Properties

Label 3024.2.t.i.1873.4
Level $3024$
Weight $2$
Character 3024.1873
Analytic conductor $24.147$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(289,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,8,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.4
Root \(1.19343 + 2.06709i\) of defining polynomial
Character \(\chi\) \(=\) 3024.1873
Dual form 3024.2.t.i.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.92087 q^{5} +(-2.35742 - 1.20106i) q^{7} -1.35371 q^{11} +(-0.733001 + 1.26960i) q^{13} +(-1.65514 + 2.86678i) q^{17} +(1.10329 + 1.91096i) q^{19} +2.62830 q^{23} +3.53146 q^{25} +(-0.521720 - 0.903646i) q^{29} +(1.63729 + 2.83587i) q^{31} +(-6.88572 - 3.50815i) q^{35} +(5.43773 + 9.41842i) q^{37} +(0.904289 - 1.56627i) q^{41} +(2.17129 + 3.76078i) q^{43} +(-1.98957 + 3.44604i) q^{47} +(4.11489 + 5.66283i) q^{49} +(3.22743 - 5.59008i) q^{53} -3.95402 q^{55} +(6.10700 + 10.5776i) q^{59} +(-0.279867 + 0.484744i) q^{61} +(-2.14100 + 3.70832i) q^{65} +(6.40588 + 11.0953i) q^{67} +12.9177 q^{71} +(5.22772 - 9.05467i) q^{73} +(3.19128 + 1.62590i) q^{77} +(0.383838 - 0.664827i) q^{79} +(-0.983707 - 1.70383i) q^{83} +(-4.83443 + 8.37348i) q^{85} +(-3.20356 - 5.54872i) q^{89} +(3.25286 - 2.11259i) q^{91} +(3.22257 + 5.58166i) q^{95} +(-4.14143 - 7.17316i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 8 q^{5} + q^{7} - 8 q^{11} - 8 q^{13} - 12 q^{17} - q^{19} - 6 q^{23} + 2 q^{25} - 7 q^{29} + 3 q^{31} + 5 q^{35} - 5 q^{41} + 7 q^{43} + 27 q^{47} + 25 q^{49} + 21 q^{53} - 4 q^{55} + 30 q^{59}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.92087 1.30625 0.653125 0.757250i \(-0.273457\pi\)
0.653125 + 0.757250i \(0.273457\pi\)
\(6\) 0 0
\(7\) −2.35742 1.20106i −0.891022 0.453959i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.35371 −0.408160 −0.204080 0.978954i \(-0.565420\pi\)
−0.204080 + 0.978954i \(0.565420\pi\)
\(12\) 0 0
\(13\) −0.733001 + 1.26960i −0.203298 + 0.352123i −0.949589 0.313497i \(-0.898499\pi\)
0.746291 + 0.665620i \(0.231833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.65514 + 2.86678i −0.401430 + 0.695297i −0.993899 0.110297i \(-0.964820\pi\)
0.592469 + 0.805593i \(0.298153\pi\)
\(18\) 0 0
\(19\) 1.10329 + 1.91096i 0.253113 + 0.438404i 0.964381 0.264516i \(-0.0852123\pi\)
−0.711268 + 0.702921i \(0.751879\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.62830 0.548038 0.274019 0.961724i \(-0.411647\pi\)
0.274019 + 0.961724i \(0.411647\pi\)
\(24\) 0 0
\(25\) 3.53146 0.706292
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.521720 0.903646i −0.0968810 0.167803i 0.813511 0.581549i \(-0.197553\pi\)
−0.910392 + 0.413747i \(0.864220\pi\)
\(30\) 0 0
\(31\) 1.63729 + 2.83587i 0.294066 + 0.509337i 0.974767 0.223224i \(-0.0716581\pi\)
−0.680701 + 0.732561i \(0.738325\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.88572 3.50815i −1.16390 0.592985i
\(36\) 0 0
\(37\) 5.43773 + 9.41842i 0.893957 + 1.54838i 0.835090 + 0.550113i \(0.185415\pi\)
0.0588664 + 0.998266i \(0.481251\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.904289 1.56627i 0.141226 0.244611i −0.786732 0.617294i \(-0.788229\pi\)
0.927959 + 0.372683i \(0.121562\pi\)
\(42\) 0 0
\(43\) 2.17129 + 3.76078i 0.331118 + 0.573514i 0.982731 0.185038i \(-0.0592408\pi\)
−0.651613 + 0.758551i \(0.725907\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.98957 + 3.44604i −0.290209 + 0.502656i −0.973859 0.227154i \(-0.927058\pi\)
0.683650 + 0.729810i \(0.260391\pi\)
\(48\) 0 0
\(49\) 4.11489 + 5.66283i 0.587842 + 0.808976i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.22743 5.59008i 0.443322 0.767856i −0.554612 0.832109i \(-0.687133\pi\)
0.997934 + 0.0642533i \(0.0204666\pi\)
\(54\) 0 0
\(55\) −3.95402 −0.533160
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.10700 + 10.5776i 0.795064 + 1.37709i 0.922799 + 0.385283i \(0.125896\pi\)
−0.127735 + 0.991808i \(0.540771\pi\)
\(60\) 0 0
\(61\) −0.279867 + 0.484744i −0.0358333 + 0.0620651i −0.883386 0.468646i \(-0.844742\pi\)
0.847553 + 0.530711i \(0.178075\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.14100 + 3.70832i −0.265558 + 0.459960i
\(66\) 0 0
\(67\) 6.40588 + 11.0953i 0.782603 + 1.35551i 0.930420 + 0.366494i \(0.119442\pi\)
−0.147817 + 0.989015i \(0.547225\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9177 1.53305 0.766525 0.642214i \(-0.221984\pi\)
0.766525 + 0.642214i \(0.221984\pi\)
\(72\) 0 0
\(73\) 5.22772 9.05467i 0.611858 1.05977i −0.379069 0.925368i \(-0.623756\pi\)
0.990927 0.134401i \(-0.0429109\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.19128 + 1.62590i 0.363680 + 0.185288i
\(78\) 0 0
\(79\) 0.383838 0.664827i 0.0431852 0.0747989i −0.843625 0.536933i \(-0.819583\pi\)
0.886810 + 0.462134i \(0.152916\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.983707 1.70383i −0.107976 0.187020i 0.806974 0.590587i \(-0.201104\pi\)
−0.914950 + 0.403567i \(0.867770\pi\)
\(84\) 0 0
\(85\) −4.83443 + 8.37348i −0.524368 + 0.908232i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.20356 5.54872i −0.339576 0.588163i 0.644777 0.764371i \(-0.276950\pi\)
−0.984353 + 0.176208i \(0.943617\pi\)
\(90\) 0 0
\(91\) 3.25286 2.11259i 0.340992 0.221460i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.22257 + 5.58166i 0.330629 + 0.572666i
\(96\) 0 0
\(97\) −4.14143 7.17316i −0.420498 0.728324i 0.575490 0.817809i \(-0.304811\pi\)
−0.995988 + 0.0894847i \(0.971478\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.2266 1.61461 0.807305 0.590134i \(-0.200925\pi\)
0.807305 + 0.590134i \(0.200925\pi\)
\(102\) 0 0
\(103\) 2.22683 0.219416 0.109708 0.993964i \(-0.465008\pi\)
0.109708 + 0.993964i \(0.465008\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.75403 15.1624i −0.846284 1.46581i −0.884501 0.466537i \(-0.845501\pi\)
0.0382175 0.999269i \(-0.487832\pi\)
\(108\) 0 0
\(109\) −7.79917 + 13.5086i −0.747025 + 1.29388i 0.202218 + 0.979341i \(0.435185\pi\)
−0.949243 + 0.314544i \(0.898148\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.844555 1.46281i 0.0794491 0.137610i −0.823563 0.567224i \(-0.808017\pi\)
0.903012 + 0.429615i \(0.141351\pi\)
\(114\) 0 0
\(115\) 7.67690 0.715875
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.34505 4.77029i 0.673319 0.437292i
\(120\) 0 0
\(121\) −9.16746 −0.833405
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.28942 −0.383657
\(126\) 0 0
\(127\) 3.96918 0.352208 0.176104 0.984372i \(-0.443650\pi\)
0.176104 + 0.984372i \(0.443650\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.32863 0.465565 0.232782 0.972529i \(-0.425217\pi\)
0.232782 + 0.972529i \(0.425217\pi\)
\(132\) 0 0
\(133\) −0.305745 5.83007i −0.0265115 0.505531i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.49543 0.640378 0.320189 0.947354i \(-0.396254\pi\)
0.320189 + 0.947354i \(0.396254\pi\)
\(138\) 0 0
\(139\) −7.03285 + 12.1812i −0.596518 + 1.03320i 0.396812 + 0.917900i \(0.370116\pi\)
−0.993331 + 0.115300i \(0.963217\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.992275 1.71867i 0.0829782 0.143722i
\(144\) 0 0
\(145\) −1.52388 2.63943i −0.126551 0.219193i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.17971 −0.178569 −0.0892846 0.996006i \(-0.528458\pi\)
−0.0892846 + 0.996006i \(0.528458\pi\)
\(150\) 0 0
\(151\) −14.0277 −1.14156 −0.570781 0.821102i \(-0.693359\pi\)
−0.570781 + 0.821102i \(0.693359\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.78231 + 8.28320i 0.384124 + 0.665322i
\(156\) 0 0
\(157\) −1.48312 2.56883i −0.118365 0.205015i 0.800755 0.598993i \(-0.204432\pi\)
−0.919120 + 0.393978i \(0.871099\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.19601 3.15675i −0.488314 0.248787i
\(162\) 0 0
\(163\) 0.194278 + 0.336499i 0.0152170 + 0.0263566i 0.873534 0.486764i \(-0.161823\pi\)
−0.858317 + 0.513120i \(0.828489\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.64889 6.32006i 0.282360 0.489061i −0.689606 0.724185i \(-0.742216\pi\)
0.971965 + 0.235124i \(0.0755496\pi\)
\(168\) 0 0
\(169\) 5.42542 + 9.39710i 0.417340 + 0.722854i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.02754 + 3.51181i −0.154151 + 0.266998i −0.932750 0.360525i \(-0.882598\pi\)
0.778598 + 0.627522i \(0.215931\pi\)
\(174\) 0 0
\(175\) −8.32514 4.24151i −0.629322 0.320628i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.29243 9.16675i 0.395575 0.685155i −0.597600 0.801795i \(-0.703879\pi\)
0.993174 + 0.116639i \(0.0372121\pi\)
\(180\) 0 0
\(181\) −19.6312 −1.45917 −0.729586 0.683889i \(-0.760287\pi\)
−0.729586 + 0.683889i \(0.760287\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.8829 + 27.5099i 1.16773 + 2.02257i
\(186\) 0 0
\(187\) 2.24058 3.88081i 0.163848 0.283793i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.14357 + 7.17688i −0.299818 + 0.519301i −0.976094 0.217348i \(-0.930259\pi\)
0.676276 + 0.736648i \(0.263593\pi\)
\(192\) 0 0
\(193\) 9.39242 + 16.2682i 0.676082 + 1.17101i 0.976152 + 0.217090i \(0.0696566\pi\)
−0.300070 + 0.953917i \(0.597010\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.99634 −0.427222 −0.213611 0.976919i \(-0.568522\pi\)
−0.213611 + 0.976919i \(0.568522\pi\)
\(198\) 0 0
\(199\) −7.20434 + 12.4783i −0.510702 + 0.884562i 0.489221 + 0.872160i \(0.337281\pi\)
−0.999923 + 0.0124022i \(0.996052\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.144579 + 2.75690i 0.0101475 + 0.193496i
\(204\) 0 0
\(205\) 2.64131 4.57488i 0.184477 0.319523i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.49354 2.58690i −0.103311 0.178939i
\(210\) 0 0
\(211\) 6.92418 11.9930i 0.476680 0.825634i −0.522963 0.852356i \(-0.675173\pi\)
0.999643 + 0.0267212i \(0.00850663\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.34204 + 10.9847i 0.432523 + 0.749153i
\(216\) 0 0
\(217\) −0.453726 8.65184i −0.0308010 0.587325i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.42644 4.20271i −0.163220 0.282705i
\(222\) 0 0
\(223\) −2.33756 4.04878i −0.156535 0.271126i 0.777082 0.629399i \(-0.216699\pi\)
−0.933617 + 0.358273i \(0.883366\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.7126 1.30837 0.654187 0.756333i \(-0.273011\pi\)
0.654187 + 0.756333i \(0.273011\pi\)
\(228\) 0 0
\(229\) 28.0728 1.85510 0.927552 0.373694i \(-0.121909\pi\)
0.927552 + 0.373694i \(0.121909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.90113 + 11.9531i 0.452108 + 0.783074i 0.998517 0.0544448i \(-0.0173389\pi\)
−0.546409 + 0.837518i \(0.684006\pi\)
\(234\) 0 0
\(235\) −5.81127 + 10.0654i −0.379085 + 0.656595i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.53069 9.57944i 0.357751 0.619642i −0.629834 0.776730i \(-0.716877\pi\)
0.987585 + 0.157087i \(0.0502104\pi\)
\(240\) 0 0
\(241\) −23.1697 −1.49249 −0.746247 0.665669i \(-0.768146\pi\)
−0.746247 + 0.665669i \(0.768146\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.0190 + 16.5404i 0.767869 + 1.05673i
\(246\) 0 0
\(247\) −3.23486 −0.205829
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.78402 −0.491323 −0.245662 0.969356i \(-0.579005\pi\)
−0.245662 + 0.969356i \(0.579005\pi\)
\(252\) 0 0
\(253\) −3.55796 −0.223687
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.3760 −0.647235 −0.323618 0.946188i \(-0.604899\pi\)
−0.323618 + 0.946188i \(0.604899\pi\)
\(258\) 0 0
\(259\) −1.50690 28.7343i −0.0936345 1.78546i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.1331 −1.17980 −0.589898 0.807478i \(-0.700832\pi\)
−0.589898 + 0.807478i \(0.700832\pi\)
\(264\) 0 0
\(265\) 9.42689 16.3279i 0.579090 1.00301i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.41840 7.65290i 0.269395 0.466605i −0.699311 0.714818i \(-0.746510\pi\)
0.968706 + 0.248212i \(0.0798430\pi\)
\(270\) 0 0
\(271\) 9.16955 + 15.8821i 0.557010 + 0.964770i 0.997744 + 0.0671321i \(0.0213849\pi\)
−0.440734 + 0.897638i \(0.645282\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.78059 −0.288280
\(276\) 0 0
\(277\) 5.10482 0.306719 0.153360 0.988170i \(-0.450991\pi\)
0.153360 + 0.988170i \(0.450991\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.853180 + 1.47775i 0.0508964 + 0.0881552i 0.890351 0.455274i \(-0.150459\pi\)
−0.839455 + 0.543430i \(0.817125\pi\)
\(282\) 0 0
\(283\) −6.24415 10.8152i −0.371176 0.642896i 0.618571 0.785729i \(-0.287712\pi\)
−0.989747 + 0.142833i \(0.954379\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.01299 + 2.60626i −0.236879 + 0.153843i
\(288\) 0 0
\(289\) 3.02104 + 5.23260i 0.177708 + 0.307800i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.60202 4.50684i 0.152012 0.263292i −0.779955 0.625835i \(-0.784758\pi\)
0.931967 + 0.362543i \(0.118091\pi\)
\(294\) 0 0
\(295\) 17.8377 + 30.8959i 1.03855 + 1.79883i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.92654 + 3.33687i −0.111415 + 0.192976i
\(300\) 0 0
\(301\) −0.601708 11.4736i −0.0346819 0.661328i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.817453 + 1.41587i −0.0468072 + 0.0810725i
\(306\) 0 0
\(307\) −5.00136 −0.285442 −0.142721 0.989763i \(-0.545585\pi\)
−0.142721 + 0.989763i \(0.545585\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.1984 + 28.0565i 0.918528 + 1.59094i 0.801652 + 0.597791i \(0.203955\pi\)
0.116876 + 0.993146i \(0.462712\pi\)
\(312\) 0 0
\(313\) −0.759535 + 1.31555i −0.0429315 + 0.0743595i −0.886693 0.462359i \(-0.847003\pi\)
0.843761 + 0.536719i \(0.180336\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.7544 + 18.6272i −0.604029 + 1.04621i 0.388175 + 0.921586i \(0.373106\pi\)
−0.992204 + 0.124623i \(0.960228\pi\)
\(318\) 0 0
\(319\) 0.706261 + 1.22328i 0.0395430 + 0.0684905i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.30441 −0.406428
\(324\) 0 0
\(325\) −2.58856 + 4.48352i −0.143588 + 0.248701i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.82917 5.73417i 0.486768 0.316135i
\(330\) 0 0
\(331\) 9.73902 16.8685i 0.535305 0.927175i −0.463844 0.885917i \(-0.653530\pi\)
0.999149 0.0412580i \(-0.0131366\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18.7107 + 32.4079i 1.02228 + 1.77063i
\(336\) 0 0
\(337\) 4.84742 8.39598i 0.264056 0.457358i −0.703260 0.710933i \(-0.748273\pi\)
0.967316 + 0.253575i \(0.0816063\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.21642 3.83896i −0.120026 0.207891i
\(342\) 0 0
\(343\) −2.89912 18.2919i −0.156538 0.987672i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.01302 1.75460i −0.0543817 0.0941919i 0.837553 0.546356i \(-0.183985\pi\)
−0.891935 + 0.452164i \(0.850652\pi\)
\(348\) 0 0
\(349\) 8.14577 + 14.1089i 0.436033 + 0.755231i 0.997379 0.0723497i \(-0.0230498\pi\)
−0.561346 + 0.827581i \(0.689716\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −17.0614 −0.908089 −0.454045 0.890979i \(-0.650019\pi\)
−0.454045 + 0.890979i \(0.650019\pi\)
\(354\) 0 0
\(355\) 37.7309 2.00255
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.48363 + 2.56972i 0.0783030 + 0.135625i 0.902518 0.430652i \(-0.141717\pi\)
−0.824215 + 0.566277i \(0.808383\pi\)
\(360\) 0 0
\(361\) 7.06549 12.2378i 0.371868 0.644094i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.2695 26.4475i 0.799240 1.38432i
\(366\) 0 0
\(367\) 10.1575 0.530216 0.265108 0.964219i \(-0.414592\pi\)
0.265108 + 0.964219i \(0.414592\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14.3225 + 9.30182i −0.743585 + 0.482927i
\(372\) 0 0
\(373\) −25.4846 −1.31954 −0.659771 0.751467i \(-0.729347\pi\)
−0.659771 + 0.751467i \(0.729347\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.52969 0.0787829
\(378\) 0 0
\(379\) −9.85497 −0.506216 −0.253108 0.967438i \(-0.581453\pi\)
−0.253108 + 0.967438i \(0.581453\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −27.3127 −1.39561 −0.697806 0.716286i \(-0.745840\pi\)
−0.697806 + 0.716286i \(0.745840\pi\)
\(384\) 0 0
\(385\) 9.32130 + 4.74903i 0.475057 + 0.242033i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.18446 −0.212161 −0.106080 0.994358i \(-0.533830\pi\)
−0.106080 + 0.994358i \(0.533830\pi\)
\(390\) 0 0
\(391\) −4.35019 + 7.53475i −0.219999 + 0.381049i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.12114 1.94187i 0.0564107 0.0977062i
\(396\) 0 0
\(397\) 15.3354 + 26.5618i 0.769664 + 1.33310i 0.937745 + 0.347323i \(0.112909\pi\)
−0.168082 + 0.985773i \(0.553757\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.84803 0.341974 0.170987 0.985273i \(-0.445304\pi\)
0.170987 + 0.985273i \(0.445304\pi\)
\(402\) 0 0
\(403\) −4.80055 −0.239132
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.36113 12.7499i −0.364878 0.631987i
\(408\) 0 0
\(409\) 9.13490 + 15.8221i 0.451692 + 0.782353i 0.998491 0.0549104i \(-0.0174873\pi\)
−0.546799 + 0.837264i \(0.684154\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.69237 32.2709i −0.0832763 1.58795i
\(414\) 0 0
\(415\) −2.87328 4.97666i −0.141044 0.244295i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.2310 19.4526i 0.548669 0.950322i −0.449698 0.893181i \(-0.648468\pi\)
0.998366 0.0571410i \(-0.0181984\pi\)
\(420\) 0 0
\(421\) 10.4177 + 18.0440i 0.507728 + 0.879411i 0.999960 + 0.00894684i \(0.00284791\pi\)
−0.492232 + 0.870464i \(0.663819\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.84505 + 10.1239i −0.283526 + 0.491082i
\(426\) 0 0
\(427\) 1.24197 0.806608i 0.0601033 0.0390345i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.1213 + 17.5307i −0.487527 + 0.844422i −0.999897 0.0143427i \(-0.995434\pi\)
0.512370 + 0.858765i \(0.328768\pi\)
\(432\) 0 0
\(433\) −21.6764 −1.04170 −0.520851 0.853648i \(-0.674385\pi\)
−0.520851 + 0.853648i \(0.674385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.89978 + 5.02257i 0.138715 + 0.240262i
\(438\) 0 0
\(439\) −17.7390 + 30.7249i −0.846639 + 1.46642i 0.0375520 + 0.999295i \(0.488044\pi\)
−0.884191 + 0.467126i \(0.845289\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.60313 16.6331i 0.456258 0.790263i −0.542501 0.840055i \(-0.682523\pi\)
0.998760 + 0.0497923i \(0.0158559\pi\)
\(444\) 0 0
\(445\) −9.35716 16.2071i −0.443572 0.768289i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 29.6082 1.39730 0.698648 0.715465i \(-0.253785\pi\)
0.698648 + 0.715465i \(0.253785\pi\)
\(450\) 0 0
\(451\) −1.22415 + 2.12029i −0.0576429 + 0.0998405i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.50117 6.17060i 0.445422 0.289282i
\(456\) 0 0
\(457\) 4.78098 8.28090i 0.223645 0.387364i −0.732267 0.681017i \(-0.761538\pi\)
0.955912 + 0.293653i \(0.0948711\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.9187 18.9118i −0.508536 0.880809i −0.999951 0.00988416i \(-0.996854\pi\)
0.491416 0.870925i \(-0.336480\pi\)
\(462\) 0 0
\(463\) −13.0744 + 22.6456i −0.607621 + 1.05243i 0.384010 + 0.923329i \(0.374543\pi\)
−0.991631 + 0.129102i \(0.958791\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.4764 30.2699i −0.808709 1.40073i −0.913758 0.406258i \(-0.866833\pi\)
0.105049 0.994467i \(-0.466500\pi\)
\(468\) 0 0
\(469\) −1.77520 33.8502i −0.0819711 1.56306i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.93930 5.09102i −0.135149 0.234086i
\(474\) 0 0
\(475\) 3.89623 + 6.74848i 0.178771 + 0.309641i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −29.8109 −1.36209 −0.681047 0.732240i \(-0.738475\pi\)
−0.681047 + 0.732240i \(0.738475\pi\)
\(480\) 0 0
\(481\) −15.9434 −0.726959
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.0965 20.9518i −0.549276 0.951374i
\(486\) 0 0
\(487\) 11.2253 19.4428i 0.508667 0.881037i −0.491283 0.871000i \(-0.663472\pi\)
0.999950 0.0100365i \(-0.00319477\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.5222 30.3494i 0.790767 1.36965i −0.134726 0.990883i \(-0.543016\pi\)
0.925493 0.378765i \(-0.123651\pi\)
\(492\) 0 0
\(493\) 3.45407 0.155564
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −30.4525 15.5150i −1.36598 0.695943i
\(498\) 0 0
\(499\) 8.93520 0.399994 0.199997 0.979796i \(-0.435907\pi\)
0.199997 + 0.979796i \(0.435907\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.6403 −0.563603 −0.281802 0.959473i \(-0.590932\pi\)
−0.281802 + 0.959473i \(0.590932\pi\)
\(504\) 0 0
\(505\) 47.3958 2.10909
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.1110 1.24600 0.623000 0.782222i \(-0.285914\pi\)
0.623000 + 0.782222i \(0.285914\pi\)
\(510\) 0 0
\(511\) −23.1992 + 15.0669i −1.02627 + 0.666519i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.50427 0.286613
\(516\) 0 0
\(517\) 2.69331 4.66495i 0.118452 0.205164i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.23768 + 7.33988i −0.185656 + 0.321566i −0.943797 0.330524i \(-0.892774\pi\)
0.758141 + 0.652090i \(0.226108\pi\)
\(522\) 0 0
\(523\) −16.7236 28.9662i −0.731273 1.26660i −0.956339 0.292259i \(-0.905593\pi\)
0.225066 0.974344i \(-0.427740\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.8398 −0.472187
\(528\) 0 0
\(529\) −16.0921 −0.699655
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.32569 + 2.29616i 0.0574220 + 0.0994579i
\(534\) 0 0
\(535\) −25.5693 44.2874i −1.10546 1.91471i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.57039 7.66586i −0.239934 0.330192i
\(540\) 0 0
\(541\) −9.12929 15.8124i −0.392499 0.679828i 0.600280 0.799790i \(-0.295056\pi\)
−0.992778 + 0.119962i \(0.961723\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −22.7803 + 39.4567i −0.975802 + 1.69014i
\(546\) 0 0
\(547\) 2.88599 + 4.99869i 0.123396 + 0.213728i 0.921105 0.389315i \(-0.127288\pi\)
−0.797709 + 0.603043i \(0.793955\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.15122 1.99397i 0.0490437 0.0849461i
\(552\) 0 0
\(553\) −1.70337 + 1.10627i −0.0724346 + 0.0470432i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.6911 + 28.9098i −0.707223 + 1.22495i 0.258661 + 0.965968i \(0.416719\pi\)
−0.965883 + 0.258977i \(0.916614\pi\)
\(558\) 0 0
\(559\) −6.36623 −0.269263
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.09566 1.89773i −0.0461764 0.0799799i 0.842013 0.539457i \(-0.181370\pi\)
−0.888190 + 0.459477i \(0.848037\pi\)
\(564\) 0 0
\(565\) 2.46683 4.27268i 0.103780 0.179753i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.49302 16.4424i 0.397968 0.689301i −0.595507 0.803350i \(-0.703049\pi\)
0.993475 + 0.114049i \(0.0363822\pi\)
\(570\) 0 0
\(571\) −10.8690 18.8257i −0.454854 0.787831i 0.543825 0.839198i \(-0.316975\pi\)
−0.998680 + 0.0513674i \(0.983642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.28172 0.387074
\(576\) 0 0
\(577\) −15.4516 + 26.7629i −0.643258 + 1.11416i 0.341443 + 0.939903i \(0.389084\pi\)
−0.984701 + 0.174253i \(0.944249\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.272605 + 5.19815i 0.0113096 + 0.215655i
\(582\) 0 0
\(583\) −4.36902 + 7.56737i −0.180946 + 0.313408i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.18332 15.9060i −0.379036 0.656510i 0.611886 0.790946i \(-0.290411\pi\)
−0.990922 + 0.134436i \(0.957078\pi\)
\(588\) 0 0
\(589\) −3.61282 + 6.25759i −0.148864 + 0.257840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.8775 24.0365i −0.569880 0.987061i −0.996577 0.0826662i \(-0.973656\pi\)
0.426698 0.904394i \(-0.359677\pi\)
\(594\) 0 0
\(595\) 21.4539 13.9334i 0.879524 0.571213i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.201412 0.348855i −0.00822945 0.0142538i 0.861881 0.507110i \(-0.169286\pi\)
−0.870111 + 0.492856i \(0.835953\pi\)
\(600\) 0 0
\(601\) 12.3733 + 21.4312i 0.504717 + 0.874196i 0.999985 + 0.00545577i \(0.00173663\pi\)
−0.495268 + 0.868740i \(0.664930\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −26.7769 −1.08864
\(606\) 0 0
\(607\) −24.0697 −0.976957 −0.488479 0.872576i \(-0.662448\pi\)
−0.488479 + 0.872576i \(0.662448\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.91672 5.05190i −0.117998 0.204378i
\(612\) 0 0
\(613\) 10.1907 17.6509i 0.411600 0.712912i −0.583465 0.812138i \(-0.698303\pi\)
0.995065 + 0.0992261i \(0.0316367\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.9315 36.2544i 0.842669 1.45955i −0.0449604 0.998989i \(-0.514316\pi\)
0.887630 0.460558i \(-0.152350\pi\)
\(618\) 0 0
\(619\) −14.8219 −0.595743 −0.297871 0.954606i \(-0.596277\pi\)
−0.297871 + 0.954606i \(0.596277\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.887770 + 16.9284i 0.0355678 + 0.678221i
\(624\) 0 0
\(625\) −30.1861 −1.20744
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −36.0007 −1.43544
\(630\) 0 0
\(631\) 21.0294 0.837169 0.418585 0.908178i \(-0.362526\pi\)
0.418585 + 0.908178i \(0.362526\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.5935 0.460072
\(636\) 0 0
\(637\) −10.2057 + 1.07339i −0.404366 + 0.0425291i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.9318 −0.471279 −0.235640 0.971840i \(-0.575719\pi\)
−0.235640 + 0.971840i \(0.575719\pi\)
\(642\) 0 0
\(643\) 19.9678 34.5852i 0.787452 1.36391i −0.140072 0.990141i \(-0.544733\pi\)
0.927524 0.373765i \(-0.121933\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.494477 0.856459i 0.0194399 0.0336709i −0.856142 0.516741i \(-0.827145\pi\)
0.875582 + 0.483070i \(0.160478\pi\)
\(648\) 0 0
\(649\) −8.26714 14.3191i −0.324514 0.562074i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.7147 −0.888894 −0.444447 0.895805i \(-0.646600\pi\)
−0.444447 + 0.895805i \(0.646600\pi\)
\(654\) 0 0
\(655\) 15.5642 0.608144
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.1943 33.2454i −0.747702 1.29506i −0.948922 0.315512i \(-0.897824\pi\)
0.201220 0.979546i \(-0.435509\pi\)
\(660\) 0 0
\(661\) −16.9629 29.3806i −0.659780 1.14277i −0.980672 0.195657i \(-0.937316\pi\)
0.320892 0.947116i \(-0.396017\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.893040 17.0288i −0.0346306 0.660350i
\(666\) 0 0
\(667\) −1.37124 2.37505i −0.0530944 0.0919623i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.378860 0.656205i 0.0146257 0.0253325i
\(672\) 0 0
\(673\) −16.1030 27.8912i −0.620725 1.07513i −0.989351 0.145549i \(-0.953505\pi\)
0.368626 0.929578i \(-0.379828\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.9842 + 32.8816i −0.729622 + 1.26374i 0.227421 + 0.973797i \(0.426971\pi\)
−0.957043 + 0.289946i \(0.906363\pi\)
\(678\) 0 0
\(679\) 1.14767 + 21.8843i 0.0440436 + 0.839842i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.59357 13.1525i 0.290560 0.503265i −0.683382 0.730061i \(-0.739492\pi\)
0.973942 + 0.226796i \(0.0728251\pi\)
\(684\) 0 0
\(685\) 21.8932 0.836495
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.73142 + 8.19507i 0.180253 + 0.312207i
\(690\) 0 0
\(691\) 1.34574 2.33089i 0.0511943 0.0886711i −0.839293 0.543680i \(-0.817031\pi\)
0.890487 + 0.455009i \(0.150364\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.5420 + 35.5798i −0.779203 + 1.34962i
\(696\) 0 0
\(697\) 2.99344 + 5.18480i 0.113385 + 0.196388i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.8515 0.447625 0.223813 0.974632i \(-0.428150\pi\)
0.223813 + 0.974632i \(0.428150\pi\)
\(702\) 0 0
\(703\) −11.9988 + 20.7826i −0.452544 + 0.783829i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −38.2530 19.4892i −1.43865 0.732967i
\(708\) 0 0
\(709\) 20.5167 35.5359i 0.770520 1.33458i −0.166759 0.985998i \(-0.553330\pi\)
0.937278 0.348582i \(-0.113337\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.30328 + 7.45351i 0.161159 + 0.279136i
\(714\) 0 0
\(715\) 2.89830 5.02001i 0.108390 0.187738i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.4555 + 18.1094i 0.389923 + 0.675366i 0.992439 0.122741i \(-0.0391685\pi\)
−0.602516 + 0.798107i \(0.705835\pi\)
\(720\) 0 0
\(721\) −5.24958 2.67457i −0.195505 0.0996060i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.84243 3.19119i −0.0684263 0.118518i
\(726\) 0 0
\(727\) −1.32165 2.28917i −0.0490173 0.0849005i 0.840476 0.541849i \(-0.182276\pi\)
−0.889493 + 0.456949i \(0.848942\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14.3751 −0.531683
\(732\) 0 0
\(733\) 14.1489 0.522602 0.261301 0.965257i \(-0.415848\pi\)
0.261301 + 0.965257i \(0.415848\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.67174 15.0199i −0.319428 0.553265i
\(738\) 0 0
\(739\) 7.85905 13.6123i 0.289100 0.500736i −0.684495 0.729017i \(-0.739977\pi\)
0.973595 + 0.228282i \(0.0733107\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5496 18.2724i 0.387026 0.670348i −0.605022 0.796208i \(-0.706836\pi\)
0.992048 + 0.125861i \(0.0401692\pi\)
\(744\) 0 0
\(745\) −6.36665 −0.233256
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.42592 + 46.2584i 0.0886412 + 1.69025i
\(750\) 0 0
\(751\) −13.0370 −0.475725 −0.237863 0.971299i \(-0.576447\pi\)
−0.237863 + 0.971299i \(0.576447\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −40.9732 −1.49117
\(756\) 0 0
\(757\) −12.6856 −0.461065 −0.230532 0.973065i \(-0.574047\pi\)
−0.230532 + 0.973065i \(0.574047\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.04077 0.218978 0.109489 0.993988i \(-0.465079\pi\)
0.109489 + 0.993988i \(0.465079\pi\)
\(762\) 0 0
\(763\) 34.6106 22.4781i 1.25299 0.813761i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −17.9058 −0.646540
\(768\) 0 0
\(769\) 0.108129 0.187285i 0.00389924 0.00675368i −0.864069 0.503373i \(-0.832092\pi\)
0.867968 + 0.496619i \(0.165425\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.8132 + 32.5854i −0.676663 + 1.17202i 0.299316 + 0.954154i \(0.403241\pi\)
−0.975980 + 0.217861i \(0.930092\pi\)
\(774\) 0 0
\(775\) 5.78202 + 10.0148i 0.207696 + 0.359741i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.99078 0.142985
\(780\) 0 0
\(781\) −17.4869 −0.625730
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.33198 7.50321i −0.154615 0.267801i
\(786\) 0 0
\(787\) 15.4067 + 26.6853i 0.549191 + 0.951226i 0.998330 + 0.0577648i \(0.0183973\pi\)
−0.449139 + 0.893462i \(0.648269\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.74791 + 2.43410i −0.133260 + 0.0865468i
\(792\) 0 0
\(793\) −0.410286 0.710636i −0.0145697 0.0252354i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.9792 31.1408i 0.636855 1.10306i −0.349264 0.937024i \(-0.613569\pi\)
0.986119 0.166040i \(-0.0530981\pi\)
\(798\) 0 0
\(799\) −6.58602 11.4073i −0.232997 0.403562i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.07684 + 12.2574i −0.249736 + 0.432556i
\(804\) 0 0
\(805\) −18.0977 9.22045i −0.637860 0.324978i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.4818 33.7435i 0.684943 1.18636i −0.288511 0.957477i \(-0.593160\pi\)
0.973455 0.228880i \(-0.0735065\pi\)
\(810\) 0 0
\(811\) 28.2811 0.993082 0.496541 0.868013i \(-0.334603\pi\)
0.496541 + 0.868013i \(0.334603\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.567459 + 0.982867i 0.0198772 + 0.0344283i
\(816\) 0 0
\(817\) −4.79113 + 8.29849i −0.167621 + 0.290327i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.7917 36.0123i 0.725635 1.25684i −0.233077 0.972458i \(-0.574879\pi\)
0.958712 0.284378i \(-0.0917872\pi\)
\(822\) 0 0
\(823\) 4.22999 + 7.32656i 0.147448 + 0.255388i 0.930284 0.366841i \(-0.119561\pi\)
−0.782835 + 0.622229i \(0.786227\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.2823 1.53985 0.769923 0.638137i \(-0.220294\pi\)
0.769923 + 0.638137i \(0.220294\pi\)
\(828\) 0 0
\(829\) −8.31637 + 14.4044i −0.288839 + 0.500284i −0.973533 0.228547i \(-0.926603\pi\)
0.684694 + 0.728831i \(0.259936\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23.0448 + 2.42373i −0.798455 + 0.0839774i
\(834\) 0 0
\(835\) 10.6579 18.4601i 0.368832 0.638836i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.8006 + 25.6354i 0.510974 + 0.885033i 0.999919 + 0.0127182i \(0.00404843\pi\)
−0.488945 + 0.872314i \(0.662618\pi\)
\(840\) 0 0
\(841\) 13.9556 24.1718i 0.481228 0.833512i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.8469 + 27.4477i 0.545151 + 0.944228i
\(846\) 0 0
\(847\) 21.6116 + 11.0107i 0.742583 + 0.378332i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.2920 + 24.7544i 0.489922 + 0.848570i
\(852\) 0 0
\(853\) −15.0619 26.0880i −0.515710 0.893236i −0.999834 0.0182366i \(-0.994195\pi\)
0.484124 0.875000i \(-0.339139\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.0894 −1.26695 −0.633475 0.773763i \(-0.718372\pi\)
−0.633475 + 0.773763i \(0.718372\pi\)
\(858\) 0 0
\(859\) 3.78333 0.129085 0.0645427 0.997915i \(-0.479441\pi\)
0.0645427 + 0.997915i \(0.479441\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.213559 + 0.369895i 0.00726963 + 0.0125914i 0.869637 0.493691i \(-0.164353\pi\)
−0.862368 + 0.506282i \(0.831019\pi\)
\(864\) 0 0
\(865\) −5.92218 + 10.2575i −0.201360 + 0.348766i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.519608 + 0.899987i −0.0176265 + 0.0305300i
\(870\) 0 0
\(871\) −18.7821 −0.636407
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.1120 + 5.15186i 0.341847 + 0.174165i
\(876\) 0 0
\(877\) 11.2608 0.380249 0.190124 0.981760i \(-0.439111\pi\)
0.190124 + 0.981760i \(0.439111\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 35.4810 1.19538 0.597692 0.801726i \(-0.296084\pi\)
0.597692 + 0.801726i \(0.296084\pi\)
\(882\) 0 0
\(883\) 5.30092 0.178390 0.0891952 0.996014i \(-0.471571\pi\)
0.0891952 + 0.996014i \(0.471571\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 57.5664 1.93289 0.966446 0.256870i \(-0.0826913\pi\)
0.966446 + 0.256870i \(0.0826913\pi\)
\(888\) 0 0
\(889\) −9.35705 4.76724i −0.313825 0.159888i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.78032 −0.293822
\(894\) 0 0
\(895\) 15.4585 26.7749i 0.516720 0.894985i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.70842 2.95906i 0.0569788 0.0986903i
\(900\) 0 0
\(901\) 10.6837 + 18.5047i 0.355925 + 0.616480i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −57.3400 −1.90605
\(906\) 0 0
\(907\) −20.8972 −0.693879 −0.346939 0.937888i \(-0.612779\pi\)
−0.346939 + 0.937888i \(0.612779\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.3819 + 19.7141i 0.377101 + 0.653157i 0.990639 0.136508i \(-0.0435878\pi\)
−0.613539 + 0.789665i \(0.710254\pi\)
\(912\) 0 0
\(913\) 1.33166 + 2.30650i 0.0440715 + 0.0763340i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −12.5618 6.40002i −0.414828 0.211347i
\(918\) 0 0
\(919\) −18.6515 32.3054i −0.615257 1.06566i −0.990339 0.138664i \(-0.955719\pi\)
0.375083 0.926991i \(-0.377614\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.46870 + 16.4003i −0.311666 + 0.539822i
\(924\) 0 0
\(925\) 19.2031 + 33.2607i 0.631394 + 1.09361i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.83363 4.90799i 0.0929683 0.161026i −0.815791 0.578347i \(-0.803698\pi\)
0.908759 + 0.417322i \(0.137031\pi\)
\(930\) 0 0
\(931\) −6.28151 + 14.1112i −0.205868 + 0.462475i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.54444 11.3353i 0.214026 0.370704i
\(936\) 0 0
\(937\) −7.64754 −0.249834 −0.124917 0.992167i \(-0.539866\pi\)
−0.124917 + 0.992167i \(0.539866\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.2276 + 17.7147i 0.333410 + 0.577483i 0.983178 0.182650i \(-0.0584674\pi\)
−0.649768 + 0.760132i \(0.725134\pi\)
\(942\) 0 0
\(943\) 2.37674 4.11663i 0.0773973 0.134056i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.38343 4.12823i 0.0774512 0.134149i −0.824698 0.565573i \(-0.808655\pi\)
0.902150 + 0.431423i \(0.141988\pi\)
\(948\) 0 0
\(949\) 7.66385 + 13.2742i 0.248779 + 0.430898i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.9412 1.58536 0.792680 0.609638i \(-0.208685\pi\)
0.792680 + 0.609638i \(0.208685\pi\)
\(954\) 0 0
\(955\) −12.1028 + 20.9627i −0.391638 + 0.678337i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.6699 9.00249i −0.570591 0.290706i
\(960\) 0 0
\(961\) 10.1386 17.5605i 0.327050 0.566468i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 27.4340 + 47.5171i 0.883132 + 1.52963i
\(966\) 0 0
\(967\) 2.95856 5.12438i 0.0951409 0.164789i −0.814526 0.580126i \(-0.803003\pi\)
0.909667 + 0.415337i \(0.136336\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.4888 + 25.0953i 0.464966 + 0.805345i 0.999200 0.0399914i \(-0.0127331\pi\)
−0.534234 + 0.845337i \(0.679400\pi\)
\(972\) 0 0
\(973\) 31.2099 20.2695i 1.00054 0.649809i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.4228 + 19.7848i 0.365447 + 0.632972i 0.988848 0.148930i \(-0.0475830\pi\)
−0.623401 + 0.781902i \(0.714250\pi\)
\(978\) 0 0
\(979\) 4.33670 + 7.51139i 0.138602 + 0.240065i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.2703 −0.997367 −0.498684 0.866784i \(-0.666183\pi\)
−0.498684 + 0.866784i \(0.666183\pi\)
\(984\) 0 0
\(985\) −17.5145 −0.558059
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.70679 + 9.88444i 0.181465 + 0.314307i
\(990\) 0 0
\(991\) −3.50732 + 6.07485i −0.111414 + 0.192974i −0.916340 0.400400i \(-0.868871\pi\)
0.804927 + 0.593374i \(0.202204\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21.0429 + 36.4474i −0.667105 + 1.15546i
\(996\) 0 0
\(997\) −21.2878 −0.674191 −0.337095 0.941470i \(-0.609445\pi\)
−0.337095 + 0.941470i \(0.609445\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.t.i.1873.4 10
3.2 odd 2 1008.2.t.i.193.3 10
4.3 odd 2 189.2.g.b.172.1 10
7.2 even 3 3024.2.q.i.2305.2 10
9.2 odd 6 1008.2.q.i.529.4 10
9.7 even 3 3024.2.q.i.2881.2 10
12.11 even 2 63.2.g.b.4.5 10
21.2 odd 6 1008.2.q.i.625.4 10
28.3 even 6 1323.2.f.f.442.1 10
28.11 odd 6 1323.2.f.e.442.1 10
28.19 even 6 1323.2.h.f.226.5 10
28.23 odd 6 189.2.h.b.37.5 10
28.27 even 2 1323.2.g.f.361.1 10
36.7 odd 6 189.2.h.b.46.5 10
36.11 even 6 63.2.h.b.25.1 yes 10
36.23 even 6 567.2.e.f.487.5 10
36.31 odd 6 567.2.e.e.487.1 10
63.2 odd 6 1008.2.t.i.961.3 10
63.16 even 3 inner 3024.2.t.i.289.4 10
84.11 even 6 441.2.f.e.148.5 10
84.23 even 6 63.2.h.b.58.1 yes 10
84.47 odd 6 441.2.h.f.373.1 10
84.59 odd 6 441.2.f.f.148.5 10
84.83 odd 2 441.2.g.f.67.5 10
252.11 even 6 441.2.f.e.295.5 10
252.23 even 6 567.2.e.f.163.5 10
252.31 even 6 3969.2.a.bb.1.5 5
252.47 odd 6 441.2.g.f.79.5 10
252.59 odd 6 3969.2.a.ba.1.1 5
252.67 odd 6 3969.2.a.bc.1.5 5
252.79 odd 6 189.2.g.b.100.1 10
252.83 odd 6 441.2.h.f.214.1 10
252.95 even 6 3969.2.a.z.1.1 5
252.115 even 6 1323.2.f.f.883.1 10
252.151 odd 6 1323.2.f.e.883.1 10
252.187 even 6 1323.2.g.f.667.1 10
252.191 even 6 63.2.g.b.16.5 yes 10
252.223 even 6 1323.2.h.f.802.5 10
252.227 odd 6 441.2.f.f.295.5 10
252.247 odd 6 567.2.e.e.163.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.5 10 12.11 even 2
63.2.g.b.16.5 yes 10 252.191 even 6
63.2.h.b.25.1 yes 10 36.11 even 6
63.2.h.b.58.1 yes 10 84.23 even 6
189.2.g.b.100.1 10 252.79 odd 6
189.2.g.b.172.1 10 4.3 odd 2
189.2.h.b.37.5 10 28.23 odd 6
189.2.h.b.46.5 10 36.7 odd 6
441.2.f.e.148.5 10 84.11 even 6
441.2.f.e.295.5 10 252.11 even 6
441.2.f.f.148.5 10 84.59 odd 6
441.2.f.f.295.5 10 252.227 odd 6
441.2.g.f.67.5 10 84.83 odd 2
441.2.g.f.79.5 10 252.47 odd 6
441.2.h.f.214.1 10 252.83 odd 6
441.2.h.f.373.1 10 84.47 odd 6
567.2.e.e.163.1 10 252.247 odd 6
567.2.e.e.487.1 10 36.31 odd 6
567.2.e.f.163.5 10 252.23 even 6
567.2.e.f.487.5 10 36.23 even 6
1008.2.q.i.529.4 10 9.2 odd 6
1008.2.q.i.625.4 10 21.2 odd 6
1008.2.t.i.193.3 10 3.2 odd 2
1008.2.t.i.961.3 10 63.2 odd 6
1323.2.f.e.442.1 10 28.11 odd 6
1323.2.f.e.883.1 10 252.151 odd 6
1323.2.f.f.442.1 10 28.3 even 6
1323.2.f.f.883.1 10 252.115 even 6
1323.2.g.f.361.1 10 28.27 even 2
1323.2.g.f.667.1 10 252.187 even 6
1323.2.h.f.226.5 10 28.19 even 6
1323.2.h.f.802.5 10 252.223 even 6
3024.2.q.i.2305.2 10 7.2 even 3
3024.2.q.i.2881.2 10 9.7 even 3
3024.2.t.i.289.4 10 63.16 even 3 inner
3024.2.t.i.1873.4 10 1.1 even 1 trivial
3969.2.a.z.1.1 5 252.95 even 6
3969.2.a.ba.1.1 5 252.59 odd 6
3969.2.a.bb.1.5 5 252.31 even 6
3969.2.a.bc.1.5 5 252.67 odd 6