(674\) −23.1403 −0.891332
\(675\) 0 0
\(676\) −40.1171 −1.54297
\(677\) 37.9684 1.45924 0.729622 0.683850i \(-0.239696\pi\)
0.729622 + 0.683850i \(0.239696\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 39.1672 1.50199
\(681\) 0 0
\(682\) 10.5806 0.405153
\(683\) 15.1871 0.581120 0.290560 0.956857i \(-0.406158\pi\)
0.290560 + 0.956857i \(0.406158\pi\)
\(684\) 0 0
\(685\) 21.8932 0.836495
\(686\) 0 0
\(687\) 0 0
\(688\) 9.87754 0.376578
\(689\) −9.46285 −0.360506
\(690\) 0 0
\(691\) 2.69148 0.102389 0.0511943 0.998689i \(-0.483697\pi\)
0.0511943 + 0.998689i \(0.483697\pi\)
\(692\) 14.9922 0.569919
\(693\) 0 0
\(694\) −4.83589 −0.183568
\(695\) −41.0840 −1.55841
\(696\) 0 0
\(697\) −5.98689 −0.226770
\(698\) −38.8858 −1.47185
\(699\) 0 0
\(700\) 0 0
\(701\) 11.8515 0.447625 0.223813 0.974632i \(-0.428150\pi\)
0.223813 + 0.974632i \(0.428150\pi\)
\(702\) 0 0
\(703\) −23.9976 −0.905088
\(704\) −14.7938 −0.557562
\(705\) 0 0
\(706\) −40.7234 −1.53265
\(707\) 0 0
\(708\) 0 0
\(709\) −41.0333 −1.54104 −0.770520 0.637416i \(-0.780003\pi\)
−0.770520 + 0.637416i \(0.780003\pi\)
\(710\) −90.0587 −3.37984
\(711\) 0 0
\(712\) 25.9543 0.972679
\(713\) −8.60657 −0.322318
\(714\) 0 0
\(715\) 5.79660 0.216781
\(716\) 39.1337 1.46250
\(717\) 0 0
\(718\) 7.08246 0.264315
\(719\) 20.9109 0.779845 0.389923 0.920848i \(-0.372502\pi\)
0.389923 + 0.920848i \(0.372502\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −33.7288 −1.25526
\(723\) 0 0
\(724\) −72.5792 −2.69738
\(725\) 3.68487 0.136853
\(726\) 0 0
\(727\) −2.64330 −0.0980347 −0.0490173 0.998798i \(-0.515609\pi\)
−0.0490173 + 0.998798i \(0.515609\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −72.8924 −2.69787
\(731\) 14.3751 0.531683
\(732\) 0 0
\(733\) 14.1489 0.522602 0.261301 0.965257i \(-0.415848\pi\)
0.261301 + 0.965257i \(0.415848\pi\)
\(734\) −24.2446 −0.894884
\(735\) 0 0
\(736\) 7.02436 0.258921
\(737\) 17.3435 0.638855
\(738\) 0 0
\(739\) 15.7181 0.578200 0.289100 0.957299i \(-0.406644\pi\)
0.289100 + 0.957299i \(0.406644\pi\)
\(740\) −117.442 −4.31727
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0991 0.774051 0.387026 0.922069i \(-0.373503\pi\)
0.387026 + 0.922069i \(0.373503\pi\)
\(744\) 0 0
\(745\) −6.36665 −0.233256
\(746\) −60.8283 −2.22708
\(747\) 0 0
\(748\) 16.5675 0.605768
\(749\) 0 0
\(750\) 0 0
\(751\) 13.0370 0.475725 0.237863 0.971299i \(-0.423553\pi\)
0.237863 + 0.971299i \(0.423553\pi\)
\(752\) −9.05088 −0.330052
\(753\) 0 0
\(754\) 3.65116 0.132968
\(755\) 40.9732 1.49117
\(756\) 0 0
\(757\) −12.6856 −0.461065 −0.230532 0.973065i \(-0.574047\pi\)
−0.230532 + 0.973065i \(0.574047\pi\)
\(758\) 23.5225 0.854377
\(759\) 0 0
\(760\) 26.1084 0.947050
\(761\) 6.04077 0.218978 0.109489 0.993988i \(-0.465079\pi\)
0.109489 + 0.993988i \(0.465079\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −30.6388 −1.10847
\(765\) 0 0
\(766\) 65.1918 2.35547
\(767\) 17.9058 0.646540
\(768\) 0 0
\(769\) −0.216258 −0.00779848 −0.00389924 0.999992i \(-0.501241\pi\)
−0.00389924 + 0.999992i \(0.501241\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −69.4503 −2.49957
\(773\) 37.6264 1.35333 0.676663 0.736293i \(-0.263425\pi\)
0.676663 + 0.736293i \(0.263425\pi\)
\(774\) 0 0
\(775\) 11.5640 0.415393
\(776\) 33.5527 1.20447
\(777\) 0 0
\(778\) −9.98776 −0.358078
\(779\) −3.99078 −0.142985
\(780\) 0 0
\(781\) −17.4869 −0.625730
\(782\) −20.7667 −0.742614
\(783\) 0 0
\(784\) 0 0
\(785\) 8.66396 0.309230
\(786\) 0 0
\(787\) 30.8135 1.09838 0.549191 0.835697i \(-0.314936\pi\)
0.549191 + 0.835697i \(0.314936\pi\)
\(788\) −22.1693 −0.789750
\(789\) 0 0
\(790\) 5.35203 0.190417
\(791\) 0 0
\(792\) 0 0
\(793\) 0.820571 0.0291393
\(794\) −73.2074 −2.59803
\(795\) 0 0
\(796\) −53.2710 −1.88814
\(797\) −35.9583 −1.27371 −0.636855 0.770984i \(-0.719765\pi\)
−0.636855 + 0.770984i \(0.719765\pi\)
\(798\) 0 0
\(799\) −13.1720 −0.465994
\(800\) −9.43814 −0.333689
\(801\) 0 0
\(802\) 16.3454 0.577174
\(803\) −14.1537 −0.499472
\(804\) 0 0
\(805\) 0 0
\(806\) 11.4583 0.403600
\(807\) 0 0
\(808\) 65.7318 2.31244
\(809\) −38.9636 −1.36989 −0.684943 0.728596i \(-0.740173\pi\)
−0.684943 + 0.728596i \(0.740173\pi\)
\(810\) 0 0
\(811\) −28.2811 −0.993082 −0.496541 0.868013i \(-0.665397\pi\)
−0.496541 + 0.868013i \(0.665397\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −35.1401 −1.23166
\(815\) 1.13492 0.0397544
\(816\) 0 0
\(817\) 9.58227 0.335241
\(818\) −43.6076 −1.52471
\(819\) 0 0
\(820\) −19.5306 −0.682037
\(821\) −41.5834 −1.45127 −0.725635 0.688080i \(-0.758454\pi\)
−0.725635 + 0.688080i \(0.758454\pi\)
\(822\) 0 0
\(823\) 8.45998 0.294896 0.147448 0.989070i \(-0.452894\pi\)
0.147448 + 0.989070i \(0.452894\pi\)
\(824\) −9.02057 −0.314247
\(825\) 0 0
\(826\) 0 0
\(827\) −44.2823 −1.53985 −0.769923 0.638137i \(-0.779706\pi\)
−0.769923 + 0.638137i \(0.779706\pi\)
\(828\) 0 0
\(829\) 16.6327 0.577679 0.288839 0.957378i \(-0.406731\pi\)
0.288839 + 0.957378i \(0.406731\pi\)
\(830\) −13.7163 −0.476099
\(831\) 0 0
\(832\) −16.0209 −0.555425
\(833\) 0 0
\(834\) 0 0
\(835\) 21.3158 0.737665
\(836\) 11.0437 0.381954
\(837\) 0 0
\(838\) 53.6137 1.85205
\(839\) 29.6012 1.02195 0.510974 0.859596i \(-0.329285\pi\)
0.510974 + 0.859596i \(0.329285\pi\)
\(840\) 0 0
\(841\) −27.9112 −0.962456
\(842\) −49.7314 −1.71386
\(843\) 0 0
\(844\) 51.1994 1.76236
\(845\) −31.6938 −1.09030
\(846\) 0 0
\(847\) 0 0
\(848\) −14.6821 −0.504186
\(849\) 0 0
\(850\) 27.9027 0.957055
\(851\) 28.5839 0.979844
\(852\) 0 0
\(853\) 30.1238 1.03142 0.515710 0.856763i \(-0.327528\pi\)
0.515710 + 0.856763i \(0.327528\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −70.9227 −2.42409
\(857\) −37.0894 −1.26695 −0.633475 0.773763i \(-0.718372\pi\)
−0.633475 + 0.773763i \(0.718372\pi\)
\(858\) 0 0
\(859\) −3.78333 −0.129085 −0.0645427 0.997915i \(-0.520559\pi\)
−0.0645427 + 0.997915i \(0.520559\pi\)
\(860\) 46.8949 1.59910
\(861\) 0 0
\(862\) −48.3166 −1.64567
\(863\) 0.427118 0.0145393 0.00726963 0.999974i \(-0.497686\pi\)
0.00726963 + 0.999974i \(0.497686\pi\)
\(864\) 0 0
\(865\) 11.8444 0.402720
\(866\) −51.7388 −1.75815
\(867\) 0 0
\(868\) 0 0
\(869\) 1.03922 0.0352530
\(870\) 0 0
\(871\) 18.7821 0.636407
\(872\) 63.1866 2.13977
\(873\) 0 0
\(874\) −13.8428 −0.468240
\(875\) 0 0
\(876\) 0 0
\(877\) 11.2608 0.380249 0.190124 0.981760i \(-0.439111\pi\)
0.190124 + 0.981760i \(0.439111\pi\)
\(878\) −84.6816 −2.85786
\(879\) 0 0
\(880\) 8.99374 0.303179
\(881\) 35.4810 1.19538 0.597692 0.801726i \(-0.296084\pi\)
0.597692 + 0.801726i \(0.296084\pi\)
\(882\) 0 0
\(883\) −5.30092 −0.178390 −0.0891952 0.996014i \(-0.528429\pi\)
−0.0891952 + 0.996014i \(0.528429\pi\)
\(884\) 17.9418 0.603447
\(885\) 0 0
\(886\) 45.8428 1.54012
\(887\) −57.5664 −1.93289 −0.966446 0.256870i \(-0.917309\pi\)
−0.966446 + 0.256870i \(0.917309\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 44.6686 1.49730
\(891\) 0 0
\(892\) −17.2846 −0.578732
\(893\) −8.78032 −0.293822
\(894\) 0 0
\(895\) 30.9169 1.03344
\(896\) 0 0
\(897\) 0 0
\(898\) 70.6708 2.35832
\(899\) 3.41683 0.113958
\(900\) 0 0
\(901\) −21.3674 −0.711850
\(902\) −5.84377 −0.194576
\(903\) 0 0
\(904\) −6.84235 −0.227573
\(905\) −57.3400 −1.90605
\(906\) 0 0
\(907\) 20.8972 0.693879 0.346939 0.937888i \(-0.387221\pi\)
0.346939 + 0.937888i \(0.387221\pi\)
\(908\) −72.8804 −2.41862
\(909\) 0 0
\(910\) 0 0
\(911\) 22.7639 0.754201 0.377101 0.926172i \(-0.376921\pi\)
0.377101 + 0.926172i \(0.376921\pi\)
\(912\) 0 0
\(913\) −2.66332 −0.0881430
\(914\) −22.8231 −0.754923
\(915\) 0 0
\(916\) 103.789 3.42929
\(917\) 0 0
\(918\) 0 0
\(919\) −37.3030 −1.23051 −0.615257 0.788327i \(-0.710948\pi\)
−0.615257 + 0.788327i \(0.710948\pi\)
\(920\) −31.0980 −1.02527
\(921\) 0 0
\(922\) 52.1231 1.71658
\(923\) −18.9374 −0.623332
\(924\) 0 0
\(925\) −38.4062 −1.26279
\(926\) −62.4140 −2.05105
\(927\) 0 0
\(928\) −2.78869 −0.0915432
\(929\) −5.66725 −0.185937 −0.0929683 0.995669i \(-0.529636\pi\)
−0.0929683 + 0.995669i \(0.529636\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −51.0289 −1.67151
\(933\) 0 0
\(934\) −83.4275 −2.72983
\(935\) 13.0889 0.428052
\(936\) 0 0
\(937\) −7.64754 −0.249834 −0.124917 0.992167i \(-0.539866\pi\)
−0.124917 + 0.992167i \(0.539866\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −42.9702 −1.40153
\(941\) −20.4552 −0.666819 −0.333410 0.942782i \(-0.608199\pi\)
−0.333410 + 0.942782i \(0.608199\pi\)
\(942\) 0 0
\(943\) 4.75348 0.154795
\(944\) 27.7817 0.904219
\(945\) 0 0
\(946\) 14.0315 0.456202
\(947\) 4.76687 0.154902 0.0774512 0.996996i \(-0.475322\pi\)
0.0774512 + 0.996996i \(0.475322\pi\)
\(948\) 0 0
\(949\) −15.3277 −0.497558
\(950\) 18.5996 0.603451
\(951\) 0 0
\(952\) 0 0
\(953\) 48.9412 1.58536 0.792680 0.609638i \(-0.208685\pi\)
0.792680 + 0.609638i \(0.208685\pi\)
\(954\) 0 0
\(955\) −24.2056 −0.783276
\(956\) 40.8955 1.32266
\(957\) 0 0
\(958\) 71.1546 2.29890
\(959\) 0 0
\(960\) 0 0
\(961\) −20.2771 −0.654101
\(962\) −38.0549 −1.22694
\(963\) 0 0
\(964\) −85.6619 −2.75898
\(965\) −54.8680 −1.76626
\(966\) 0 0
\(967\) 5.91712 0.190282 0.0951409 0.995464i \(-0.469670\pi\)
0.0951409 + 0.995464i \(0.469670\pi\)
\(968\) −37.1361 −1.19360
\(969\) 0 0
\(970\) 57.7458 1.85410
\(971\) 28.9775 0.929933 0.464966 0.885328i \(-0.346066\pi\)
0.464966 + 0.885328i \(0.346066\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 53.5866 1.71703
\(975\) 0 0
\(976\) 1.27316 0.0407528
\(977\) −22.8455 −0.730893 −0.365447 0.930832i \(-0.619084\pi\)
−0.365447 + 0.930832i \(0.619084\pi\)
\(978\) 0 0
\(979\) 8.67340 0.277203
\(980\) 0 0
\(981\) 0 0
\(982\) 83.6465 2.66927
\(983\) 31.2703 0.997367 0.498684 0.866784i \(-0.333817\pi\)
0.498684 + 0.866784i \(0.333817\pi\)
\(984\) 0 0
\(985\) −17.5145 −0.558059
\(986\) 8.24442 0.262556
\(987\) 0 0
\(988\) 11.9598 0.380490
\(989\) −11.4136 −0.362930
\(990\) 0 0
\(991\) −7.01463 −0.222827 −0.111414 0.993774i \(-0.535538\pi\)
−0.111414 + 0.993774i \(0.535538\pi\)
\(992\) −8.75161 −0.277864
\(993\) 0 0
\(994\) 0 0
\(995\) −42.0858 −1.33421
\(996\) 0 0
\(997\) −21.2878 −0.674191 −0.337095 0.941470i \(-0.609445\pi\)
−0.337095 + 0.941470i \(0.609445\pi\)
\(998\) −21.3271 −0.675099
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.bc.1.5 5
3.2 odd 2 3969.2.a.z.1.1 5
7.2 even 3 567.2.e.e.487.1 10
7.4 even 3 567.2.e.e.163.1 10
7.6 odd 2 3969.2.a.bb.1.5 5
9.2 odd 6 441.2.f.e.148.5 10
9.4 even 3 1323.2.f.e.883.1 10
9.5 odd 6 441.2.f.e.295.5 10
9.7 even 3 1323.2.f.e.442.1 10
21.2 odd 6 567.2.e.f.487.5 10
21.11 odd 6 567.2.e.f.163.5 10
21.20 even 2 3969.2.a.ba.1.1 5
63.2 odd 6 63.2.g.b.4.5 10
63.4 even 3 189.2.g.b.100.1 10
63.5 even 6 441.2.h.f.214.1 10
63.11 odd 6 63.2.h.b.58.1 yes 10
63.13 odd 6 1323.2.f.f.883.1 10
63.16 even 3 189.2.g.b.172.1 10
63.20 even 6 441.2.f.f.148.5 10
63.23 odd 6 63.2.h.b.25.1 yes 10
63.25 even 3 189.2.h.b.37.5 10
63.31 odd 6 1323.2.g.f.667.1 10
63.32 odd 6 63.2.g.b.16.5 yes 10
63.34 odd 6 1323.2.f.f.442.1 10
63.38 even 6 441.2.h.f.373.1 10
63.40 odd 6 1323.2.h.f.802.5 10
63.41 even 6 441.2.f.f.295.5 10
63.47 even 6 441.2.g.f.67.5 10
63.52 odd 6 1323.2.h.f.226.5 10
63.58 even 3 189.2.h.b.46.5 10
63.59 even 6 441.2.g.f.79.5 10
63.61 odd 6 1323.2.g.f.361.1 10
252.11 even 6 1008.2.q.i.625.4 10
252.23 even 6 1008.2.q.i.529.4 10
252.67 odd 6 3024.2.t.i.289.4 10
252.79 odd 6 3024.2.t.i.1873.4 10
252.95 even 6 1008.2.t.i.961.3 10
252.151 odd 6 3024.2.q.i.2305.2 10
252.191 even 6 1008.2.t.i.193.3 10
252.247 odd 6 3024.2.q.i.2881.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.5 10 63.2 odd 6
63.2.g.b.16.5 yes 10 63.32 odd 6
63.2.h.b.25.1 yes 10 63.23 odd 6
63.2.h.b.58.1 yes 10 63.11 odd 6
189.2.g.b.100.1 10 63.4 even 3
189.2.g.b.172.1 10 63.16 even 3
189.2.h.b.37.5 10 63.25 even 3
189.2.h.b.46.5 10 63.58 even 3
441.2.f.e.148.5 10 9.2 odd 6
441.2.f.e.295.5 10 9.5 odd 6
441.2.f.f.148.5 10 63.20 even 6
441.2.f.f.295.5 10 63.41 even 6
441.2.g.f.67.5 10 63.47 even 6
441.2.g.f.79.5 10 63.59 even 6
441.2.h.f.214.1 10 63.5 even 6
441.2.h.f.373.1 10 63.38 even 6
567.2.e.e.163.1 10 7.4 even 3
567.2.e.e.487.1 10 7.2 even 3
567.2.e.f.163.5 10 21.11 odd 6
567.2.e.f.487.5 10 21.2 odd 6
1008.2.q.i.529.4 10 252.23 even 6
1008.2.q.i.625.4 10 252.11 even 6
1008.2.t.i.193.3 10 252.191 even 6
1008.2.t.i.961.3 10 252.95 even 6
1323.2.f.e.442.1 10 9.7 even 3
1323.2.f.e.883.1 10 9.4 even 3
1323.2.f.f.442.1 10 63.34 odd 6
1323.2.f.f.883.1 10 63.13 odd 6
1323.2.g.f.361.1 10 63.61 odd 6
1323.2.g.f.667.1 10 63.31 odd 6
1323.2.h.f.226.5 10 63.52 odd 6
1323.2.h.f.802.5 10 63.40 odd 6
3024.2.q.i.2305.2 10 252.151 odd 6
3024.2.q.i.2881.2 10 252.247 odd 6
3024.2.t.i.289.4 10 252.67 odd 6
3024.2.t.i.1873.4 10 252.79 odd 6
3969.2.a.z.1.1 5 3.2 odd 2
3969.2.a.ba.1.1 5 21.20 even 2
3969.2.a.bb.1.5 5 7.6 odd 2
3969.2.a.bc.1.5 5 1.1 even 1 trivial