Properties

Label 396.2.j.c.289.1
Level $396$
Weight $2$
Character 396.289
Analytic conductor $3.162$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(37,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,7,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 396.289
Dual form 396.2.j.c.37.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.30902 + 1.67760i) q^{5} +(1.30902 - 4.02874i) q^{7} +(-2.19098 - 2.48990i) q^{11} +(1.42705 - 1.03681i) q^{13} +(3.73607 + 2.71441i) q^{17} +(1.88197 + 5.79210i) q^{19} -4.23607 q^{23} +(0.972136 + 2.99193i) q^{25} +(1.38197 - 4.25325i) q^{29} +(6.97214 - 5.06555i) q^{31} +(9.78115 - 7.10642i) q^{35} +(-2.54508 + 7.83297i) q^{37} +(-0.163119 - 0.502029i) q^{41} +0.527864 q^{43} +(-0.427051 - 1.31433i) q^{47} +(-8.85410 - 6.43288i) q^{49} +(-10.9721 + 7.97172i) q^{53} +(-0.881966 - 9.42481i) q^{55} +(-2.73607 + 8.42075i) q^{59} +(0.309017 + 0.224514i) q^{61} +5.03444 q^{65} -6.85410 q^{67} +(-2.92705 - 2.12663i) q^{71} +(-0.381966 + 1.17557i) q^{73} +(-12.8992 + 5.56758i) q^{77} +(-7.89919 + 5.73910i) q^{79} +(5.28115 + 3.83698i) q^{83} +(4.07295 + 12.5352i) q^{85} -1.00000 q^{89} +(-2.30902 - 7.10642i) q^{91} +(-5.37132 + 16.5312i) q^{95} +(-4.92705 + 3.57971i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{5} + 3 q^{7} - 11 q^{11} - q^{13} + 6 q^{17} + 12 q^{19} - 8 q^{23} - 14 q^{25} + 10 q^{29} + 10 q^{31} + 19 q^{35} + q^{37} + 15 q^{41} + 20 q^{43} + 5 q^{47} - 22 q^{49} - 26 q^{53} - 8 q^{55}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.30902 + 1.67760i 1.03262 + 0.750245i 0.968832 0.247718i \(-0.0796807\pi\)
0.0637916 + 0.997963i \(0.479681\pi\)
\(6\) 0 0
\(7\) 1.30902 4.02874i 0.494762 1.52272i −0.322566 0.946547i \(-0.604545\pi\)
0.817327 0.576173i \(-0.195455\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.19098 2.48990i −0.660606 0.750733i
\(12\) 0 0
\(13\) 1.42705 1.03681i 0.395793 0.287560i −0.372032 0.928220i \(-0.621339\pi\)
0.767825 + 0.640660i \(0.221339\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.73607 + 2.71441i 0.906130 + 0.658342i 0.940033 0.341083i \(-0.110794\pi\)
−0.0339034 + 0.999425i \(0.510794\pi\)
\(18\) 0 0
\(19\) 1.88197 + 5.79210i 0.431753 + 1.32880i 0.896378 + 0.443291i \(0.146189\pi\)
−0.464625 + 0.885507i \(0.653811\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.23607 −0.883281 −0.441641 0.897192i \(-0.645603\pi\)
−0.441641 + 0.897192i \(0.645603\pi\)
\(24\) 0 0
\(25\) 0.972136 + 2.99193i 0.194427 + 0.598385i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.38197 4.25325i 0.256625 0.789809i −0.736881 0.676023i \(-0.763702\pi\)
0.993505 0.113787i \(-0.0362980\pi\)
\(30\) 0 0
\(31\) 6.97214 5.06555i 1.25223 0.909800i 0.253883 0.967235i \(-0.418292\pi\)
0.998349 + 0.0574346i \(0.0182921\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.78115 7.10642i 1.65332 1.20120i
\(36\) 0 0
\(37\) −2.54508 + 7.83297i −0.418409 + 1.28773i 0.490756 + 0.871297i \(0.336721\pi\)
−0.909166 + 0.416435i \(0.863279\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.163119 0.502029i −0.0254749 0.0784037i 0.937511 0.347956i \(-0.113124\pi\)
−0.962986 + 0.269553i \(0.913124\pi\)
\(42\) 0 0
\(43\) 0.527864 0.0804985 0.0402493 0.999190i \(-0.487185\pi\)
0.0402493 + 0.999190i \(0.487185\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.427051 1.31433i −0.0622918 0.191714i 0.915068 0.403301i \(-0.132137\pi\)
−0.977359 + 0.211586i \(0.932137\pi\)
\(48\) 0 0
\(49\) −8.85410 6.43288i −1.26487 0.918983i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.9721 + 7.97172i −1.50714 + 1.09500i −0.539712 + 0.841850i \(0.681467\pi\)
−0.967427 + 0.253151i \(0.918533\pi\)
\(54\) 0 0
\(55\) −0.881966 9.42481i −0.118924 1.27084i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.73607 + 8.42075i −0.356206 + 1.09629i 0.599101 + 0.800673i \(0.295525\pi\)
−0.955307 + 0.295615i \(0.904475\pi\)
\(60\) 0 0
\(61\) 0.309017 + 0.224514i 0.0395656 + 0.0287461i 0.607392 0.794402i \(-0.292216\pi\)
−0.567827 + 0.823148i \(0.692216\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.03444 0.624446
\(66\) 0 0
\(67\) −6.85410 −0.837362 −0.418681 0.908133i \(-0.637507\pi\)
−0.418681 + 0.908133i \(0.637507\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.92705 2.12663i −0.347377 0.252384i 0.400391 0.916344i \(-0.368874\pi\)
−0.747768 + 0.663960i \(0.768874\pi\)
\(72\) 0 0
\(73\) −0.381966 + 1.17557i −0.0447057 + 0.137590i −0.970918 0.239412i \(-0.923045\pi\)
0.926212 + 0.377003i \(0.123045\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.8992 + 5.56758i −1.47000 + 0.634485i
\(78\) 0 0
\(79\) −7.89919 + 5.73910i −0.888728 + 0.645699i −0.935546 0.353205i \(-0.885092\pi\)
0.0468181 + 0.998903i \(0.485092\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.28115 + 3.83698i 0.579682 + 0.421164i 0.838609 0.544733i \(-0.183369\pi\)
−0.258928 + 0.965897i \(0.583369\pi\)
\(84\) 0 0
\(85\) 4.07295 + 12.5352i 0.441773 + 1.35964i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) −2.30902 7.10642i −0.242051 0.744956i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.37132 + 16.5312i −0.551086 + 1.69607i
\(96\) 0 0
\(97\) −4.92705 + 3.57971i −0.500266 + 0.363465i −0.809119 0.587645i \(-0.800055\pi\)
0.308852 + 0.951110i \(0.400055\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.66312 7.02067i 0.961516 0.698582i 0.00801387 0.999968i \(-0.497449\pi\)
0.953502 + 0.301385i \(0.0974491\pi\)
\(102\) 0 0
\(103\) 1.09017 3.35520i 0.107418 0.330597i −0.882873 0.469613i \(-0.844394\pi\)
0.990290 + 0.139015i \(0.0443936\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.78115 14.7149i −0.462212 1.42254i −0.862456 0.506132i \(-0.831075\pi\)
0.400244 0.916408i \(-0.368925\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.39919 7.38394i −0.225697 0.694622i −0.998220 0.0596365i \(-0.981006\pi\)
0.772524 0.634986i \(-0.218994\pi\)
\(114\) 0 0
\(115\) −9.78115 7.10642i −0.912097 0.662677i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.8262 11.4984i 1.45079 1.05406i
\(120\) 0 0
\(121\) −1.39919 + 10.9106i −0.127199 + 0.991877i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.63525 5.03280i 0.146262 0.450147i
\(126\) 0 0
\(127\) −1.85410 1.34708i −0.164525 0.119534i 0.502476 0.864591i \(-0.332422\pi\)
−0.667001 + 0.745057i \(0.732422\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.5623 −1.01020 −0.505102 0.863060i \(-0.668545\pi\)
−0.505102 + 0.863060i \(0.668545\pi\)
\(132\) 0 0
\(133\) 25.7984 2.23700
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.9894 12.3435i −1.45150 1.05458i −0.985478 0.169802i \(-0.945687\pi\)
−0.466020 0.884774i \(-0.654313\pi\)
\(138\) 0 0
\(139\) −6.42705 + 19.7804i −0.545135 + 1.67775i 0.175533 + 0.984474i \(0.443835\pi\)
−0.720668 + 0.693280i \(0.756165\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.70820 1.28157i −0.477344 0.107170i
\(144\) 0 0
\(145\) 10.3262 7.50245i 0.857547 0.623045i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.2812 + 11.1024i 1.25188 + 0.909545i 0.998329 0.0577773i \(-0.0184013\pi\)
0.253551 + 0.967322i \(0.418401\pi\)
\(150\) 0 0
\(151\) −1.38197 4.25325i −0.112463 0.346125i 0.878947 0.476920i \(-0.158247\pi\)
−0.991409 + 0.130795i \(0.958247\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 24.5967 1.97566
\(156\) 0 0
\(157\) −3.94427 12.1392i −0.314787 0.968815i −0.975842 0.218478i \(-0.929891\pi\)
0.661055 0.750338i \(-0.270109\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.54508 + 17.0660i −0.437014 + 1.34499i
\(162\) 0 0
\(163\) −1.50000 + 1.08981i −0.117489 + 0.0853608i −0.644978 0.764201i \(-0.723134\pi\)
0.527489 + 0.849562i \(0.323134\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.30902 0.951057i 0.101295 0.0735950i −0.535985 0.844228i \(-0.680060\pi\)
0.637280 + 0.770633i \(0.280060\pi\)
\(168\) 0 0
\(169\) −3.05573 + 9.40456i −0.235056 + 0.723428i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.50000 + 13.8496i 0.342129 + 1.05296i 0.963103 + 0.269133i \(0.0867371\pi\)
−0.620974 + 0.783831i \(0.713263\pi\)
\(174\) 0 0
\(175\) 13.3262 1.00737
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.0172209 + 0.0530006i 0.00128715 + 0.00396145i 0.951698 0.307036i \(-0.0993371\pi\)
−0.950411 + 0.310997i \(0.899337\pi\)
\(180\) 0 0
\(181\) 9.66312 + 7.02067i 0.718254 + 0.521842i 0.885826 0.464018i \(-0.153593\pi\)
−0.167572 + 0.985860i \(0.553593\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −19.0172 + 13.8168i −1.39817 + 1.01583i
\(186\) 0 0
\(187\) −1.42705 15.2497i −0.104356 1.11517i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.98278 + 9.18005i −0.215826 + 0.664245i 0.783268 + 0.621685i \(0.213551\pi\)
−0.999094 + 0.0425604i \(0.986449\pi\)
\(192\) 0 0
\(193\) 0.263932 + 0.191758i 0.0189982 + 0.0138030i 0.597244 0.802060i \(-0.296262\pi\)
−0.578246 + 0.815863i \(0.696262\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.0902 1.21762 0.608812 0.793314i \(-0.291646\pi\)
0.608812 + 0.793314i \(0.291646\pi\)
\(198\) 0 0
\(199\) 16.4164 1.16373 0.581864 0.813286i \(-0.302324\pi\)
0.581864 + 0.813286i \(0.302324\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.3262 11.1352i −1.07569 0.781535i
\(204\) 0 0
\(205\) 0.465558 1.43284i 0.0325160 0.100074i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.2984 17.3763i 0.712353 1.20194i
\(210\) 0 0
\(211\) 19.2082 13.9556i 1.32235 0.960742i 0.322447 0.946587i \(-0.395494\pi\)
0.999900 0.0141542i \(-0.00450557\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.21885 + 0.885544i 0.0831247 + 0.0603936i
\(216\) 0 0
\(217\) −11.2812 34.7198i −0.765815 2.35693i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.14590 0.547952
\(222\) 0 0
\(223\) 0.454915 + 1.40008i 0.0304634 + 0.0937566i 0.965132 0.261763i \(-0.0843039\pi\)
−0.934669 + 0.355520i \(0.884304\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.218847 0.673542i 0.0145254 0.0447046i −0.943531 0.331284i \(-0.892518\pi\)
0.958057 + 0.286579i \(0.0925182\pi\)
\(228\) 0 0
\(229\) 5.61803 4.08174i 0.371250 0.269729i −0.386479 0.922298i \(-0.626309\pi\)
0.757729 + 0.652569i \(0.226309\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.8713 15.1639i 1.36733 0.993420i 0.369385 0.929276i \(-0.379568\pi\)
0.997941 0.0641440i \(-0.0204317\pi\)
\(234\) 0 0
\(235\) 1.21885 3.75123i 0.0795088 0.244703i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.33688 + 19.5029i 0.409899 + 1.26154i 0.916735 + 0.399496i \(0.130815\pi\)
−0.506836 + 0.862042i \(0.669185\pi\)
\(240\) 0 0
\(241\) −10.2918 −0.662953 −0.331476 0.943463i \(-0.607547\pi\)
−0.331476 + 0.943463i \(0.607547\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.65248 29.7073i −0.616674 1.89793i
\(246\) 0 0
\(247\) 8.69098 + 6.31437i 0.552994 + 0.401774i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.4443 7.58821i 0.659237 0.478963i −0.207168 0.978305i \(-0.566425\pi\)
0.866405 + 0.499342i \(0.166425\pi\)
\(252\) 0 0
\(253\) 9.28115 + 10.5474i 0.583501 + 0.663108i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.73607 + 20.7315i −0.420184 + 1.29319i 0.487346 + 0.873209i \(0.337965\pi\)
−0.907531 + 0.419986i \(0.862035\pi\)
\(258\) 0 0
\(259\) 28.2254 + 20.5070i 1.75384 + 1.27424i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.1459 −1.05726 −0.528631 0.848852i \(-0.677294\pi\)
−0.528631 + 0.848852i \(0.677294\pi\)
\(264\) 0 0
\(265\) −38.7082 −2.37783
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.7984 + 11.4782i 0.963244 + 0.699838i 0.953902 0.300119i \(-0.0970263\pi\)
0.00934200 + 0.999956i \(0.497026\pi\)
\(270\) 0 0
\(271\) −6.97214 + 21.4580i −0.423527 + 1.30348i 0.480870 + 0.876792i \(0.340321\pi\)
−0.904398 + 0.426691i \(0.859679\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.31966 8.97578i 0.320788 0.541260i
\(276\) 0 0
\(277\) 14.2082 10.3229i 0.853688 0.620241i −0.0724723 0.997370i \(-0.523089\pi\)
0.926160 + 0.377130i \(0.123089\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.7082 13.5923i −1.11604 0.810849i −0.132434 0.991192i \(-0.542279\pi\)
−0.983604 + 0.180343i \(0.942279\pi\)
\(282\) 0 0
\(283\) 5.79837 + 17.8456i 0.344678 + 1.06081i 0.961756 + 0.273907i \(0.0883160\pi\)
−0.617079 + 0.786901i \(0.711684\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.23607 −0.131991
\(288\) 0 0
\(289\) 1.33688 + 4.11450i 0.0786401 + 0.242029i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.54508 4.75528i 0.0902648 0.277807i −0.895726 0.444607i \(-0.853343\pi\)
0.985991 + 0.166800i \(0.0533435\pi\)
\(294\) 0 0
\(295\) −20.4443 + 14.8536i −1.19031 + 0.864812i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.04508 + 4.39201i −0.349596 + 0.253997i
\(300\) 0 0
\(301\) 0.690983 2.12663i 0.0398276 0.122577i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.336881 + 1.03681i 0.0192898 + 0.0593678i
\(306\) 0 0
\(307\) −16.3262 −0.931788 −0.465894 0.884841i \(-0.654267\pi\)
−0.465894 + 0.884841i \(0.654267\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.10739 + 6.48588i 0.119499 + 0.367781i 0.992859 0.119295i \(-0.0380635\pi\)
−0.873360 + 0.487076i \(0.838064\pi\)
\(312\) 0 0
\(313\) 0.809017 + 0.587785i 0.0457283 + 0.0332236i 0.610415 0.792082i \(-0.291003\pi\)
−0.564686 + 0.825306i \(0.691003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.1353 10.2699i 0.793915 0.576813i −0.115208 0.993341i \(-0.536753\pi\)
0.909123 + 0.416528i \(0.136753\pi\)
\(318\) 0 0
\(319\) −13.6180 + 5.87785i −0.762464 + 0.329097i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.69098 + 26.7481i −0.483579 + 1.48830i
\(324\) 0 0
\(325\) 4.48936 + 3.26171i 0.249025 + 0.180927i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.85410 −0.322747
\(330\) 0 0
\(331\) −5.94427 −0.326727 −0.163363 0.986566i \(-0.552234\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.8262 11.4984i −0.864680 0.628227i
\(336\) 0 0
\(337\) 9.76393 30.0503i 0.531875 1.63694i −0.218430 0.975853i \(-0.570094\pi\)
0.750306 0.661091i \(-0.229906\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −27.8885 6.26137i −1.51025 0.339072i
\(342\) 0 0
\(343\) −13.5172 + 9.82084i −0.729861 + 0.530275i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.47214 4.70228i −0.347442 0.252432i 0.400353 0.916361i \(-0.368888\pi\)
−0.747795 + 0.663929i \(0.768888\pi\)
\(348\) 0 0
\(349\) −7.34346 22.6008i −0.393086 1.20980i −0.930442 0.366440i \(-0.880577\pi\)
0.537356 0.843356i \(-0.319423\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.52786 0.0813200 0.0406600 0.999173i \(-0.487054\pi\)
0.0406600 + 0.999173i \(0.487054\pi\)
\(354\) 0 0
\(355\) −3.19098 9.82084i −0.169360 0.521236i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.79837 17.8456i 0.306026 0.941853i −0.673266 0.739401i \(-0.735109\pi\)
0.979292 0.202452i \(-0.0648910\pi\)
\(360\) 0 0
\(361\) −14.6353 + 10.6331i −0.770277 + 0.559639i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.85410 + 2.07363i −0.149391 + 0.108539i
\(366\) 0 0
\(367\) −2.35410 + 7.24518i −0.122883 + 0.378195i −0.993509 0.113750i \(-0.963714\pi\)
0.870626 + 0.491945i \(0.163714\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 17.7533 + 54.6390i 0.921705 + 2.83672i
\(372\) 0 0
\(373\) 3.94427 0.204227 0.102113 0.994773i \(-0.467440\pi\)
0.102113 + 0.994773i \(0.467440\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.43769 7.50245i −0.125548 0.386396i
\(378\) 0 0
\(379\) −0.572949 0.416272i −0.0294304 0.0213824i 0.572973 0.819574i \(-0.305790\pi\)
−0.602403 + 0.798192i \(0.705790\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.66312 3.38795i 0.238274 0.173116i −0.462240 0.886755i \(-0.652954\pi\)
0.700514 + 0.713639i \(0.252954\pi\)
\(384\) 0 0
\(385\) −39.1246 8.78402i −1.99397 0.447675i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.51722 + 4.66953i −0.0769262 + 0.236754i −0.982124 0.188237i \(-0.939723\pi\)
0.905198 + 0.424991i \(0.139723\pi\)
\(390\) 0 0
\(391\) −15.8262 11.4984i −0.800367 0.581501i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −27.8673 −1.40215
\(396\) 0 0
\(397\) 4.81966 0.241892 0.120946 0.992659i \(-0.461407\pi\)
0.120946 + 0.992659i \(0.461407\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.11803 + 2.26538i 0.155707 + 0.113128i 0.662911 0.748698i \(-0.269321\pi\)
−0.507204 + 0.861826i \(0.669321\pi\)
\(402\) 0 0
\(403\) 4.69756 14.4576i 0.234002 0.720185i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 25.0795 10.8249i 1.24315 0.536570i
\(408\) 0 0
\(409\) 20.9443 15.2169i 1.03563 0.752427i 0.0662003 0.997806i \(-0.478912\pi\)
0.969427 + 0.245379i \(0.0789124\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 30.3435 + 22.0458i 1.49310 + 1.08480i
\(414\) 0 0
\(415\) 5.75735 + 17.7193i 0.282617 + 0.869807i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.1459 −0.544513 −0.272256 0.962225i \(-0.587770\pi\)
−0.272256 + 0.962225i \(0.587770\pi\)
\(420\) 0 0
\(421\) 7.50000 + 23.0826i 0.365528 + 1.12498i 0.949650 + 0.313313i \(0.101439\pi\)
−0.584122 + 0.811666i \(0.698561\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.48936 + 13.8168i −0.217766 + 0.670214i
\(426\) 0 0
\(427\) 1.30902 0.951057i 0.0633478 0.0460249i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.88197 + 1.36733i −0.0906511 + 0.0658619i −0.632188 0.774815i \(-0.717843\pi\)
0.541536 + 0.840677i \(0.317843\pi\)
\(432\) 0 0
\(433\) 0.909830 2.80017i 0.0437236 0.134568i −0.926812 0.375526i \(-0.877462\pi\)
0.970535 + 0.240959i \(0.0774619\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.97214 24.5357i −0.381359 1.17370i
\(438\) 0 0
\(439\) 25.3607 1.21040 0.605200 0.796074i \(-0.293093\pi\)
0.605200 + 0.796074i \(0.293093\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.85410 + 21.0948i 0.325648 + 1.00224i 0.971147 + 0.238481i \(0.0766495\pi\)
−0.645499 + 0.763761i \(0.723351\pi\)
\(444\) 0 0
\(445\) −2.30902 1.67760i −0.109458 0.0795258i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.3262 + 9.68208i −0.628904 + 0.456926i −0.856020 0.516942i \(-0.827070\pi\)
0.227116 + 0.973868i \(0.427070\pi\)
\(450\) 0 0
\(451\) −0.892609 + 1.50609i −0.0420313 + 0.0709188i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.59017 20.2825i 0.308952 0.950856i
\(456\) 0 0
\(457\) −6.35410 4.61653i −0.297232 0.215952i 0.429166 0.903225i \(-0.358807\pi\)
−0.726399 + 0.687274i \(0.758807\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.562306 0.0261892 0.0130946 0.999914i \(-0.495832\pi\)
0.0130946 + 0.999914i \(0.495832\pi\)
\(462\) 0 0
\(463\) −30.2148 −1.40420 −0.702100 0.712078i \(-0.747754\pi\)
−0.702100 + 0.712078i \(0.747754\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −27.3713 19.8864i −1.26659 0.920234i −0.267532 0.963549i \(-0.586208\pi\)
−0.999061 + 0.0433147i \(0.986208\pi\)
\(468\) 0 0
\(469\) −8.97214 + 27.6134i −0.414295 + 1.27507i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.15654 1.31433i −0.0531778 0.0604329i
\(474\) 0 0
\(475\) −15.5000 + 11.2614i −0.711189 + 0.516709i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.88197 1.36733i −0.0859892 0.0624748i 0.543960 0.839111i \(-0.316924\pi\)
−0.629949 + 0.776636i \(0.716924\pi\)
\(480\) 0 0
\(481\) 4.48936 + 13.8168i 0.204697 + 0.629993i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.3820 −0.789274
\(486\) 0 0
\(487\) −5.51064 16.9600i −0.249711 0.768532i −0.994826 0.101595i \(-0.967605\pi\)
0.745115 0.666936i \(-0.232395\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.66312 11.2739i 0.165314 0.508785i −0.833745 0.552150i \(-0.813808\pi\)
0.999059 + 0.0433647i \(0.0138077\pi\)
\(492\) 0 0
\(493\) 16.7082 12.1392i 0.752500 0.546723i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.3992 + 9.00854i −0.556180 + 0.404088i
\(498\) 0 0
\(499\) −5.64590 + 17.3763i −0.252745 + 0.777869i 0.741520 + 0.670930i \(0.234105\pi\)
−0.994266 + 0.106939i \(0.965895\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.94427 12.1392i −0.175866 0.541261i 0.823806 0.566872i \(-0.191847\pi\)
−0.999672 + 0.0256113i \(0.991847\pi\)
\(504\) 0 0
\(505\) 34.0902 1.51699
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.19098 + 28.2869i 0.407383 + 1.25380i 0.918889 + 0.394517i \(0.129088\pi\)
−0.511506 + 0.859280i \(0.670912\pi\)
\(510\) 0 0
\(511\) 4.23607 + 3.07768i 0.187393 + 0.136149i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.14590 5.91834i 0.358951 0.260793i
\(516\) 0 0
\(517\) −2.33688 + 3.94298i −0.102776 + 0.173412i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 36.9322i 0.525730 1.61803i −0.237139 0.971476i \(-0.576210\pi\)
0.762869 0.646553i \(-0.223790\pi\)
\(522\) 0 0
\(523\) −2.26393 1.64484i −0.0989948 0.0719240i 0.537187 0.843463i \(-0.319487\pi\)
−0.636182 + 0.771539i \(0.719487\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 39.7984 1.73364
\(528\) 0 0
\(529\) −5.05573 −0.219814
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.753289 0.547296i −0.0326286 0.0237060i
\(534\) 0 0
\(535\) 13.6459 41.9978i 0.589964 1.81572i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.38197 + 36.1401i 0.145672 + 1.55667i
\(540\) 0 0
\(541\) −7.54508 + 5.48183i −0.324389 + 0.235682i −0.738046 0.674751i \(-0.764251\pi\)
0.413657 + 0.910433i \(0.364251\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.4721 13.4208i −0.791259 0.574884i
\(546\) 0 0
\(547\) −0.718847 2.21238i −0.0307357 0.0945947i 0.934512 0.355932i \(-0.115837\pi\)
−0.965248 + 0.261337i \(0.915837\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 27.2361 1.16030
\(552\) 0 0
\(553\) 12.7812 + 39.3363i 0.543510 + 1.67275i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.88197 5.79210i 0.0797415 0.245419i −0.903236 0.429144i \(-0.858815\pi\)
0.982978 + 0.183725i \(0.0588154\pi\)
\(558\) 0 0
\(559\) 0.753289 0.547296i 0.0318607 0.0231482i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.0795 16.0417i 0.930541 0.676078i −0.0155841 0.999879i \(-0.504961\pi\)
0.946125 + 0.323801i \(0.104961\pi\)
\(564\) 0 0
\(565\) 6.84752 21.0745i 0.288078 0.886611i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.9443 42.9161i −0.584574 1.79913i −0.600973 0.799269i \(-0.705220\pi\)
0.0163990 0.999866i \(-0.494780\pi\)
\(570\) 0 0
\(571\) 8.67376 0.362986 0.181493 0.983392i \(-0.441907\pi\)
0.181493 + 0.983392i \(0.441907\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.11803 12.6740i −0.171734 0.528543i
\(576\) 0 0
\(577\) −20.0344 14.5559i −0.834045 0.605969i 0.0866560 0.996238i \(-0.472382\pi\)
−0.920701 + 0.390269i \(0.872382\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.3713 16.2537i 0.928119 0.674318i
\(582\) 0 0
\(583\) 43.8885 + 9.85359i 1.81768 + 0.408094i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.34346 + 28.7562i −0.385646 + 1.18690i 0.550365 + 0.834924i \(0.314489\pi\)
−0.936011 + 0.351972i \(0.885511\pi\)
\(588\) 0 0
\(589\) 42.4615 + 30.8501i 1.74960 + 1.27116i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 36.4508 1.49686 0.748428 0.663215i \(-0.230809\pi\)
0.748428 + 0.663215i \(0.230809\pi\)
\(594\) 0 0
\(595\) 55.8328 2.28892
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.56231 + 5.49434i 0.308987 + 0.224493i 0.731462 0.681882i \(-0.238838\pi\)
−0.422474 + 0.906375i \(0.638838\pi\)
\(600\) 0 0
\(601\) 0.635255 1.95511i 0.0259126 0.0797507i −0.937264 0.348621i \(-0.886650\pi\)
0.963177 + 0.268870i \(0.0866502\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −21.5344 + 22.8456i −0.875500 + 0.928806i
\(606\) 0 0
\(607\) −19.6803 + 14.2986i −0.798800 + 0.580362i −0.910562 0.413373i \(-0.864351\pi\)
0.111762 + 0.993735i \(0.464351\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.97214 1.43284i −0.0797841 0.0579665i
\(612\) 0 0
\(613\) −7.14590 21.9928i −0.288620 0.888281i −0.985290 0.170890i \(-0.945336\pi\)
0.696670 0.717392i \(-0.254664\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.00000 0.281809 0.140905 0.990023i \(-0.454999\pi\)
0.140905 + 0.990023i \(0.454999\pi\)
\(618\) 0 0
\(619\) 0.454915 + 1.40008i 0.0182846 + 0.0562741i 0.959782 0.280745i \(-0.0905814\pi\)
−0.941498 + 0.337019i \(0.890581\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.30902 + 4.02874i −0.0524447 + 0.161408i
\(624\) 0 0
\(625\) 24.9443 18.1231i 0.997771 0.724923i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −30.7705 + 22.3561i −1.22690 + 0.891395i
\(630\) 0 0
\(631\) 12.7533 39.2506i 0.507700 1.56254i −0.288482 0.957485i \(-0.593151\pi\)
0.796183 0.605056i \(-0.206849\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.02129 6.22088i −0.0802123 0.246868i
\(636\) 0 0
\(637\) −19.3050 −0.764890
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.79180 + 20.9030i 0.268260 + 0.825619i 0.990924 + 0.134420i \(0.0429171\pi\)
−0.722665 + 0.691199i \(0.757083\pi\)
\(642\) 0 0
\(643\) −23.5902 17.1393i −0.930305 0.675907i 0.0157621 0.999876i \(-0.494983\pi\)
−0.946068 + 0.323969i \(0.894983\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.9721 + 14.5106i −0.785186 + 0.570471i −0.906531 0.422140i \(-0.861279\pi\)
0.121345 + 0.992610i \(0.461279\pi\)
\(648\) 0 0
\(649\) 26.9615 11.6372i 1.05833 0.456800i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.60739 26.4908i 0.336833 1.03667i −0.628979 0.777423i \(-0.716527\pi\)
0.965812 0.259244i \(-0.0834732\pi\)
\(654\) 0 0
\(655\) −26.6976 19.3969i −1.04316 0.757900i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.70820 0.144451 0.0722256 0.997388i \(-0.476990\pi\)
0.0722256 + 0.997388i \(0.476990\pi\)
\(660\) 0 0
\(661\) 2.32624 0.0904802 0.0452401 0.998976i \(-0.485595\pi\)
0.0452401 + 0.998976i \(0.485595\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 59.5689 + 43.2793i 2.30998 + 1.67830i
\(666\) 0 0
\(667\) −5.85410 + 18.0171i −0.226672 + 0.697624i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.118034 1.26133i −0.00455665 0.0486930i
\(672\) 0 0
\(673\) −21.4615 + 15.5927i −0.827280 + 0.601054i −0.918788 0.394750i \(-0.870831\pi\)
0.0915087 + 0.995804i \(0.470831\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.23607 3.80423i −0.201238 0.146208i 0.482602 0.875840i \(-0.339692\pi\)
−0.683841 + 0.729631i \(0.739692\pi\)
\(678\) 0 0
\(679\) 7.97214 + 24.5357i 0.305942 + 0.941594i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.34752 0.242881 0.121441 0.992599i \(-0.461249\pi\)
0.121441 + 0.992599i \(0.461249\pi\)
\(684\) 0 0
\(685\) −18.5213 57.0027i −0.707662 2.17796i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.39261 + 22.7521i −0.281636 + 0.866786i
\(690\) 0 0
\(691\) 27.9443 20.3027i 1.06305 0.772351i 0.0883999 0.996085i \(-0.471825\pi\)
0.974650 + 0.223734i \(0.0718246\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −48.0238 + 34.8913i −1.82165 + 1.32350i
\(696\) 0 0
\(697\) 0.753289 2.31838i 0.0285329 0.0878151i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.93769 9.04129i −0.110955 0.341485i 0.880127 0.474739i \(-0.157457\pi\)
−0.991082 + 0.133254i \(0.957457\pi\)
\(702\) 0 0
\(703\) −50.1591 −1.89178
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.6353 48.1204i −0.588024 1.80975i
\(708\) 0 0
\(709\) 20.8262 + 15.1311i 0.782146 + 0.568262i 0.905622 0.424085i \(-0.139404\pi\)
−0.123476 + 0.992348i \(0.539404\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −29.5344 + 21.4580i −1.10607 + 0.803609i
\(714\) 0 0
\(715\) −11.0304 12.5352i −0.412513 0.468792i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.0729 37.1567i 0.450245 1.38571i −0.426383 0.904543i \(-0.640212\pi\)
0.876628 0.481169i \(-0.159788\pi\)
\(720\) 0 0
\(721\) −12.0902 8.78402i −0.450261 0.327134i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.0689 0.522505
\(726\) 0 0
\(727\) −2.14590 −0.0795870 −0.0397935 0.999208i \(-0.512670\pi\)
−0.0397935 + 0.999208i \(0.512670\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.97214 + 1.43284i 0.0729421 + 0.0529955i
\(732\) 0 0
\(733\) −6.96556 + 21.4378i −0.257279 + 0.791823i 0.736093 + 0.676880i \(0.236668\pi\)
−0.993372 + 0.114943i \(0.963332\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0172 + 17.0660i 0.553166 + 0.628635i
\(738\) 0 0
\(739\) 28.4615 20.6785i 1.04697 0.760670i 0.0753384 0.997158i \(-0.475996\pi\)
0.971634 + 0.236488i \(0.0759963\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.04508 + 1.48584i 0.0750269 + 0.0545102i 0.624666 0.780892i \(-0.285235\pi\)
−0.549640 + 0.835402i \(0.685235\pi\)
\(744\) 0 0
\(745\) 16.6591 + 51.2713i 0.610341 + 1.87843i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −65.5410 −2.39482
\(750\) 0 0
\(751\) 11.3197 + 34.8383i 0.413060 + 1.27127i 0.913974 + 0.405772i \(0.132997\pi\)
−0.500914 + 0.865497i \(0.667003\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.94427 12.1392i 0.143547 0.441791i
\(756\) 0 0
\(757\) −13.2812 + 9.64932i −0.482712 + 0.350711i −0.802375 0.596821i \(-0.796430\pi\)
0.319663 + 0.947531i \(0.396430\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.4615 30.1235i 1.50298 1.09198i 0.533801 0.845610i \(-0.320763\pi\)
0.969176 0.246368i \(-0.0792370\pi\)
\(762\) 0 0
\(763\) −10.4721 + 32.2299i −0.379117 + 1.16680i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.82624 + 14.8536i 0.174265 + 0.536334i
\(768\) 0 0
\(769\) −13.4377 −0.484576 −0.242288 0.970204i \(-0.577898\pi\)
−0.242288 + 0.970204i \(0.577898\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.74671 + 14.6089i 0.170727 + 0.525445i 0.999413 0.0342702i \(-0.0109107\pi\)
−0.828685 + 0.559715i \(0.810911\pi\)
\(774\) 0 0
\(775\) 21.9336 + 15.9357i 0.787879 + 0.572428i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.60081 1.88960i 0.0931838 0.0677020i
\(780\) 0 0
\(781\) 1.11803 + 11.9475i 0.0400064 + 0.427514i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.2574 34.6466i 0.401792 1.23659i
\(786\) 0 0
\(787\) −39.8328 28.9402i −1.41989 1.03161i −0.991790 0.127875i \(-0.959184\pi\)
−0.428096 0.903733i \(-0.640816\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −32.8885 −1.16938
\(792\) 0 0
\(793\) 0.673762 0.0239260
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.8541 + 15.8779i 0.774112 + 0.562425i 0.903206 0.429207i \(-0.141207\pi\)
−0.129094 + 0.991632i \(0.541207\pi\)
\(798\) 0 0
\(799\) 1.97214 6.06961i 0.0697692 0.214727i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.76393 1.62460i 0.132826 0.0573308i
\(804\) 0 0
\(805\) −41.4336 + 30.1033i −1.46034 + 1.06100i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.39919 + 1.01657i 0.0491928 + 0.0357407i 0.612110 0.790773i \(-0.290321\pi\)
−0.562917 + 0.826513i \(0.690321\pi\)
\(810\) 0 0
\(811\) −8.28115 25.4868i −0.290791 0.894961i −0.984603 0.174806i \(-0.944070\pi\)
0.693812 0.720156i \(-0.255930\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.29180 −0.185364
\(816\) 0 0
\(817\) 0.993422 + 3.05744i 0.0347554 + 0.106966i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.36475 16.5110i 0.187231 0.576237i −0.812749 0.582614i \(-0.802030\pi\)
0.999980 + 0.00637687i \(0.00202983\pi\)
\(822\) 0 0
\(823\) −0.663119 + 0.481784i −0.0231149 + 0.0167939i −0.599283 0.800537i \(-0.704547\pi\)
0.576168 + 0.817331i \(0.304547\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.708204 + 0.514540i −0.0246267 + 0.0178923i −0.600030 0.799977i \(-0.704845\pi\)
0.575404 + 0.817869i \(0.304845\pi\)
\(828\) 0 0
\(829\) −11.6631 + 35.8954i −0.405077 + 1.24670i 0.515754 + 0.856737i \(0.327512\pi\)
−0.920831 + 0.389962i \(0.872488\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.6180 48.0674i −0.541133 1.66544i
\(834\) 0 0
\(835\) 4.61803 0.159814
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.89261 + 15.0579i 0.168912 + 0.519857i 0.999303 0.0373237i \(-0.0118833\pi\)
−0.830392 + 0.557180i \(0.811883\pi\)
\(840\) 0 0
\(841\) 7.28115 + 5.29007i 0.251074 + 0.182416i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −22.8328 + 16.5890i −0.785473 + 0.570679i
\(846\) 0 0
\(847\) 42.1246 + 19.9192i 1.44742 + 0.684431i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10.7812 33.1810i 0.369573 1.13743i
\(852\) 0 0
\(853\) −44.7877 32.5402i −1.53350 1.11415i −0.954251 0.299006i \(-0.903345\pi\)
−0.579251 0.815149i \(-0.696655\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −48.1935 −1.64626 −0.823129 0.567854i \(-0.807774\pi\)
−0.823129 + 0.567854i \(0.807774\pi\)
\(858\) 0 0
\(859\) 31.1803 1.06386 0.531930 0.846788i \(-0.321467\pi\)
0.531930 + 0.846788i \(0.321467\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.5623 + 17.8456i 0.836111 + 0.607470i 0.921281 0.388896i \(-0.127144\pi\)
−0.0851709 + 0.996366i \(0.527144\pi\)
\(864\) 0 0
\(865\) −12.8435 + 39.5281i −0.436691 + 1.34400i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 31.5967 + 7.09391i 1.07185 + 0.240644i
\(870\) 0 0
\(871\) −9.78115 + 7.10642i −0.331422 + 0.240792i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −18.1353 13.1760i −0.613084 0.445431i
\(876\) 0 0
\(877\) −10.7812 33.1810i −0.364054 1.12044i −0.950572 0.310506i \(-0.899502\pi\)
0.586518 0.809936i \(-0.300498\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20.4377 −0.688563 −0.344282 0.938866i \(-0.611878\pi\)
−0.344282 + 0.938866i \(0.611878\pi\)
\(882\) 0 0
\(883\) −0.909830 2.80017i −0.0306182 0.0942332i 0.934580 0.355754i \(-0.115776\pi\)
−0.965198 + 0.261521i \(0.915776\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.4336 44.4221i 0.484634 1.49155i −0.347877 0.937540i \(-0.613097\pi\)
0.832511 0.554009i \(-0.186903\pi\)
\(888\) 0 0
\(889\) −7.85410 + 5.70634i −0.263418 + 0.191384i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.80902 4.94704i 0.227855 0.165546i
\(894\) 0 0
\(895\) −0.0491503 + 0.151269i −0.00164291 + 0.00505637i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.9098 36.6547i −0.397215 1.22250i
\(900\) 0 0
\(901\) −62.6312 −2.08655
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.5344 + 32.4217i 0.350177 + 1.07773i
\(906\) 0 0
\(907\) −32.2533 23.4334i −1.07095 0.778093i −0.0948696 0.995490i \(-0.530243\pi\)
−0.976083 + 0.217397i \(0.930243\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −33.6074 + 24.4172i −1.11346 + 0.808978i −0.983205 0.182502i \(-0.941580\pi\)
−0.130257 + 0.991480i \(0.541580\pi\)
\(912\) 0 0
\(913\) −2.01722 21.5563i −0.0667603 0.713409i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.1353 + 46.5815i −0.499810 + 1.53826i
\(918\) 0 0
\(919\) −30.6074 22.2376i −1.00964 0.733550i −0.0455101 0.998964i \(-0.514491\pi\)
−0.964135 + 0.265414i \(0.914491\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.38197 −0.210065
\(924\) 0 0
\(925\) −25.9098 −0.851910
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 37.5517 + 27.2829i 1.23203 + 0.895122i 0.997041 0.0768757i \(-0.0244945\pi\)
0.234989 + 0.971998i \(0.424494\pi\)
\(930\) 0 0
\(931\) 20.5967 63.3903i 0.675031 2.07753i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22.2877 37.6057i 0.728887 1.22984i
\(936\) 0 0
\(937\) −19.6074 + 14.2456i −0.640546 + 0.465384i −0.860038 0.510231i \(-0.829560\pi\)
0.219492 + 0.975614i \(0.429560\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.2082 + 10.3229i 0.463174 + 0.336516i 0.794775 0.606904i \(-0.207589\pi\)
−0.331601 + 0.943420i \(0.607589\pi\)
\(942\) 0 0
\(943\) 0.690983 + 2.12663i 0.0225015 + 0.0692525i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.7984 −0.708352 −0.354176 0.935179i \(-0.615239\pi\)
−0.354176 + 0.935179i \(0.615239\pi\)
\(948\) 0 0
\(949\) 0.673762 + 2.07363i 0.0218712 + 0.0673128i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12.1246 + 37.3157i −0.392755 + 1.20877i 0.537942 + 0.842982i \(0.319202\pi\)
−0.930696 + 0.365793i \(0.880798\pi\)
\(954\) 0 0
\(955\) −22.2877 + 16.1930i −0.721214 + 0.523993i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −71.9681 + 52.2879i −2.32397 + 1.68846i
\(960\) 0 0
\(961\) 13.3713 41.1527i 0.431333 1.32751i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.287731 + 0.885544i 0.00926238 + 0.0285067i
\(966\) 0 0
\(967\) 48.2705 1.55227 0.776137 0.630564i \(-0.217176\pi\)
0.776137 + 0.630564i \(0.217176\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.0902 + 40.2874i 0.420084 + 1.29288i 0.907624 + 0.419784i \(0.137894\pi\)
−0.487541 + 0.873100i \(0.662106\pi\)
\(972\) 0 0
\(973\) 71.2771 + 51.7858i 2.28504 + 1.66018i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.33688 1.69784i 0.0747634 0.0543188i −0.549776 0.835312i \(-0.685287\pi\)
0.624539 + 0.780993i \(0.285287\pi\)
\(978\) 0 0
\(979\) 2.19098 + 2.48990i 0.0700241 + 0.0795775i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.20163 + 16.0090i −0.165906 + 0.510606i −0.999102 0.0423716i \(-0.986509\pi\)
0.833196 + 0.552978i \(0.186509\pi\)
\(984\) 0 0
\(985\) 39.4615 + 28.6705i 1.25735 + 0.913517i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.23607 −0.0711028
\(990\) 0 0
\(991\) 9.72949 0.309067 0.154534 0.987988i \(-0.450612\pi\)
0.154534 + 0.987988i \(0.450612\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 37.9058 + 27.5402i 1.20169 + 0.873081i
\(996\) 0 0
\(997\) −1.31966 + 4.06150i −0.0417941 + 0.128629i −0.969776 0.243995i \(-0.921542\pi\)
0.927982 + 0.372624i \(0.121542\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.j.c.289.1 4
3.2 odd 2 132.2.i.b.25.1 4
11.2 odd 10 4356.2.a.s.1.1 2
11.4 even 5 inner 396.2.j.c.37.1 4
11.9 even 5 4356.2.a.v.1.1 2
12.11 even 2 528.2.y.a.289.1 4
33.2 even 10 1452.2.a.i.1.2 2
33.5 odd 10 1452.2.i.o.493.1 4
33.8 even 10 1452.2.i.p.1237.1 4
33.14 odd 10 1452.2.i.o.1237.1 4
33.17 even 10 1452.2.i.p.493.1 4
33.20 odd 10 1452.2.a.j.1.2 2
33.26 odd 10 132.2.i.b.37.1 yes 4
33.29 even 10 1452.2.i.j.565.1 4
33.32 even 2 1452.2.i.j.1213.1 4
132.35 odd 10 5808.2.a.cf.1.2 2
132.59 even 10 528.2.y.a.433.1 4
132.119 even 10 5808.2.a.cc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.25.1 4 3.2 odd 2
132.2.i.b.37.1 yes 4 33.26 odd 10
396.2.j.c.37.1 4 11.4 even 5 inner
396.2.j.c.289.1 4 1.1 even 1 trivial
528.2.y.a.289.1 4 12.11 even 2
528.2.y.a.433.1 4 132.59 even 10
1452.2.a.i.1.2 2 33.2 even 10
1452.2.a.j.1.2 2 33.20 odd 10
1452.2.i.j.565.1 4 33.29 even 10
1452.2.i.j.1213.1 4 33.32 even 2
1452.2.i.o.493.1 4 33.5 odd 10
1452.2.i.o.1237.1 4 33.14 odd 10
1452.2.i.p.493.1 4 33.17 even 10
1452.2.i.p.1237.1 4 33.8 even 10
4356.2.a.s.1.1 2 11.2 odd 10
4356.2.a.v.1.1 2 11.9 even 5
5808.2.a.cc.1.2 2 132.119 even 10
5808.2.a.cf.1.2 2 132.35 odd 10