Properties

Label 132.2.i.b.37.1
Level $132$
Weight $2$
Character 132.37
Analytic conductor $1.054$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,2,Mod(25,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 132.i (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.05402530668\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 37.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 132.37
Dual form 132.2.i.b.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{3} +(-2.30902 + 1.67760i) q^{5} +(1.30902 + 4.02874i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(2.19098 - 2.48990i) q^{11} +(1.42705 + 1.03681i) q^{13} +(-0.881966 - 2.71441i) q^{15} +(-3.73607 + 2.71441i) q^{17} +(1.88197 - 5.79210i) q^{19} -4.23607 q^{21} +4.23607 q^{23} +(0.972136 - 2.99193i) q^{25} +(0.809017 - 0.587785i) q^{27} +(-1.38197 - 4.25325i) q^{29} +(6.97214 + 5.06555i) q^{31} +(1.69098 + 2.85317i) q^{33} +(-9.78115 - 7.10642i) q^{35} +(-2.54508 - 7.83297i) q^{37} +(-1.42705 + 1.03681i) q^{39} +(0.163119 - 0.502029i) q^{41} +0.527864 q^{43} +2.85410 q^{45} +(0.427051 - 1.31433i) q^{47} +(-8.85410 + 6.43288i) q^{49} +(-1.42705 - 4.39201i) q^{51} +(10.9721 + 7.97172i) q^{53} +(-0.881966 + 9.42481i) q^{55} +(4.92705 + 3.57971i) q^{57} +(2.73607 + 8.42075i) q^{59} +(0.309017 - 0.224514i) q^{61} +(1.30902 - 4.02874i) q^{63} -5.03444 q^{65} -6.85410 q^{67} +(-1.30902 + 4.02874i) q^{69} +(2.92705 - 2.12663i) q^{71} +(-0.381966 - 1.17557i) q^{73} +(2.54508 + 1.84911i) q^{75} +(12.8992 + 5.56758i) q^{77} +(-7.89919 - 5.73910i) q^{79} +(0.309017 + 0.951057i) q^{81} +(-5.28115 + 3.83698i) q^{83} +(4.07295 - 12.5352i) q^{85} +4.47214 q^{87} +1.00000 q^{89} +(-2.30902 + 7.10642i) q^{91} +(-6.97214 + 5.06555i) q^{93} +(5.37132 + 16.5312i) q^{95} +(-4.92705 - 3.57971i) q^{97} +(-3.23607 + 0.726543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 7 q^{5} + 3 q^{7} - q^{9} + 11 q^{11} - q^{13} - 8 q^{15} - 6 q^{17} + 12 q^{19} - 8 q^{21} + 8 q^{23} - 14 q^{25} + q^{27} - 10 q^{29} + 10 q^{31} + 9 q^{33} - 19 q^{35} + q^{37} + q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0 0
\(5\) −2.30902 + 1.67760i −1.03262 + 0.750245i −0.968832 0.247718i \(-0.920319\pi\)
−0.0637916 + 0.997963i \(0.520319\pi\)
\(6\) 0 0
\(7\) 1.30902 + 4.02874i 0.494762 + 1.52272i 0.817327 + 0.576173i \(0.195455\pi\)
−0.322566 + 0.946547i \(0.604545\pi\)
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 2.19098 2.48990i 0.660606 0.750733i
\(12\) 0 0
\(13\) 1.42705 + 1.03681i 0.395793 + 0.287560i 0.767825 0.640660i \(-0.221339\pi\)
−0.372032 + 0.928220i \(0.621339\pi\)
\(14\) 0 0
\(15\) −0.881966 2.71441i −0.227723 0.700858i
\(16\) 0 0
\(17\) −3.73607 + 2.71441i −0.906130 + 0.658342i −0.940033 0.341083i \(-0.889206\pi\)
0.0339034 + 0.999425i \(0.489206\pi\)
\(18\) 0 0
\(19\) 1.88197 5.79210i 0.431753 1.32880i −0.464625 0.885507i \(-0.653811\pi\)
0.896378 0.443291i \(-0.146189\pi\)
\(20\) 0 0
\(21\) −4.23607 −0.924386
\(22\) 0 0
\(23\) 4.23607 0.883281 0.441641 0.897192i \(-0.354397\pi\)
0.441641 + 0.897192i \(0.354397\pi\)
\(24\) 0 0
\(25\) 0.972136 2.99193i 0.194427 0.598385i
\(26\) 0 0
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0 0
\(29\) −1.38197 4.25325i −0.256625 0.789809i −0.993505 0.113787i \(-0.963702\pi\)
0.736881 0.676023i \(-0.236298\pi\)
\(30\) 0 0
\(31\) 6.97214 + 5.06555i 1.25223 + 0.909800i 0.998349 0.0574346i \(-0.0182921\pi\)
0.253883 + 0.967235i \(0.418292\pi\)
\(32\) 0 0
\(33\) 1.69098 + 2.85317i 0.294362 + 0.496673i
\(34\) 0 0
\(35\) −9.78115 7.10642i −1.65332 1.20120i
\(36\) 0 0
\(37\) −2.54508 7.83297i −0.418409 1.28773i −0.909166 0.416435i \(-0.863279\pi\)
0.490756 0.871297i \(-0.336721\pi\)
\(38\) 0 0
\(39\) −1.42705 + 1.03681i −0.228511 + 0.166023i
\(40\) 0 0
\(41\) 0.163119 0.502029i 0.0254749 0.0784037i −0.937511 0.347956i \(-0.886876\pi\)
0.962986 + 0.269553i \(0.0868758\pi\)
\(42\) 0 0
\(43\) 0.527864 0.0804985 0.0402493 0.999190i \(-0.487185\pi\)
0.0402493 + 0.999190i \(0.487185\pi\)
\(44\) 0 0
\(45\) 2.85410 0.425464
\(46\) 0 0
\(47\) 0.427051 1.31433i 0.0622918 0.191714i −0.915068 0.403301i \(-0.867863\pi\)
0.977359 + 0.211586i \(0.0678629\pi\)
\(48\) 0 0
\(49\) −8.85410 + 6.43288i −1.26487 + 0.918983i
\(50\) 0 0
\(51\) −1.42705 4.39201i −0.199827 0.615005i
\(52\) 0 0
\(53\) 10.9721 + 7.97172i 1.50714 + 1.09500i 0.967427 + 0.253151i \(0.0814668\pi\)
0.539712 + 0.841850i \(0.318533\pi\)
\(54\) 0 0
\(55\) −0.881966 + 9.42481i −0.118924 + 1.27084i
\(56\) 0 0
\(57\) 4.92705 + 3.57971i 0.652604 + 0.474144i
\(58\) 0 0
\(59\) 2.73607 + 8.42075i 0.356206 + 1.09629i 0.955307 + 0.295615i \(0.0955246\pi\)
−0.599101 + 0.800673i \(0.704475\pi\)
\(60\) 0 0
\(61\) 0.309017 0.224514i 0.0395656 0.0287461i −0.567827 0.823148i \(-0.692216\pi\)
0.607392 + 0.794402i \(0.292216\pi\)
\(62\) 0 0
\(63\) 1.30902 4.02874i 0.164921 0.507574i
\(64\) 0 0
\(65\) −5.03444 −0.624446
\(66\) 0 0
\(67\) −6.85410 −0.837362 −0.418681 0.908133i \(-0.637507\pi\)
−0.418681 + 0.908133i \(0.637507\pi\)
\(68\) 0 0
\(69\) −1.30902 + 4.02874i −0.157587 + 0.485003i
\(70\) 0 0
\(71\) 2.92705 2.12663i 0.347377 0.252384i −0.400391 0.916344i \(-0.631126\pi\)
0.747768 + 0.663960i \(0.231126\pi\)
\(72\) 0 0
\(73\) −0.381966 1.17557i −0.0447057 0.137590i 0.926212 0.377003i \(-0.123045\pi\)
−0.970918 + 0.239412i \(0.923045\pi\)
\(74\) 0 0
\(75\) 2.54508 + 1.84911i 0.293881 + 0.213517i
\(76\) 0 0
\(77\) 12.8992 + 5.56758i 1.47000 + 0.634485i
\(78\) 0 0
\(79\) −7.89919 5.73910i −0.888728 0.645699i 0.0468181 0.998903i \(-0.485092\pi\)
−0.935546 + 0.353205i \(0.885092\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) −5.28115 + 3.83698i −0.579682 + 0.421164i −0.838609 0.544733i \(-0.816631\pi\)
0.258928 + 0.965897i \(0.416631\pi\)
\(84\) 0 0
\(85\) 4.07295 12.5352i 0.441773 1.35964i
\(86\) 0 0
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) −2.30902 + 7.10642i −0.242051 + 0.744956i
\(92\) 0 0
\(93\) −6.97214 + 5.06555i −0.722977 + 0.525273i
\(94\) 0 0
\(95\) 5.37132 + 16.5312i 0.551086 + 1.69607i
\(96\) 0 0
\(97\) −4.92705 3.57971i −0.500266 0.363465i 0.308852 0.951110i \(-0.400055\pi\)
−0.809119 + 0.587645i \(0.800055\pi\)
\(98\) 0 0
\(99\) −3.23607 + 0.726543i −0.325237 + 0.0730203i
\(100\) 0 0
\(101\) −9.66312 7.02067i −0.961516 0.698582i −0.00801387 0.999968i \(-0.502551\pi\)
−0.953502 + 0.301385i \(0.902551\pi\)
\(102\) 0 0
\(103\) 1.09017 + 3.35520i 0.107418 + 0.330597i 0.990290 0.139015i \(-0.0443936\pi\)
−0.882873 + 0.469613i \(0.844394\pi\)
\(104\) 0 0
\(105\) 9.78115 7.10642i 0.954543 0.693516i
\(106\) 0 0
\(107\) 4.78115 14.7149i 0.462212 1.42254i −0.400244 0.916408i \(-0.631075\pi\)
0.862456 0.506132i \(-0.168925\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 8.23607 0.781733
\(112\) 0 0
\(113\) 2.39919 7.38394i 0.225697 0.694622i −0.772524 0.634986i \(-0.781006\pi\)
0.998220 0.0596365i \(-0.0189941\pi\)
\(114\) 0 0
\(115\) −9.78115 + 7.10642i −0.912097 + 0.662677i
\(116\) 0 0
\(117\) −0.545085 1.67760i −0.0503931 0.155094i
\(118\) 0 0
\(119\) −15.8262 11.4984i −1.45079 1.05406i
\(120\) 0 0
\(121\) −1.39919 10.9106i −0.127199 0.991877i
\(122\) 0 0
\(123\) 0.427051 + 0.310271i 0.0385059 + 0.0279762i
\(124\) 0 0
\(125\) −1.63525 5.03280i −0.146262 0.450147i
\(126\) 0 0
\(127\) −1.85410 + 1.34708i −0.164525 + 0.119534i −0.667001 0.745057i \(-0.732422\pi\)
0.502476 + 0.864591i \(0.332422\pi\)
\(128\) 0 0
\(129\) −0.163119 + 0.502029i −0.0143618 + 0.0442011i
\(130\) 0 0
\(131\) 11.5623 1.01020 0.505102 0.863060i \(-0.331455\pi\)
0.505102 + 0.863060i \(0.331455\pi\)
\(132\) 0 0
\(133\) 25.7984 2.23700
\(134\) 0 0
\(135\) −0.881966 + 2.71441i −0.0759075 + 0.233619i
\(136\) 0 0
\(137\) 16.9894 12.3435i 1.45150 1.05458i 0.466020 0.884774i \(-0.345687\pi\)
0.985478 0.169802i \(-0.0543127\pi\)
\(138\) 0 0
\(139\) −6.42705 19.7804i −0.545135 1.67775i −0.720668 0.693280i \(-0.756165\pi\)
0.175533 0.984474i \(-0.443835\pi\)
\(140\) 0 0
\(141\) 1.11803 + 0.812299i 0.0941554 + 0.0684079i
\(142\) 0 0
\(143\) 5.70820 1.28157i 0.477344 0.107170i
\(144\) 0 0
\(145\) 10.3262 + 7.50245i 0.857547 + 0.623045i
\(146\) 0 0
\(147\) −3.38197 10.4086i −0.278940 0.858489i
\(148\) 0 0
\(149\) −15.2812 + 11.1024i −1.25188 + 0.909545i −0.998329 0.0577773i \(-0.981599\pi\)
−0.253551 + 0.967322i \(0.581599\pi\)
\(150\) 0 0
\(151\) −1.38197 + 4.25325i −0.112463 + 0.346125i −0.991409 0.130795i \(-0.958247\pi\)
0.878947 + 0.476920i \(0.158247\pi\)
\(152\) 0 0
\(153\) 4.61803 0.373346
\(154\) 0 0
\(155\) −24.5967 −1.97566
\(156\) 0 0
\(157\) −3.94427 + 12.1392i −0.314787 + 0.968815i 0.661055 + 0.750338i \(0.270109\pi\)
−0.975842 + 0.218478i \(0.929891\pi\)
\(158\) 0 0
\(159\) −10.9721 + 7.97172i −0.870147 + 0.632199i
\(160\) 0 0
\(161\) 5.54508 + 17.0660i 0.437014 + 1.34499i
\(162\) 0 0
\(163\) −1.50000 1.08981i −0.117489 0.0853608i 0.527489 0.849562i \(-0.323134\pi\)
−0.644978 + 0.764201i \(0.723134\pi\)
\(164\) 0 0
\(165\) −8.69098 3.75123i −0.676592 0.292033i
\(166\) 0 0
\(167\) −1.30902 0.951057i −0.101295 0.0735950i 0.535985 0.844228i \(-0.319940\pi\)
−0.637280 + 0.770633i \(0.719940\pi\)
\(168\) 0 0
\(169\) −3.05573 9.40456i −0.235056 0.723428i
\(170\) 0 0
\(171\) −4.92705 + 3.57971i −0.376781 + 0.273747i
\(172\) 0 0
\(173\) −4.50000 + 13.8496i −0.342129 + 1.05296i 0.620974 + 0.783831i \(0.286737\pi\)
−0.963103 + 0.269133i \(0.913263\pi\)
\(174\) 0 0
\(175\) 13.3262 1.00737
\(176\) 0 0
\(177\) −8.85410 −0.665515
\(178\) 0 0
\(179\) −0.0172209 + 0.0530006i −0.00128715 + 0.00396145i −0.951698 0.307036i \(-0.900663\pi\)
0.950411 + 0.310997i \(0.100663\pi\)
\(180\) 0 0
\(181\) 9.66312 7.02067i 0.718254 0.521842i −0.167572 0.985860i \(-0.553593\pi\)
0.885826 + 0.464018i \(0.153593\pi\)
\(182\) 0 0
\(183\) 0.118034 + 0.363271i 0.00872532 + 0.0268538i
\(184\) 0 0
\(185\) 19.0172 + 13.8168i 1.39817 + 1.01583i
\(186\) 0 0
\(187\) −1.42705 + 15.2497i −0.104356 + 1.11517i
\(188\) 0 0
\(189\) 3.42705 + 2.48990i 0.249281 + 0.181113i
\(190\) 0 0
\(191\) 2.98278 + 9.18005i 0.215826 + 0.664245i 0.999094 + 0.0425604i \(0.0135515\pi\)
−0.783268 + 0.621685i \(0.786449\pi\)
\(192\) 0 0
\(193\) 0.263932 0.191758i 0.0189982 0.0138030i −0.578246 0.815863i \(-0.696262\pi\)
0.597244 + 0.802060i \(0.296262\pi\)
\(194\) 0 0
\(195\) 1.55573 4.78804i 0.111408 0.342879i
\(196\) 0 0
\(197\) −17.0902 −1.21762 −0.608812 0.793314i \(-0.708354\pi\)
−0.608812 + 0.793314i \(0.708354\pi\)
\(198\) 0 0
\(199\) 16.4164 1.16373 0.581864 0.813286i \(-0.302324\pi\)
0.581864 + 0.813286i \(0.302324\pi\)
\(200\) 0 0
\(201\) 2.11803 6.51864i 0.149395 0.459789i
\(202\) 0 0
\(203\) 15.3262 11.1352i 1.07569 0.781535i
\(204\) 0 0
\(205\) 0.465558 + 1.43284i 0.0325160 + 0.100074i
\(206\) 0 0
\(207\) −3.42705 2.48990i −0.238197 0.173060i
\(208\) 0 0
\(209\) −10.2984 17.3763i −0.712353 1.20194i
\(210\) 0 0
\(211\) 19.2082 + 13.9556i 1.32235 + 0.960742i 0.999900 + 0.0141542i \(0.00450557\pi\)
0.322447 + 0.946587i \(0.395494\pi\)
\(212\) 0 0
\(213\) 1.11803 + 3.44095i 0.0766064 + 0.235770i
\(214\) 0 0
\(215\) −1.21885 + 0.885544i −0.0831247 + 0.0603936i
\(216\) 0 0
\(217\) −11.2812 + 34.7198i −0.765815 + 2.35693i
\(218\) 0 0
\(219\) 1.23607 0.0835257
\(220\) 0 0
\(221\) −8.14590 −0.547952
\(222\) 0 0
\(223\) 0.454915 1.40008i 0.0304634 0.0937566i −0.934669 0.355520i \(-0.884304\pi\)
0.965132 + 0.261763i \(0.0843039\pi\)
\(224\) 0 0
\(225\) −2.54508 + 1.84911i −0.169672 + 0.123274i
\(226\) 0 0
\(227\) −0.218847 0.673542i −0.0145254 0.0447046i 0.943531 0.331284i \(-0.107482\pi\)
−0.958057 + 0.286579i \(0.907482\pi\)
\(228\) 0 0
\(229\) 5.61803 + 4.08174i 0.371250 + 0.269729i 0.757729 0.652569i \(-0.226309\pi\)
−0.386479 + 0.922298i \(0.626309\pi\)
\(230\) 0 0
\(231\) −9.28115 + 10.5474i −0.610655 + 0.693967i
\(232\) 0 0
\(233\) −20.8713 15.1639i −1.36733 0.993420i −0.997941 0.0641440i \(-0.979568\pi\)
−0.369385 0.929276i \(-0.620432\pi\)
\(234\) 0 0
\(235\) 1.21885 + 3.75123i 0.0795088 + 0.244703i
\(236\) 0 0
\(237\) 7.89919 5.73910i 0.513107 0.372794i
\(238\) 0 0
\(239\) −6.33688 + 19.5029i −0.409899 + 1.26154i 0.506836 + 0.862042i \(0.330815\pi\)
−0.916735 + 0.399496i \(0.869185\pi\)
\(240\) 0 0
\(241\) −10.2918 −0.662953 −0.331476 0.943463i \(-0.607547\pi\)
−0.331476 + 0.943463i \(0.607547\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 9.65248 29.7073i 0.616674 1.89793i
\(246\) 0 0
\(247\) 8.69098 6.31437i 0.552994 0.401774i
\(248\) 0 0
\(249\) −2.01722 6.20837i −0.127836 0.393439i
\(250\) 0 0
\(251\) −10.4443 7.58821i −0.659237 0.478963i 0.207168 0.978305i \(-0.433575\pi\)
−0.866405 + 0.499342i \(0.833575\pi\)
\(252\) 0 0
\(253\) 9.28115 10.5474i 0.583501 0.663108i
\(254\) 0 0
\(255\) 10.6631 + 7.74721i 0.667750 + 0.485149i
\(256\) 0 0
\(257\) 6.73607 + 20.7315i 0.420184 + 1.29319i 0.907531 + 0.419986i \(0.137965\pi\)
−0.487346 + 0.873209i \(0.662035\pi\)
\(258\) 0 0
\(259\) 28.2254 20.5070i 1.75384 1.27424i
\(260\) 0 0
\(261\) −1.38197 + 4.25325i −0.0855415 + 0.263270i
\(262\) 0 0
\(263\) 17.1459 1.05726 0.528631 0.848852i \(-0.322706\pi\)
0.528631 + 0.848852i \(0.322706\pi\)
\(264\) 0 0
\(265\) −38.7082 −2.37783
\(266\) 0 0
\(267\) −0.309017 + 0.951057i −0.0189115 + 0.0582037i
\(268\) 0 0
\(269\) −15.7984 + 11.4782i −0.963244 + 0.699838i −0.953902 0.300119i \(-0.902974\pi\)
−0.00934200 + 0.999956i \(0.502974\pi\)
\(270\) 0 0
\(271\) −6.97214 21.4580i −0.423527 1.30348i −0.904398 0.426691i \(-0.859679\pi\)
0.480870 0.876792i \(-0.340321\pi\)
\(272\) 0 0
\(273\) −6.04508 4.39201i −0.365865 0.265817i
\(274\) 0 0
\(275\) −5.31966 8.97578i −0.320788 0.541260i
\(276\) 0 0
\(277\) 14.2082 + 10.3229i 0.853688 + 0.620241i 0.926160 0.377130i \(-0.123089\pi\)
−0.0724723 + 0.997370i \(0.523089\pi\)
\(278\) 0 0
\(279\) −2.66312 8.19624i −0.159437 0.490696i
\(280\) 0 0
\(281\) 18.7082 13.5923i 1.11604 0.810849i 0.132434 0.991192i \(-0.457721\pi\)
0.983604 + 0.180343i \(0.0577207\pi\)
\(282\) 0 0
\(283\) 5.79837 17.8456i 0.344678 1.06081i −0.617079 0.786901i \(-0.711684\pi\)
0.961756 0.273907i \(-0.0883160\pi\)
\(284\) 0 0
\(285\) −17.3820 −1.02962
\(286\) 0 0
\(287\) 2.23607 0.131991
\(288\) 0 0
\(289\) 1.33688 4.11450i 0.0786401 0.242029i
\(290\) 0 0
\(291\) 4.92705 3.57971i 0.288829 0.209846i
\(292\) 0 0
\(293\) −1.54508 4.75528i −0.0902648 0.277807i 0.895726 0.444607i \(-0.146657\pi\)
−0.985991 + 0.166800i \(0.946657\pi\)
\(294\) 0 0
\(295\) −20.4443 14.8536i −1.19031 0.864812i
\(296\) 0 0
\(297\) 0.309017 3.30220i 0.0179310 0.191613i
\(298\) 0 0
\(299\) 6.04508 + 4.39201i 0.349596 + 0.253997i
\(300\) 0 0
\(301\) 0.690983 + 2.12663i 0.0398276 + 0.122577i
\(302\) 0 0
\(303\) 9.66312 7.02067i 0.555132 0.403327i
\(304\) 0 0
\(305\) −0.336881 + 1.03681i −0.0192898 + 0.0593678i
\(306\) 0 0
\(307\) −16.3262 −0.931788 −0.465894 0.884841i \(-0.654267\pi\)
−0.465894 + 0.884841i \(0.654267\pi\)
\(308\) 0 0
\(309\) −3.52786 −0.200693
\(310\) 0 0
\(311\) −2.10739 + 6.48588i −0.119499 + 0.367781i −0.992859 0.119295i \(-0.961936\pi\)
0.873360 + 0.487076i \(0.161936\pi\)
\(312\) 0 0
\(313\) 0.809017 0.587785i 0.0457283 0.0332236i −0.564686 0.825306i \(-0.691003\pi\)
0.610415 + 0.792082i \(0.291003\pi\)
\(314\) 0 0
\(315\) 3.73607 + 11.4984i 0.210504 + 0.647863i
\(316\) 0 0
\(317\) −14.1353 10.2699i −0.793915 0.576813i 0.115208 0.993341i \(-0.463247\pi\)
−0.909123 + 0.416528i \(0.863247\pi\)
\(318\) 0 0
\(319\) −13.6180 5.87785i −0.762464 0.329097i
\(320\) 0 0
\(321\) 12.5172 + 9.09429i 0.698643 + 0.507594i
\(322\) 0 0
\(323\) 8.69098 + 26.7481i 0.483579 + 1.48830i
\(324\) 0 0
\(325\) 4.48936 3.26171i 0.249025 0.180927i
\(326\) 0 0
\(327\) 2.47214 7.60845i 0.136709 0.420748i
\(328\) 0 0
\(329\) 5.85410 0.322747
\(330\) 0 0
\(331\) −5.94427 −0.326727 −0.163363 0.986566i \(-0.552234\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(332\) 0 0
\(333\) −2.54508 + 7.83297i −0.139470 + 0.429244i
\(334\) 0 0
\(335\) 15.8262 11.4984i 0.864680 0.628227i
\(336\) 0 0
\(337\) 9.76393 + 30.0503i 0.531875 + 1.63694i 0.750306 + 0.661091i \(0.229906\pi\)
−0.218430 + 0.975853i \(0.570094\pi\)
\(338\) 0 0
\(339\) 6.28115 + 4.56352i 0.341145 + 0.247857i
\(340\) 0 0
\(341\) 27.8885 6.26137i 1.51025 0.339072i
\(342\) 0 0
\(343\) −13.5172 9.82084i −0.729861 0.530275i
\(344\) 0 0
\(345\) −3.73607 11.4984i −0.201143 0.619055i
\(346\) 0 0
\(347\) 6.47214 4.70228i 0.347442 0.252432i −0.400353 0.916361i \(-0.631112\pi\)
0.747795 + 0.663929i \(0.231112\pi\)
\(348\) 0 0
\(349\) −7.34346 + 22.6008i −0.393086 + 1.20980i 0.537356 + 0.843356i \(0.319423\pi\)
−0.930442 + 0.366440i \(0.880577\pi\)
\(350\) 0 0
\(351\) 1.76393 0.0941517
\(352\) 0 0
\(353\) −1.52786 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(354\) 0 0
\(355\) −3.19098 + 9.82084i −0.169360 + 0.521236i
\(356\) 0 0
\(357\) 15.8262 11.4984i 0.837613 0.608562i
\(358\) 0 0
\(359\) −5.79837 17.8456i −0.306026 0.941853i −0.979292 0.202452i \(-0.935109\pi\)
0.673266 0.739401i \(-0.264891\pi\)
\(360\) 0 0
\(361\) −14.6353 10.6331i −0.770277 0.559639i
\(362\) 0 0
\(363\) 10.8090 + 2.04087i 0.567326 + 0.107118i
\(364\) 0 0
\(365\) 2.85410 + 2.07363i 0.149391 + 0.108539i
\(366\) 0 0
\(367\) −2.35410 7.24518i −0.122883 0.378195i 0.870626 0.491945i \(-0.163714\pi\)
−0.993509 + 0.113750i \(0.963714\pi\)
\(368\) 0 0
\(369\) −0.427051 + 0.310271i −0.0222314 + 0.0161520i
\(370\) 0 0
\(371\) −17.7533 + 54.6390i −0.921705 + 2.83672i
\(372\) 0 0
\(373\) 3.94427 0.204227 0.102113 0.994773i \(-0.467440\pi\)
0.102113 + 0.994773i \(0.467440\pi\)
\(374\) 0 0
\(375\) 5.29180 0.273267
\(376\) 0 0
\(377\) 2.43769 7.50245i 0.125548 0.386396i
\(378\) 0 0
\(379\) −0.572949 + 0.416272i −0.0294304 + 0.0213824i −0.602403 0.798192i \(-0.705790\pi\)
0.572973 + 0.819574i \(0.305790\pi\)
\(380\) 0 0
\(381\) −0.708204 2.17963i −0.0362824 0.111666i
\(382\) 0 0
\(383\) −4.66312 3.38795i −0.238274 0.173116i 0.462240 0.886755i \(-0.347046\pi\)
−0.700514 + 0.713639i \(0.747046\pi\)
\(384\) 0 0
\(385\) −39.1246 + 8.78402i −1.99397 + 0.447675i
\(386\) 0 0
\(387\) −0.427051 0.310271i −0.0217082 0.0157719i
\(388\) 0 0
\(389\) 1.51722 + 4.66953i 0.0769262 + 0.236754i 0.982124 0.188237i \(-0.0602772\pi\)
−0.905198 + 0.424991i \(0.860277\pi\)
\(390\) 0 0
\(391\) −15.8262 + 11.4984i −0.800367 + 0.581501i
\(392\) 0 0
\(393\) −3.57295 + 10.9964i −0.180231 + 0.554695i
\(394\) 0 0
\(395\) 27.8673 1.40215
\(396\) 0 0
\(397\) 4.81966 0.241892 0.120946 0.992659i \(-0.461407\pi\)
0.120946 + 0.992659i \(0.461407\pi\)
\(398\) 0 0
\(399\) −7.97214 + 24.5357i −0.399106 + 1.22832i
\(400\) 0 0
\(401\) −3.11803 + 2.26538i −0.155707 + 0.113128i −0.662911 0.748698i \(-0.730679\pi\)
0.507204 + 0.861826i \(0.330679\pi\)
\(402\) 0 0
\(403\) 4.69756 + 14.4576i 0.234002 + 0.720185i
\(404\) 0 0
\(405\) −2.30902 1.67760i −0.114736 0.0833606i
\(406\) 0 0
\(407\) −25.0795 10.8249i −1.24315 0.536570i
\(408\) 0 0
\(409\) 20.9443 + 15.2169i 1.03563 + 0.752427i 0.969427 0.245379i \(-0.0789124\pi\)
0.0662003 + 0.997806i \(0.478912\pi\)
\(410\) 0 0
\(411\) 6.48936 + 19.9722i 0.320096 + 0.985155i
\(412\) 0 0
\(413\) −30.3435 + 22.0458i −1.49310 + 1.08480i
\(414\) 0 0
\(415\) 5.75735 17.7193i 0.282617 0.869807i
\(416\) 0 0
\(417\) 20.7984 1.01850
\(418\) 0 0
\(419\) 11.1459 0.544513 0.272256 0.962225i \(-0.412230\pi\)
0.272256 + 0.962225i \(0.412230\pi\)
\(420\) 0 0
\(421\) 7.50000 23.0826i 0.365528 1.12498i −0.584122 0.811666i \(-0.698561\pi\)
0.949650 0.313313i \(-0.101439\pi\)
\(422\) 0 0
\(423\) −1.11803 + 0.812299i −0.0543607 + 0.0394953i
\(424\) 0 0
\(425\) 4.48936 + 13.8168i 0.217766 + 0.670214i
\(426\) 0 0
\(427\) 1.30902 + 0.951057i 0.0633478 + 0.0460249i
\(428\) 0 0
\(429\) −0.545085 + 5.82485i −0.0263170 + 0.281227i
\(430\) 0 0
\(431\) 1.88197 + 1.36733i 0.0906511 + 0.0658619i 0.632188 0.774815i \(-0.282157\pi\)
−0.541536 + 0.840677i \(0.682157\pi\)
\(432\) 0 0
\(433\) 0.909830 + 2.80017i 0.0437236 + 0.134568i 0.970535 0.240959i \(-0.0774619\pi\)
−0.926812 + 0.375526i \(0.877462\pi\)
\(434\) 0 0
\(435\) −10.3262 + 7.50245i −0.495105 + 0.359715i
\(436\) 0 0
\(437\) 7.97214 24.5357i 0.381359 1.17370i
\(438\) 0 0
\(439\) 25.3607 1.21040 0.605200 0.796074i \(-0.293093\pi\)
0.605200 + 0.796074i \(0.293093\pi\)
\(440\) 0 0
\(441\) 10.9443 0.521156
\(442\) 0 0
\(443\) −6.85410 + 21.0948i −0.325648 + 1.00224i 0.645499 + 0.763761i \(0.276649\pi\)
−0.971147 + 0.238481i \(0.923351\pi\)
\(444\) 0 0
\(445\) −2.30902 + 1.67760i −0.109458 + 0.0795258i
\(446\) 0 0
\(447\) −5.83688 17.9641i −0.276075 0.849671i
\(448\) 0 0
\(449\) 13.3262 + 9.68208i 0.628904 + 0.456926i 0.856020 0.516942i \(-0.172930\pi\)
−0.227116 + 0.973868i \(0.572930\pi\)
\(450\) 0 0
\(451\) −0.892609 1.50609i −0.0420313 0.0709188i
\(452\) 0 0
\(453\) −3.61803 2.62866i −0.169990 0.123505i
\(454\) 0 0
\(455\) −6.59017 20.2825i −0.308952 0.950856i
\(456\) 0 0
\(457\) −6.35410 + 4.61653i −0.297232 + 0.215952i −0.726399 0.687274i \(-0.758807\pi\)
0.429166 + 0.903225i \(0.358807\pi\)
\(458\) 0 0
\(459\) −1.42705 + 4.39201i −0.0666090 + 0.205002i
\(460\) 0 0
\(461\) −0.562306 −0.0261892 −0.0130946 0.999914i \(-0.504168\pi\)
−0.0130946 + 0.999914i \(0.504168\pi\)
\(462\) 0 0
\(463\) −30.2148 −1.40420 −0.702100 0.712078i \(-0.747754\pi\)
−0.702100 + 0.712078i \(0.747754\pi\)
\(464\) 0 0
\(465\) 7.60081 23.3929i 0.352479 1.08482i
\(466\) 0 0
\(467\) 27.3713 19.8864i 1.26659 0.920234i 0.267532 0.963549i \(-0.413792\pi\)
0.999061 + 0.0433147i \(0.0137918\pi\)
\(468\) 0 0
\(469\) −8.97214 27.6134i −0.414295 1.27507i
\(470\) 0 0
\(471\) −10.3262 7.50245i −0.475808 0.345695i
\(472\) 0 0
\(473\) 1.15654 1.31433i 0.0531778 0.0604329i
\(474\) 0 0
\(475\) −15.5000 11.2614i −0.711189 0.516709i
\(476\) 0 0
\(477\) −4.19098 12.8985i −0.191892 0.590583i
\(478\) 0 0
\(479\) 1.88197 1.36733i 0.0859892 0.0624748i −0.543960 0.839111i \(-0.683076\pi\)
0.629949 + 0.776636i \(0.283076\pi\)
\(480\) 0 0
\(481\) 4.48936 13.8168i 0.204697 0.629993i
\(482\) 0 0
\(483\) −17.9443 −0.816493
\(484\) 0 0
\(485\) 17.3820 0.789274
\(486\) 0 0
\(487\) −5.51064 + 16.9600i −0.249711 + 0.768532i 0.745115 + 0.666936i \(0.232395\pi\)
−0.994826 + 0.101595i \(0.967605\pi\)
\(488\) 0 0
\(489\) 1.50000 1.08981i 0.0678323 0.0492831i
\(490\) 0 0
\(491\) −3.66312 11.2739i −0.165314 0.508785i 0.833745 0.552150i \(-0.186192\pi\)
−0.999059 + 0.0433647i \(0.986192\pi\)
\(492\) 0 0
\(493\) 16.7082 + 12.1392i 0.752500 + 0.546723i
\(494\) 0 0
\(495\) 6.25329 7.10642i 0.281064 0.319410i
\(496\) 0 0
\(497\) 12.3992 + 9.00854i 0.556180 + 0.404088i
\(498\) 0 0
\(499\) −5.64590 17.3763i −0.252745 0.777869i −0.994266 0.106939i \(-0.965895\pi\)
0.741520 0.670930i \(-0.234105\pi\)
\(500\) 0 0
\(501\) 1.30902 0.951057i 0.0584826 0.0424901i
\(502\) 0 0
\(503\) 3.94427 12.1392i 0.175866 0.541261i −0.823806 0.566872i \(-0.808153\pi\)
0.999672 + 0.0256113i \(0.00815323\pi\)
\(504\) 0 0
\(505\) 34.0902 1.51699
\(506\) 0 0
\(507\) 9.88854 0.439166
\(508\) 0 0
\(509\) −9.19098 + 28.2869i −0.407383 + 1.25380i 0.511506 + 0.859280i \(0.329088\pi\)
−0.918889 + 0.394517i \(0.870912\pi\)
\(510\) 0 0
\(511\) 4.23607 3.07768i 0.187393 0.136149i
\(512\) 0 0
\(513\) −1.88197 5.79210i −0.0830908 0.255727i
\(514\) 0 0
\(515\) −8.14590 5.91834i −0.358951 0.260793i
\(516\) 0 0
\(517\) −2.33688 3.94298i −0.102776 0.173412i
\(518\) 0 0
\(519\) −11.7812 8.55951i −0.517135 0.375721i
\(520\) 0 0
\(521\) −12.0000 36.9322i −0.525730 1.61803i −0.762869 0.646553i \(-0.776210\pi\)
0.237139 0.971476i \(-0.423790\pi\)
\(522\) 0 0
\(523\) −2.26393 + 1.64484i −0.0989948 + 0.0719240i −0.636182 0.771539i \(-0.719487\pi\)
0.537187 + 0.843463i \(0.319487\pi\)
\(524\) 0 0
\(525\) −4.11803 + 12.6740i −0.179726 + 0.553139i
\(526\) 0 0
\(527\) −39.7984 −1.73364
\(528\) 0 0
\(529\) −5.05573 −0.219814
\(530\) 0 0
\(531\) 2.73607 8.42075i 0.118735 0.365429i
\(532\) 0 0
\(533\) 0.753289 0.547296i 0.0326286 0.0237060i
\(534\) 0 0
\(535\) 13.6459 + 41.9978i 0.589964 + 1.81572i
\(536\) 0 0
\(537\) −0.0450850 0.0327561i −0.00194556 0.00141353i
\(538\) 0 0
\(539\) −3.38197 + 36.1401i −0.145672 + 1.55667i
\(540\) 0 0
\(541\) −7.54508 5.48183i −0.324389 0.235682i 0.413657 0.910433i \(-0.364251\pi\)
−0.738046 + 0.674751i \(0.764251\pi\)
\(542\) 0 0
\(543\) 3.69098 + 11.3597i 0.158395 + 0.487490i
\(544\) 0 0
\(545\) 18.4721 13.4208i 0.791259 0.574884i
\(546\) 0 0
\(547\) −0.718847 + 2.21238i −0.0307357 + 0.0945947i −0.965248 0.261337i \(-0.915837\pi\)
0.934512 + 0.355932i \(0.115837\pi\)
\(548\) 0 0
\(549\) −0.381966 −0.0163019
\(550\) 0 0
\(551\) −27.2361 −1.16030
\(552\) 0 0
\(553\) 12.7812 39.3363i 0.543510 1.67275i
\(554\) 0 0
\(555\) −19.0172 + 13.8168i −0.807236 + 0.586491i
\(556\) 0 0
\(557\) −1.88197 5.79210i −0.0797415 0.245419i 0.903236 0.429144i \(-0.141185\pi\)
−0.982978 + 0.183725i \(0.941185\pi\)
\(558\) 0 0
\(559\) 0.753289 + 0.547296i 0.0318607 + 0.0231482i
\(560\) 0 0
\(561\) −14.0623 6.06961i −0.593711 0.256259i
\(562\) 0 0
\(563\) −22.0795 16.0417i −0.930541 0.676078i 0.0155841 0.999879i \(-0.495039\pi\)
−0.946125 + 0.323801i \(0.895039\pi\)
\(564\) 0 0
\(565\) 6.84752 + 21.0745i 0.288078 + 0.886611i
\(566\) 0 0
\(567\) −3.42705 + 2.48990i −0.143923 + 0.104566i
\(568\) 0 0
\(569\) 13.9443 42.9161i 0.584574 1.79913i −0.0163990 0.999866i \(-0.505220\pi\)
0.600973 0.799269i \(-0.294780\pi\)
\(570\) 0 0
\(571\) 8.67376 0.362986 0.181493 0.983392i \(-0.441907\pi\)
0.181493 + 0.983392i \(0.441907\pi\)
\(572\) 0 0
\(573\) −9.65248 −0.403238
\(574\) 0 0
\(575\) 4.11803 12.6740i 0.171734 0.528543i
\(576\) 0 0
\(577\) −20.0344 + 14.5559i −0.834045 + 0.605969i −0.920701 0.390269i \(-0.872382\pi\)
0.0866560 + 0.996238i \(0.472382\pi\)
\(578\) 0 0
\(579\) 0.100813 + 0.310271i 0.00418965 + 0.0128944i
\(580\) 0 0
\(581\) −22.3713 16.2537i −0.928119 0.674318i
\(582\) 0 0
\(583\) 43.8885 9.85359i 1.81768 0.408094i
\(584\) 0 0
\(585\) 4.07295 + 2.95917i 0.168396 + 0.122347i
\(586\) 0 0
\(587\) 9.34346 + 28.7562i 0.385646 + 1.18690i 0.936011 + 0.351972i \(0.114489\pi\)
−0.550365 + 0.834924i \(0.685511\pi\)
\(588\) 0 0
\(589\) 42.4615 30.8501i 1.74960 1.27116i
\(590\) 0 0
\(591\) 5.28115 16.2537i 0.217238 0.668589i
\(592\) 0 0
\(593\) −36.4508 −1.49686 −0.748428 0.663215i \(-0.769191\pi\)
−0.748428 + 0.663215i \(0.769191\pi\)
\(594\) 0 0
\(595\) 55.8328 2.28892
\(596\) 0 0
\(597\) −5.07295 + 15.6129i −0.207622 + 0.638995i
\(598\) 0 0
\(599\) −7.56231 + 5.49434i −0.308987 + 0.224493i −0.731462 0.681882i \(-0.761162\pi\)
0.422474 + 0.906375i \(0.361162\pi\)
\(600\) 0 0
\(601\) 0.635255 + 1.95511i 0.0259126 + 0.0797507i 0.963177 0.268870i \(-0.0866502\pi\)
−0.937264 + 0.348621i \(0.886650\pi\)
\(602\) 0 0
\(603\) 5.54508 + 4.02874i 0.225813 + 0.164063i
\(604\) 0 0
\(605\) 21.5344 + 22.8456i 0.875500 + 0.928806i
\(606\) 0 0
\(607\) −19.6803 14.2986i −0.798800 0.580362i 0.111762 0.993735i \(-0.464351\pi\)
−0.910562 + 0.413373i \(0.864351\pi\)
\(608\) 0 0
\(609\) 5.85410 + 18.0171i 0.237220 + 0.730089i
\(610\) 0 0
\(611\) 1.97214 1.43284i 0.0797841 0.0579665i
\(612\) 0 0
\(613\) −7.14590 + 21.9928i −0.288620 + 0.888281i 0.696670 + 0.717392i \(0.254664\pi\)
−0.985290 + 0.170890i \(0.945336\pi\)
\(614\) 0 0
\(615\) −1.50658 −0.0607511
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) 0.454915 1.40008i 0.0182846 0.0562741i −0.941498 0.337019i \(-0.890581\pi\)
0.959782 + 0.280745i \(0.0905814\pi\)
\(620\) 0 0
\(621\) 3.42705 2.48990i 0.137523 0.0999162i
\(622\) 0 0
\(623\) 1.30902 + 4.02874i 0.0524447 + 0.161408i
\(624\) 0 0
\(625\) 24.9443 + 18.1231i 0.997771 + 0.724923i
\(626\) 0 0
\(627\) 19.7082 4.42477i 0.787070 0.176708i
\(628\) 0 0
\(629\) 30.7705 + 22.3561i 1.22690 + 0.891395i
\(630\) 0 0
\(631\) 12.7533 + 39.2506i 0.507700 + 1.56254i 0.796183 + 0.605056i \(0.206849\pi\)
−0.288482 + 0.957485i \(0.593151\pi\)
\(632\) 0 0
\(633\) −19.2082 + 13.9556i −0.763458 + 0.554684i
\(634\) 0 0
\(635\) 2.02129 6.22088i 0.0802123 0.246868i
\(636\) 0 0
\(637\) −19.3050 −0.764890
\(638\) 0 0
\(639\) −3.61803 −0.143127
\(640\) 0 0
\(641\) −6.79180 + 20.9030i −0.268260 + 0.825619i 0.722665 + 0.691199i \(0.242917\pi\)
−0.990924 + 0.134420i \(0.957083\pi\)
\(642\) 0 0
\(643\) −23.5902 + 17.1393i −0.930305 + 0.675907i −0.946068 0.323969i \(-0.894983\pi\)
0.0157621 + 0.999876i \(0.494983\pi\)
\(644\) 0 0
\(645\) −0.465558 1.43284i −0.0183313 0.0564180i
\(646\) 0 0
\(647\) 19.9721 + 14.5106i 0.785186 + 0.570471i 0.906531 0.422140i \(-0.138721\pi\)
−0.121345 + 0.992610i \(0.538721\pi\)
\(648\) 0 0
\(649\) 26.9615 + 11.6372i 1.05833 + 0.456800i
\(650\) 0 0
\(651\) −29.5344 21.4580i −1.15755 0.841006i
\(652\) 0 0
\(653\) −8.60739 26.4908i −0.336833 1.03667i −0.965812 0.259244i \(-0.916527\pi\)
0.628979 0.777423i \(-0.283473\pi\)
\(654\) 0 0
\(655\) −26.6976 + 19.3969i −1.04316 + 0.757900i
\(656\) 0 0
\(657\) −0.381966 + 1.17557i −0.0149019 + 0.0458634i
\(658\) 0 0
\(659\) −3.70820 −0.144451 −0.0722256 0.997388i \(-0.523010\pi\)
−0.0722256 + 0.997388i \(0.523010\pi\)
\(660\) 0 0
\(661\) 2.32624 0.0904802 0.0452401 0.998976i \(-0.485595\pi\)
0.0452401 + 0.998976i \(0.485595\pi\)
\(662\) 0 0
\(663\) 2.51722 7.74721i 0.0977608 0.300877i
\(664\) 0 0
\(665\) −59.5689 + 43.2793i −2.30998 + 1.67830i
\(666\) 0 0
\(667\) −5.85410 18.0171i −0.226672 0.697624i
\(668\) 0 0
\(669\) 1.19098 + 0.865300i 0.0460461 + 0.0334544i
\(670\) 0 0
\(671\) 0.118034 1.26133i 0.00455665 0.0486930i
\(672\) 0 0
\(673\) −21.4615 15.5927i −0.827280 0.601054i 0.0915087 0.995804i \(-0.470831\pi\)
−0.918788 + 0.394750i \(0.870831\pi\)
\(674\) 0 0
\(675\) −0.972136 2.99193i −0.0374175 0.115159i
\(676\) 0 0
\(677\) 5.23607 3.80423i 0.201238 0.146208i −0.482602 0.875840i \(-0.660308\pi\)
0.683841 + 0.729631i \(0.260308\pi\)
\(678\) 0 0
\(679\) 7.97214 24.5357i 0.305942 0.941594i
\(680\) 0 0
\(681\) 0.708204 0.0271384
\(682\) 0 0
\(683\) −6.34752 −0.242881 −0.121441 0.992599i \(-0.538751\pi\)
−0.121441 + 0.992599i \(0.538751\pi\)
\(684\) 0 0
\(685\) −18.5213 + 57.0027i −0.707662 + 2.17796i
\(686\) 0 0
\(687\) −5.61803 + 4.08174i −0.214341 + 0.155728i
\(688\) 0 0
\(689\) 7.39261 + 22.7521i 0.281636 + 0.866786i
\(690\) 0 0
\(691\) 27.9443 + 20.3027i 1.06305 + 0.772351i 0.974650 0.223734i \(-0.0718246\pi\)
0.0883999 + 0.996085i \(0.471825\pi\)
\(692\) 0 0
\(693\) −7.16312 12.0862i −0.272104 0.459118i
\(694\) 0 0
\(695\) 48.0238 + 34.8913i 1.82165 + 1.32350i
\(696\) 0 0
\(697\) 0.753289 + 2.31838i 0.0285329 + 0.0878151i
\(698\) 0 0
\(699\) 20.8713 15.1639i 0.789426 0.573552i
\(700\) 0 0
\(701\) 2.93769 9.04129i 0.110955 0.341485i −0.880127 0.474739i \(-0.842543\pi\)
0.991082 + 0.133254i \(0.0425426\pi\)
\(702\) 0 0
\(703\) −50.1591 −1.89178
\(704\) 0 0
\(705\) −3.94427 −0.148550
\(706\) 0 0
\(707\) 15.6353 48.1204i 0.588024 1.80975i
\(708\) 0 0
\(709\) 20.8262 15.1311i 0.782146 0.568262i −0.123476 0.992348i \(-0.539404\pi\)
0.905622 + 0.424085i \(0.139404\pi\)
\(710\) 0 0
\(711\) 3.01722 + 9.28605i 0.113155 + 0.348254i
\(712\) 0 0
\(713\) 29.5344 + 21.4580i 1.10607 + 0.803609i
\(714\) 0 0
\(715\) −11.0304 + 12.5352i −0.412513 + 0.468792i
\(716\) 0 0
\(717\) −16.5902 12.0535i −0.619571 0.450145i
\(718\) 0 0
\(719\) −12.0729 37.1567i −0.450245 1.38571i −0.876628 0.481169i \(-0.840212\pi\)
0.426383 0.904543i \(-0.359788\pi\)
\(720\) 0 0
\(721\) −12.0902 + 8.78402i −0.450261 + 0.327134i
\(722\) 0 0
\(723\) 3.18034 9.78808i 0.118278 0.364023i
\(724\) 0 0
\(725\) −14.0689 −0.522505
\(726\) 0 0
\(727\) −2.14590 −0.0795870 −0.0397935 0.999208i \(-0.512670\pi\)
−0.0397935 + 0.999208i \(0.512670\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) −1.97214 + 1.43284i −0.0729421 + 0.0529955i
\(732\) 0 0
\(733\) −6.96556 21.4378i −0.257279 0.791823i −0.993372 0.114943i \(-0.963332\pi\)
0.736093 0.676880i \(-0.236668\pi\)
\(734\) 0 0
\(735\) 25.2705 + 18.3601i 0.932117 + 0.677222i
\(736\) 0 0
\(737\) −15.0172 + 17.0660i −0.553166 + 0.628635i
\(738\) 0 0
\(739\) 28.4615 + 20.6785i 1.04697 + 0.760670i 0.971634 0.236488i \(-0.0759963\pi\)
0.0753384 + 0.997158i \(0.475996\pi\)
\(740\) 0 0
\(741\) 3.31966 + 10.2169i 0.121951 + 0.375326i
\(742\) 0 0
\(743\) −2.04508 + 1.48584i −0.0750269 + 0.0545102i −0.624666 0.780892i \(-0.714765\pi\)
0.549640 + 0.835402i \(0.314765\pi\)
\(744\) 0 0
\(745\) 16.6591 51.2713i 0.610341 1.87843i
\(746\) 0 0
\(747\) 6.52786 0.238842
\(748\) 0 0
\(749\) 65.5410 2.39482
\(750\) 0 0
\(751\) 11.3197 34.8383i 0.413060 1.27127i −0.500914 0.865497i \(-0.667003\pi\)
0.913974 0.405772i \(-0.132997\pi\)
\(752\) 0 0
\(753\) 10.4443 7.58821i 0.380610 0.276530i
\(754\) 0 0
\(755\) −3.94427 12.1392i −0.143547 0.441791i
\(756\) 0 0
\(757\) −13.2812 9.64932i −0.482712 0.350711i 0.319663 0.947531i \(-0.396430\pi\)
−0.802375 + 0.596821i \(0.796430\pi\)
\(758\) 0 0
\(759\) 7.16312 + 12.0862i 0.260005 + 0.438702i
\(760\) 0 0
\(761\) −41.4615 30.1235i −1.50298 1.09198i −0.969176 0.246368i \(-0.920763\pi\)
−0.533801 0.845610i \(-0.679237\pi\)
\(762\) 0 0
\(763\) −10.4721 32.2299i −0.379117 1.16680i
\(764\) 0 0
\(765\) −10.6631 + 7.74721i −0.385526 + 0.280101i
\(766\) 0 0
\(767\) −4.82624 + 14.8536i −0.174265 + 0.536334i
\(768\) 0 0
\(769\) −13.4377 −0.484576 −0.242288 0.970204i \(-0.577898\pi\)
−0.242288 + 0.970204i \(0.577898\pi\)
\(770\) 0 0
\(771\) −21.7984 −0.785049
\(772\) 0 0
\(773\) −4.74671 + 14.6089i −0.170727 + 0.525445i −0.999413 0.0342702i \(-0.989089\pi\)
0.828685 + 0.559715i \(0.189089\pi\)
\(774\) 0 0
\(775\) 21.9336 15.9357i 0.787879 0.572428i
\(776\) 0 0
\(777\) 10.7812 + 33.1810i 0.386772 + 1.19036i
\(778\) 0 0
\(779\) −2.60081 1.88960i −0.0931838 0.0677020i
\(780\) 0 0
\(781\) 1.11803 11.9475i 0.0400064 0.427514i
\(782\) 0 0
\(783\) −3.61803 2.62866i −0.129298 0.0939405i
\(784\) 0 0
\(785\) −11.2574 34.6466i −0.401792 1.23659i
\(786\) 0 0
\(787\) −39.8328 + 28.9402i −1.41989 + 1.03161i −0.428096 + 0.903733i \(0.640816\pi\)
−0.991790 + 0.127875i \(0.959184\pi\)
\(788\) 0 0
\(789\) −5.29837 + 16.3067i −0.188627 + 0.580535i
\(790\) 0 0
\(791\) 32.8885 1.16938
\(792\) 0 0
\(793\) 0.673762 0.0239260
\(794\) 0 0
\(795\) 11.9615 36.8137i 0.424230 1.30565i
\(796\) 0 0
\(797\) −21.8541 + 15.8779i −0.774112 + 0.562425i −0.903206 0.429207i \(-0.858793\pi\)
0.129094 + 0.991632i \(0.458793\pi\)
\(798\) 0 0
\(799\) 1.97214 + 6.06961i 0.0697692 + 0.214727i
\(800\) 0 0
\(801\) −0.809017 0.587785i −0.0285852 0.0207684i
\(802\) 0 0
\(803\) −3.76393 1.62460i −0.132826 0.0573308i
\(804\) 0 0
\(805\) −41.4336 30.1033i −1.46034 1.06100i
\(806\) 0 0
\(807\) −6.03444 18.5721i −0.212422 0.653769i
\(808\) 0 0
\(809\) −1.39919 + 1.01657i −0.0491928 + 0.0357407i −0.612110 0.790773i \(-0.709679\pi\)
0.562917 + 0.826513i \(0.309679\pi\)
\(810\) 0 0
\(811\) −8.28115 + 25.4868i −0.290791 + 0.894961i 0.693812 + 0.720156i \(0.255930\pi\)
−0.984603 + 0.174806i \(0.944070\pi\)
\(812\) 0 0
\(813\) 22.5623 0.791295
\(814\) 0 0
\(815\) 5.29180 0.185364
\(816\) 0 0
\(817\) 0.993422 3.05744i 0.0347554 0.106966i
\(818\) 0 0
\(819\) 6.04508 4.39201i 0.211232 0.153469i
\(820\) 0 0
\(821\) −5.36475 16.5110i −0.187231 0.576237i 0.812749 0.582614i \(-0.197970\pi\)
−0.999980 + 0.00637687i \(0.997970\pi\)
\(822\) 0 0
\(823\) −0.663119 0.481784i −0.0231149 0.0167939i 0.576168 0.817331i \(-0.304547\pi\)
−0.599283 + 0.800537i \(0.704547\pi\)
\(824\) 0 0
\(825\) 10.1803 2.28563i 0.354434 0.0795754i
\(826\) 0 0
\(827\) 0.708204 + 0.514540i 0.0246267 + 0.0178923i 0.600030 0.799977i \(-0.295155\pi\)
−0.575404 + 0.817869i \(0.695155\pi\)
\(828\) 0 0
\(829\) −11.6631 35.8954i −0.405077 1.24670i −0.920831 0.389962i \(-0.872488\pi\)
0.515754 0.856737i \(-0.327512\pi\)
\(830\) 0 0
\(831\) −14.2082 + 10.3229i −0.492877 + 0.358096i
\(832\) 0 0
\(833\) 15.6180 48.0674i 0.541133 1.66544i
\(834\) 0 0
\(835\) 4.61803 0.159814
\(836\) 0 0
\(837\) 8.61803 0.297883
\(838\) 0 0
\(839\) −4.89261 + 15.0579i −0.168912 + 0.519857i −0.999303 0.0373237i \(-0.988117\pi\)
0.830392 + 0.557180i \(0.188117\pi\)
\(840\) 0 0
\(841\) 7.28115 5.29007i 0.251074 0.182416i
\(842\) 0 0
\(843\) 7.14590 + 21.9928i 0.246118 + 0.757473i
\(844\) 0 0
\(845\) 22.8328 + 16.5890i 0.785473 + 0.570679i
\(846\) 0 0
\(847\) 42.1246 19.9192i 1.44742 0.684431i
\(848\) 0 0
\(849\) 15.1803 + 11.0292i 0.520988 + 0.378520i
\(850\) 0 0
\(851\) −10.7812 33.1810i −0.369573 1.13743i
\(852\) 0 0
\(853\) −44.7877 + 32.5402i −1.53350 + 1.11415i −0.579251 + 0.815149i \(0.696655\pi\)
−0.954251 + 0.299006i \(0.903345\pi\)
\(854\) 0 0
\(855\) 5.37132 16.5312i 0.183695 0.565356i
\(856\) 0 0
\(857\) 48.1935 1.64626 0.823129 0.567854i \(-0.192226\pi\)
0.823129 + 0.567854i \(0.192226\pi\)
\(858\) 0 0
\(859\) 31.1803 1.06386 0.531930 0.846788i \(-0.321467\pi\)
0.531930 + 0.846788i \(0.321467\pi\)
\(860\) 0 0
\(861\) −0.690983 + 2.12663i −0.0235486 + 0.0724753i
\(862\) 0 0
\(863\) −24.5623 + 17.8456i −0.836111 + 0.607470i −0.921281 0.388896i \(-0.872856\pi\)
0.0851709 + 0.996366i \(0.472856\pi\)
\(864\) 0 0
\(865\) −12.8435 39.5281i −0.436691 1.34400i
\(866\) 0 0
\(867\) 3.50000 + 2.54290i 0.118866 + 0.0863614i
\(868\) 0 0
\(869\) −31.5967 + 7.09391i −1.07185 + 0.240644i
\(870\) 0 0
\(871\) −9.78115 7.10642i −0.331422 0.240792i
\(872\) 0 0
\(873\) 1.88197 + 5.79210i 0.0636949 + 0.196033i
\(874\) 0 0
\(875\) 18.1353 13.1760i 0.613084 0.445431i
\(876\) 0 0
\(877\) −10.7812 + 33.1810i −0.364054 + 1.12044i 0.586518 + 0.809936i \(0.300498\pi\)
−0.950572 + 0.310506i \(0.899502\pi\)
\(878\) 0 0
\(879\) 5.00000 0.168646
\(880\) 0 0
\(881\) 20.4377 0.688563 0.344282 0.938866i \(-0.388122\pi\)
0.344282 + 0.938866i \(0.388122\pi\)
\(882\) 0 0
\(883\) −0.909830 + 2.80017i −0.0306182 + 0.0942332i −0.965198 0.261521i \(-0.915776\pi\)
0.934580 + 0.355754i \(0.115776\pi\)
\(884\) 0 0
\(885\) 20.4443 14.8536i 0.687227 0.499299i
\(886\) 0 0
\(887\) −14.4336 44.4221i −0.484634 1.49155i −0.832511 0.554009i \(-0.813097\pi\)
0.347877 0.937540i \(-0.386903\pi\)
\(888\) 0 0
\(889\) −7.85410 5.70634i −0.263418 0.191384i
\(890\) 0 0
\(891\) 3.04508 + 1.31433i 0.102014 + 0.0440316i
\(892\) 0 0
\(893\) −6.80902 4.94704i −0.227855 0.165546i
\(894\) 0 0
\(895\) −0.0491503 0.151269i −0.00164291 0.00505637i
\(896\) 0 0
\(897\) −6.04508 + 4.39201i −0.201840 + 0.146645i
\(898\) 0 0
\(899\) 11.9098 36.6547i 0.397215 1.22250i
\(900\) 0 0
\(901\) −62.6312 −2.08655
\(902\) 0 0
\(903\) −2.23607 −0.0744117
\(904\) 0 0
\(905\) −10.5344 + 32.4217i −0.350177 + 1.07773i
\(906\) 0 0
\(907\) −32.2533 + 23.4334i −1.07095 + 0.778093i −0.976083 0.217397i \(-0.930243\pi\)
−0.0948696 + 0.995490i \(0.530243\pi\)
\(908\) 0 0
\(909\) 3.69098 + 11.3597i 0.122422 + 0.376777i
\(910\) 0 0
\(911\) 33.6074 + 24.4172i 1.11346 + 0.808978i 0.983205 0.182502i \(-0.0584197\pi\)
0.130257 + 0.991480i \(0.458420\pi\)
\(912\) 0 0
\(913\) −2.01722 + 21.5563i −0.0667603 + 0.713409i
\(914\) 0 0
\(915\) −0.881966 0.640786i −0.0291569 0.0211837i
\(916\) 0 0
\(917\) 15.1353 + 46.5815i 0.499810 + 1.53826i
\(918\) 0 0
\(919\) −30.6074 + 22.2376i −1.00964 + 0.733550i −0.964135 0.265414i \(-0.914491\pi\)
−0.0455101 + 0.998964i \(0.514491\pi\)
\(920\) 0 0
\(921\) 5.04508 15.5272i 0.166241 0.511638i
\(922\) 0 0
\(923\) 6.38197 0.210065
\(924\) 0 0
\(925\) −25.9098 −0.851910
\(926\) 0 0
\(927\) 1.09017 3.35520i 0.0358059 0.110199i
\(928\) 0 0
\(929\) −37.5517 + 27.2829i −1.23203 + 0.895122i −0.997041 0.0768757i \(-0.975506\pi\)
−0.234989 + 0.971998i \(0.575506\pi\)
\(930\) 0 0
\(931\) 20.5967 + 63.3903i 0.675031 + 2.07753i
\(932\) 0 0
\(933\) −5.51722 4.00850i −0.180626 0.131232i
\(934\) 0 0
\(935\) −22.2877 37.6057i −0.728887 1.22984i
\(936\) 0 0
\(937\) −19.6074 14.2456i −0.640546 0.465384i 0.219492 0.975614i \(-0.429560\pi\)
−0.860038 + 0.510231i \(0.829560\pi\)
\(938\) 0 0
\(939\) 0.309017 + 0.951057i 0.0100844 + 0.0310366i
\(940\) 0 0
\(941\) −14.2082 + 10.3229i −0.463174 + 0.336516i −0.794775 0.606904i \(-0.792411\pi\)
0.331601 + 0.943420i \(0.392411\pi\)
\(942\) 0 0
\(943\) 0.690983 2.12663i 0.0225015 0.0692525i
\(944\) 0 0
\(945\) −12.0902 −0.393293
\(946\) 0 0
\(947\) 21.7984 0.708352 0.354176 0.935179i \(-0.384761\pi\)
0.354176 + 0.935179i \(0.384761\pi\)
\(948\) 0 0
\(949\) 0.673762 2.07363i 0.0218712 0.0673128i
\(950\) 0 0
\(951\) 14.1353 10.2699i 0.458367 0.333023i
\(952\) 0 0
\(953\) 12.1246 + 37.3157i 0.392755 + 1.20877i 0.930696 + 0.365793i \(0.119202\pi\)
−0.537942 + 0.842982i \(0.680798\pi\)
\(954\) 0 0
\(955\) −22.2877 16.1930i −0.721214 0.523993i
\(956\) 0 0
\(957\) 9.79837 11.1352i 0.316736 0.359949i
\(958\) 0 0
\(959\) 71.9681 + 52.2879i 2.32397 + 1.68846i
\(960\) 0 0
\(961\) 13.3713 + 41.1527i 0.431333 + 1.32751i
\(962\) 0 0
\(963\) −12.5172 + 9.09429i −0.403362 + 0.293060i
\(964\) 0 0
\(965\) −0.287731 + 0.885544i −0.00926238 + 0.0285067i
\(966\) 0 0
\(967\) 48.2705 1.55227 0.776137 0.630564i \(-0.217176\pi\)
0.776137 + 0.630564i \(0.217176\pi\)
\(968\) 0 0
\(969\) −28.1246 −0.903493
\(970\) 0 0
\(971\) −13.0902 + 40.2874i −0.420084 + 1.29288i 0.487541 + 0.873100i \(0.337894\pi\)
−0.907624 + 0.419784i \(0.862106\pi\)
\(972\) 0 0
\(973\) 71.2771 51.7858i 2.28504 1.66018i
\(974\) 0 0
\(975\) 1.71478 + 5.27756i 0.0549170 + 0.169017i
\(976\) 0 0
\(977\) −2.33688 1.69784i −0.0747634 0.0543188i 0.549776 0.835312i \(-0.314713\pi\)
−0.624539 + 0.780993i \(0.714713\pi\)
\(978\) 0 0
\(979\) 2.19098 2.48990i 0.0700241 0.0795775i
\(980\) 0 0
\(981\) 6.47214 + 4.70228i 0.206639 + 0.150132i
\(982\) 0 0
\(983\) 5.20163 + 16.0090i 0.165906 + 0.510606i 0.999102 0.0423716i \(-0.0134913\pi\)
−0.833196 + 0.552978i \(0.813491\pi\)
\(984\) 0 0
\(985\) 39.4615 28.6705i 1.25735 0.913517i
\(986\) 0 0
\(987\) −1.80902 + 5.56758i −0.0575816 + 0.177218i
\(988\) 0 0
\(989\) 2.23607 0.0711028
\(990\) 0 0
\(991\) 9.72949 0.309067 0.154534 0.987988i \(-0.450612\pi\)
0.154534 + 0.987988i \(0.450612\pi\)
\(992\) 0 0
\(993\) 1.83688 5.65334i 0.0582917 0.179403i
\(994\) 0 0
\(995\) −37.9058 + 27.5402i −1.20169 + 0.873081i
\(996\) 0 0
\(997\) −1.31966 4.06150i −0.0417941 0.128629i 0.927982 0.372624i \(-0.121542\pi\)
−0.969776 + 0.243995i \(0.921542\pi\)
\(998\) 0 0
\(999\) −6.66312 4.84104i −0.210812 0.153164i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.2.i.b.37.1 yes 4
3.2 odd 2 396.2.j.c.37.1 4
4.3 odd 2 528.2.y.a.433.1 4
11.2 odd 10 1452.2.i.p.1237.1 4
11.3 even 5 inner 132.2.i.b.25.1 4
11.4 even 5 1452.2.i.o.493.1 4
11.5 even 5 1452.2.a.j.1.2 2
11.6 odd 10 1452.2.a.i.1.2 2
11.7 odd 10 1452.2.i.p.493.1 4
11.8 odd 10 1452.2.i.j.1213.1 4
11.9 even 5 1452.2.i.o.1237.1 4
11.10 odd 2 1452.2.i.j.565.1 4
33.5 odd 10 4356.2.a.v.1.1 2
33.14 odd 10 396.2.j.c.289.1 4
33.17 even 10 4356.2.a.s.1.1 2
44.3 odd 10 528.2.y.a.289.1 4
44.27 odd 10 5808.2.a.cc.1.2 2
44.39 even 10 5808.2.a.cf.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.25.1 4 11.3 even 5 inner
132.2.i.b.37.1 yes 4 1.1 even 1 trivial
396.2.j.c.37.1 4 3.2 odd 2
396.2.j.c.289.1 4 33.14 odd 10
528.2.y.a.289.1 4 44.3 odd 10
528.2.y.a.433.1 4 4.3 odd 2
1452.2.a.i.1.2 2 11.6 odd 10
1452.2.a.j.1.2 2 11.5 even 5
1452.2.i.j.565.1 4 11.10 odd 2
1452.2.i.j.1213.1 4 11.8 odd 10
1452.2.i.o.493.1 4 11.4 even 5
1452.2.i.o.1237.1 4 11.9 even 5
1452.2.i.p.493.1 4 11.7 odd 10
1452.2.i.p.1237.1 4 11.2 odd 10
4356.2.a.s.1.1 2 33.17 even 10
4356.2.a.v.1.1 2 33.5 odd 10
5808.2.a.cc.1.2 2 44.27 odd 10
5808.2.a.cf.1.2 2 44.39 even 10