Properties

Label 3969.2.a
Level $3969$
Weight $2$
Character orbit 3969.a
Rep. character $\chi_{3969}(1,\cdot)$
Character field $\Q$
Dimension $154$
Newform subspaces $36$
Sturm bound $1008$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 36 \)
Sturm bound: \(1008\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3969))\).

Total New Old
Modular forms 552 174 378
Cusp forms 457 154 303
Eisenstein series 95 20 75

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(34\)
\(+\)\(-\)\(-\)\(42\)
\(-\)\(+\)\(-\)\(42\)
\(-\)\(-\)\(+\)\(36\)
Plus space\(+\)\(70\)
Minus space\(-\)\(84\)

Trace form

\( 154 q + 142 q^{4} - 6 q^{10} - 10 q^{13} + 130 q^{16} + 8 q^{19} + 36 q^{22} + 112 q^{25} - 4 q^{31} + 6 q^{34} - 10 q^{37} - 18 q^{40} + 20 q^{43} + 36 q^{46} + 2 q^{52} + 18 q^{58} - 22 q^{61} + 106 q^{64}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3969))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
3969.2.a.a 3969.a 1.a $1$ $31.693$ \(\Q\) None 63.2.g.a \(-1\) \(0\) \(-1\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-q^{5}+3q^{8}+q^{10}-5q^{11}+\cdots\)
3969.2.a.b 3969.a 1.a $1$ $31.693$ \(\Q\) None 567.2.a.a \(-1\) \(0\) \(-1\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-q^{5}+3q^{8}+q^{10}-2q^{11}+\cdots\)
3969.2.a.c 3969.a 1.a $1$ $31.693$ \(\Q\) None 63.2.g.a \(-1\) \(0\) \(1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+q^{5}+3q^{8}-q^{10}-5q^{11}+\cdots\)
3969.2.a.d 3969.a 1.a $1$ $31.693$ \(\Q\) None 63.2.g.a \(1\) \(0\) \(-1\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-q^{5}-3q^{8}-q^{10}+5q^{11}+\cdots\)
3969.2.a.e 3969.a 1.a $1$ $31.693$ \(\Q\) None 567.2.a.a \(1\) \(0\) \(1\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+q^{5}-3q^{8}+q^{10}+2q^{11}+\cdots\)
3969.2.a.f 3969.a 1.a $1$ $31.693$ \(\Q\) None 63.2.g.a \(1\) \(0\) \(1\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+q^{5}-3q^{8}+q^{10}+5q^{11}+\cdots\)
3969.2.a.g 3969.a 1.a $2$ $31.693$ \(\Q(\sqrt{15}) \) None 3969.2.a.g \(-2\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+\beta q^{5}+3q^{8}-\beta q^{10}+\cdots\)
3969.2.a.h 3969.a 1.a $2$ $31.693$ \(\Q(\sqrt{21}) \) \(\Q(\sqrt{-7}) \) 3969.2.a.h \(-1\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-\beta q^{2}+(3+\beta )q^{4}+(-5-2\beta )q^{8}+\cdots\)
3969.2.a.i 3969.a 1.a $2$ $31.693$ \(\Q(\sqrt{3}) \) None 81.2.a.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}+\beta q^{5}-\beta q^{8}+3q^{10}+\cdots\)
3969.2.a.j 3969.a 1.a $2$ $31.693$ \(\Q(\sqrt{21}) \) \(\Q(\sqrt{-7}) \) 3969.2.a.h \(1\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+\beta q^{2}+(3+\beta )q^{4}+(5+2\beta )q^{8}+(1+\cdots)q^{11}+\cdots\)
3969.2.a.k 3969.a 1.a $2$ $31.693$ \(\Q(\sqrt{15}) \) None 3969.2.a.g \(2\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+\beta q^{5}-3q^{8}+\beta q^{10}+\cdots\)
3969.2.a.l 3969.a 1.a $3$ $31.693$ \(\Q(\zeta_{18})^+\) None 63.2.f.a \(-3\) \(0\) \(3\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
3969.2.a.m 3969.a 1.a $3$ $31.693$ 3.3.321.1 None 63.2.f.b \(-1\) \(0\) \(5\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{1}+\beta _{2})q^{4}+(2+\beta _{2})q^{5}+\cdots\)
3969.2.a.n 3969.a 1.a $3$ $31.693$ 3.3.621.1 None 567.2.a.e \(0\) \(0\) \(-3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}+(-1-\beta _{2})q^{5}+\cdots\)
3969.2.a.o 3969.a 1.a $3$ $31.693$ 3.3.621.1 None 567.2.a.e \(0\) \(0\) \(3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}+(1+\beta _{2})q^{5}+\cdots\)
3969.2.a.p 3969.a 1.a $3$ $31.693$ 3.3.321.1 None 63.2.f.b \(1\) \(0\) \(-5\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{1}+\beta _{2})q^{4}+(-2-\beta _{2})q^{5}+\cdots\)
3969.2.a.q 3969.a 1.a $3$ $31.693$ \(\Q(\zeta_{18})^+\) None 63.2.f.a \(3\) \(0\) \(-3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
3969.2.a.r 3969.a 1.a $4$ $31.693$ \(\Q(\sqrt{2}, \sqrt{5})\) None 3969.2.a.r \(-2\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{2}-\beta _{2}q^{4}-\beta _{1}q^{5}+(1+\cdots)q^{8}+\cdots\)
3969.2.a.s 3969.a 1.a $4$ $31.693$ 4.4.14013.1 None 567.2.e.c \(-1\) \(0\) \(-2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
3969.2.a.t 3969.a 1.a $4$ $31.693$ 4.4.14013.1 None 567.2.e.c \(-1\) \(0\) \(2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
3969.2.a.u 3969.a 1.a $4$ $31.693$ \(\Q(\sqrt{3}, \sqrt{7})\) None 567.2.a.i \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}-\beta _{2}q^{4}+2\beta _{1}q^{5}+(\beta _{1}+\beta _{3})q^{8}+\cdots\)
3969.2.a.v 3969.a 1.a $4$ $31.693$ \(\Q(\sqrt{3}, \sqrt{7})\) \(\Q(\sqrt{-7}) \) 3969.2.a.v \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+\beta _{3}q^{2}-\beta _{2}q^{4}+(\beta _{1}+\beta _{3})q^{8}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
3969.2.a.w 3969.a 1.a $4$ $31.693$ 4.4.14013.1 None 567.2.e.c \(1\) \(0\) \(-2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
3969.2.a.x 3969.a 1.a $4$ $31.693$ 4.4.14013.1 None 567.2.e.c \(1\) \(0\) \(2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
3969.2.a.y 3969.a 1.a $4$ $31.693$ \(\Q(\sqrt{2}, \sqrt{5})\) None 3969.2.a.r \(2\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{2}-\beta _{2}q^{4}-\beta _{1}q^{5}+(-1+\cdots)q^{8}+\cdots\)
3969.2.a.z 3969.a 1.a $5$ $31.693$ 5.5.574857.1 None 63.2.g.b \(-2\) \(0\) \(-4\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1-\beta _{4})q^{5}+\cdots\)
3969.2.a.ba 3969.a 1.a $5$ $31.693$ 5.5.574857.1 None 63.2.g.b \(-2\) \(0\) \(4\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1+\beta _{4})q^{5}+\cdots\)
3969.2.a.bb 3969.a 1.a $5$ $31.693$ 5.5.574857.1 None 63.2.g.b \(2\) \(0\) \(-4\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1-\beta _{4})q^{5}+\cdots\)
3969.2.a.bc 3969.a 1.a $5$ $31.693$ 5.5.574857.1 None 63.2.g.b \(2\) \(0\) \(4\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1+\beta _{4})q^{5}+\cdots\)
3969.2.a.bd 3969.a 1.a $6$ $31.693$ 6.6.59351616.1 None 441.2.f.g \(-2\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(1+\beta _{2}+\beta _{4})q^{4}-\beta _{1}q^{5}+\cdots\)
3969.2.a.be 3969.a 1.a $6$ $31.693$ 6.6.59351616.1 None 441.2.f.g \(2\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(1+\beta _{2}+\beta _{4})q^{4}+\beta _{1}q^{5}+\cdots\)
3969.2.a.bf 3969.a 1.a $8$ $31.693$ 8.8.\(\cdots\).1 None 567.2.e.g \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)
3969.2.a.bg 3969.a 1.a $8$ $31.693$ 8.8.\(\cdots\).1 None 567.2.e.g \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots\)
3969.2.a.bh 3969.a 1.a $12$ $31.693$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 441.2.f.h \(-4\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(1+\beta _{8})q^{4}-\beta _{10}q^{5}+(-1+\cdots)q^{8}+\cdots\)
3969.2.a.bi 3969.a 1.a $12$ $31.693$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 441.2.f.h \(4\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(1+\beta _{8})q^{4}-\beta _{10}q^{5}+(1+\cdots)q^{8}+\cdots\)
3969.2.a.bj 3969.a 1.a $16$ $31.693$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 3969.2.a.bj \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{5}q^{2}+(2-\beta _{12})q^{4}+(\beta _{3}-\beta _{9})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3969))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3969)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(189))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(567))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1323))\)\(^{\oplus 2}\)