L(s) = 1 | + (2.30 + 1.67i)5-s + (1.30 − 4.02i)7-s + (−2.19 − 2.48i)11-s + (1.42 − 1.03i)13-s + (3.73 + 2.71i)17-s + (1.88 + 5.79i)19-s − 4.23·23-s + (0.972 + 2.99i)25-s + (1.38 − 4.25i)29-s + (6.97 − 5.06i)31-s + (9.78 − 7.10i)35-s + (−2.54 + 7.83i)37-s + (−0.163 − 0.502i)41-s + 0.527·43-s + (−0.427 − 1.31i)47-s + ⋯ |
L(s) = 1 | + (1.03 + 0.750i)5-s + (0.494 − 1.52i)7-s + (−0.660 − 0.750i)11-s + (0.395 − 0.287i)13-s + (0.906 + 0.658i)17-s + (0.431 + 1.32i)19-s − 0.883·23-s + (0.194 + 0.598i)25-s + (0.256 − 0.789i)29-s + (1.25 − 0.909i)31-s + (1.65 − 1.20i)35-s + (−0.418 + 1.28i)37-s + (−0.0254 − 0.0784i)41-s + 0.0804·43-s + (−0.0622 − 0.191i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.65873 - 0.203903i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65873 - 0.203903i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (2.19 + 2.48i)T \) |
good | 5 | \( 1 + (-2.30 - 1.67i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.30 + 4.02i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.42 + 1.03i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.73 - 2.71i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.88 - 5.79i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 4.23T + 23T^{2} \) |
| 29 | \( 1 + (-1.38 + 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-6.97 + 5.06i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.54 - 7.83i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.163 + 0.502i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 0.527T + 43T^{2} \) |
| 47 | \( 1 + (0.427 + 1.31i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (10.9 - 7.97i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.73 - 8.42i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.224i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 6.85T + 67T^{2} \) |
| 71 | \( 1 + (2.92 + 2.12i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.381 - 1.17i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (7.89 - 5.73i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-5.28 - 3.83i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 + (4.92 - 3.57i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96525873764137692072442398570, −10.15847929981949144288225950151, −10.02216806020382789641884630141, −8.166447600240460563442606545577, −7.70781291584179034552219271839, −6.33493516452842278553500034223, −5.71772404133654698623412320939, −4.19388352506057082099240223189, −3.04495654349904975591788200225, −1.38607121349315271436017041686,
1.70700392044004889295753684338, 2.79372108428957246267813875803, 4.93198934925697264532986774986, 5.28601675650963109582570121040, 6.38464440367668299828377706414, 7.75413424052055130150511028157, 8.819323724308963383685400334509, 9.340242717797265077139944277363, 10.23767096343231656169433669578, 11.50136815293467024593157370492