Properties

Label 3900.2.bw.i.2149.4
Level $3900$
Weight $2$
Character 3900.2149
Analytic conductor $31.142$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(49,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,24,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2149.4
Root \(1.99426 + 1.15139i\) of defining polynomial
Character \(\chi\) \(=\) 3900.2149
Dual form 3900.2.bw.i.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{3} +(1.80278 + 3.12250i) q^{7} +(0.500000 + 0.866025i) q^{9} +(3.00000 + 1.73205i) q^{11} +(3.46410 + 1.00000i) q^{13} +(-1.73205 + 1.00000i) q^{17} +(0.122499 - 0.0707248i) q^{19} +3.60555i q^{21} +(6.27435 + 3.62250i) q^{23} +1.00000i q^{27} +(2.62250 - 4.54230i) q^{29} +3.46410i q^{31} +(1.73205 + 3.00000i) q^{33} +(3.60555 - 6.24500i) q^{37} +(2.50000 + 2.59808i) q^{39} +(-6.24500 - 3.60555i) q^{41} +(-3.67628 + 2.12250i) q^{43} -3.74700 q^{47} +(-3.00000 + 5.19615i) q^{49} -2.00000 q^{51} -3.24500i q^{53} +0.141450 q^{57} +(-1.62250 + 0.936750i) q^{59} +(-1.80278 + 3.12250i) q^{63} +(-3.53483 + 6.12250i) q^{67} +(3.62250 + 6.27435i) q^{69} +(6.24500 - 3.60555i) q^{71} +12.4073 q^{73} +12.4900i q^{77} -8.24500 q^{79} +(-0.500000 + 0.866025i) q^{81} +5.05470 q^{83} +(4.54230 - 2.62250i) q^{87} +(-10.6225 - 6.13290i) q^{89} +(3.12250 + 12.6194i) q^{91} +(-1.73205 + 3.00000i) q^{93} +(-7.06965 - 12.2450i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} + 24 q^{11} - 24 q^{19} - 4 q^{29} + 20 q^{39} - 24 q^{49} - 16 q^{51} + 12 q^{59} + 4 q^{69} - 16 q^{79} - 4 q^{81} - 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.80278 + 3.12250i 0.681385 + 1.18019i 0.974558 + 0.224134i \(0.0719554\pi\)
−0.293173 + 0.956059i \(0.594711\pi\)
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 0 0
\(13\) 3.46410 + 1.00000i 0.960769 + 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.73205 + 1.00000i −0.420084 + 0.242536i −0.695113 0.718900i \(-0.744646\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) 0 0
\(19\) 0.122499 0.0707248i 0.0281032 0.0162254i −0.485883 0.874024i \(-0.661502\pi\)
0.513986 + 0.857799i \(0.328168\pi\)
\(20\) 0 0
\(21\) 3.60555i 0.786796i
\(22\) 0 0
\(23\) 6.27435 + 3.62250i 1.30829 + 0.755343i 0.981811 0.189860i \(-0.0608035\pi\)
0.326482 + 0.945203i \(0.394137\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.62250 4.54230i 0.486986 0.843484i −0.512902 0.858447i \(-0.671430\pi\)
0.999888 + 0.0149628i \(0.00476299\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0 0
\(33\) 1.73205 + 3.00000i 0.301511 + 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.60555 6.24500i 0.592749 1.02667i −0.401111 0.916029i \(-0.631376\pi\)
0.993860 0.110642i \(-0.0352907\pi\)
\(38\) 0 0
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) 0 0
\(41\) −6.24500 3.60555i −0.975305 0.563093i −0.0744555 0.997224i \(-0.523722\pi\)
−0.900849 + 0.434132i \(0.857055\pi\)
\(42\) 0 0
\(43\) −3.67628 + 2.12250i −0.560627 + 0.323678i −0.753397 0.657566i \(-0.771586\pi\)
0.192770 + 0.981244i \(0.438253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.74700 −0.546556 −0.273278 0.961935i \(-0.588108\pi\)
−0.273278 + 0.961935i \(0.588108\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 3.24500i 0.445735i −0.974849 0.222867i \(-0.928458\pi\)
0.974849 0.222867i \(-0.0715417\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.141450 0.0187355
\(58\) 0 0
\(59\) −1.62250 + 0.936750i −0.211231 + 0.121954i −0.601884 0.798584i \(-0.705583\pi\)
0.390652 + 0.920538i \(0.372250\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 0 0
\(63\) −1.80278 + 3.12250i −0.227128 + 0.393398i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.53483 + 6.12250i −0.431848 + 0.747982i −0.997032 0.0769821i \(-0.975472\pi\)
0.565185 + 0.824964i \(0.308805\pi\)
\(68\) 0 0
\(69\) 3.62250 + 6.27435i 0.436098 + 0.755343i
\(70\) 0 0
\(71\) 6.24500 3.60555i 0.741145 0.427900i −0.0813405 0.996686i \(-0.525920\pi\)
0.822485 + 0.568786i \(0.192587\pi\)
\(72\) 0 0
\(73\) 12.4073 1.45216 0.726080 0.687611i \(-0.241340\pi\)
0.726080 + 0.687611i \(0.241340\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.4900i 1.42337i
\(78\) 0 0
\(79\) −8.24500 −0.927635 −0.463817 0.885931i \(-0.653521\pi\)
−0.463817 + 0.885931i \(0.653521\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 5.05470 0.554826 0.277413 0.960751i \(-0.410523\pi\)
0.277413 + 0.960751i \(0.410523\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.54230 2.62250i 0.486986 0.281161i
\(88\) 0 0
\(89\) −10.6225 6.13290i −1.12598 0.650086i −0.183061 0.983102i \(-0.558601\pi\)
−0.942921 + 0.333015i \(0.891934\pi\)
\(90\) 0 0
\(91\) 3.12250 + 12.6194i 0.327327 + 1.32288i
\(92\) 0 0
\(93\) −1.73205 + 3.00000i −0.179605 + 0.311086i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.06965 12.2450i −0.717814 1.24329i −0.961864 0.273528i \(-0.911809\pi\)
0.244049 0.969763i \(-0.421524\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 0.622499 1.07820i 0.0619410 0.107285i −0.833392 0.552682i \(-0.813604\pi\)
0.895333 + 0.445397i \(0.146938\pi\)
\(102\) 0 0
\(103\) 1.75500i 0.172925i 0.996255 + 0.0864627i \(0.0275564\pi\)
−0.996255 + 0.0864627i \(0.972444\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00640 4.62250i −0.774008 0.446874i 0.0602944 0.998181i \(-0.480796\pi\)
−0.834303 + 0.551307i \(0.814129\pi\)
\(108\) 0 0
\(109\) 17.8863i 1.71320i 0.515983 + 0.856599i \(0.327427\pi\)
−0.515983 + 0.856599i \(0.672573\pi\)
\(110\) 0 0
\(111\) 6.24500 3.60555i 0.592749 0.342224i
\(112\) 0 0
\(113\) 10.3923 6.00000i 0.977626 0.564433i 0.0760733 0.997102i \(-0.475762\pi\)
0.901553 + 0.432670i \(0.142428\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.866025 + 3.50000i 0.0800641 + 0.323575i
\(118\) 0 0
\(119\) −6.24500 3.60555i −0.572478 0.330520i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −3.60555 6.24500i −0.325102 0.563093i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.25193 1.87750i −0.288562 0.166601i 0.348731 0.937223i \(-0.386613\pi\)
−0.637293 + 0.770621i \(0.719946\pi\)
\(128\) 0 0
\(129\) −4.24500 −0.373751
\(130\) 0 0
\(131\) −1.24500 −0.108776 −0.0543880 0.998520i \(-0.517321\pi\)
−0.0543880 + 0.998520i \(0.517321\pi\)
\(132\) 0 0
\(133\) 0.441676 + 0.255002i 0.0382982 + 0.0221115i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.87990 17.1125i −0.844097 1.46202i −0.886403 0.462914i \(-0.846804\pi\)
0.0423059 0.999105i \(-0.486530\pi\)
\(138\) 0 0
\(139\) 6.12250 + 10.6045i 0.519304 + 0.899460i 0.999748 + 0.0224352i \(0.00714194\pi\)
−0.480445 + 0.877025i \(0.659525\pi\)
\(140\) 0 0
\(141\) −3.24500 1.87350i −0.273278 0.157777i
\(142\) 0 0
\(143\) 8.66025 + 9.00000i 0.724207 + 0.752618i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.19615 + 3.00000i −0.428571 + 0.247436i
\(148\) 0 0
\(149\) −13.3775 + 7.72350i −1.09593 + 0.632734i −0.935148 0.354256i \(-0.884734\pi\)
−0.160779 + 0.986990i \(0.551401\pi\)
\(150\) 0 0
\(151\) 0.424349i 0.0345330i −0.999851 0.0172665i \(-0.994504\pi\)
0.999851 0.0172665i \(-0.00549638\pi\)
\(152\) 0 0
\(153\) −1.73205 1.00000i −0.140028 0.0808452i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.0000i 1.35675i 0.734717 + 0.678374i \(0.237315\pi\)
−0.734717 + 0.678374i \(0.762685\pi\)
\(158\) 0 0
\(159\) 1.62250 2.81025i 0.128673 0.222867i
\(160\) 0 0
\(161\) 26.1222i 2.05872i
\(162\) 0 0
\(163\) 8.94315 + 15.4900i 0.700482 + 1.21327i 0.968297 + 0.249800i \(0.0803649\pi\)
−0.267816 + 0.963470i \(0.586302\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.86495 13.6225i 0.608608 1.05414i −0.382862 0.923806i \(-0.625061\pi\)
0.991470 0.130335i \(-0.0416053\pi\)
\(168\) 0 0
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 0 0
\(171\) 0.122499 + 0.0707248i 0.00936773 + 0.00540846i
\(172\) 0 0
\(173\) 11.0462 6.37750i 0.839824 0.484872i −0.0173806 0.999849i \(-0.505533\pi\)
0.857204 + 0.514977i \(0.172199\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.87350 −0.140821
\(178\) 0 0
\(179\) −9.24500 + 16.0128i −0.691004 + 1.19685i 0.280506 + 0.959852i \(0.409498\pi\)
−0.971509 + 0.237001i \(0.923836\pi\)
\(180\) 0 0
\(181\) −11.4900 −0.854045 −0.427022 0.904241i \(-0.640437\pi\)
−0.427022 + 0.904241i \(0.640437\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −6.92820 −0.506640
\(188\) 0 0
\(189\) −3.12250 + 1.80278i −0.227128 + 0.131133i
\(190\) 0 0
\(191\) 6.24500 + 10.8167i 0.451872 + 0.782666i 0.998502 0.0547085i \(-0.0174230\pi\)
−0.546630 + 0.837374i \(0.684090\pi\)
\(192\) 0 0
\(193\) 4.33013 7.50000i 0.311689 0.539862i −0.667039 0.745023i \(-0.732439\pi\)
0.978728 + 0.205161i \(0.0657718\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) 5.87750 + 10.1801i 0.416645 + 0.721650i 0.995600 0.0937095i \(-0.0298725\pi\)
−0.578955 + 0.815360i \(0.696539\pi\)
\(200\) 0 0
\(201\) −6.12250 + 3.53483i −0.431848 + 0.249327i
\(202\) 0 0
\(203\) 18.9111 1.32730
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.24500i 0.503562i
\(208\) 0 0
\(209\) 0.489996 0.0338937
\(210\) 0 0
\(211\) 3.24500 5.62050i 0.223395 0.386931i −0.732442 0.680830i \(-0.761619\pi\)
0.955837 + 0.293898i \(0.0949527\pi\)
\(212\) 0 0
\(213\) 7.21110 0.494097
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.8167 + 6.24500i −0.734282 + 0.423938i
\(218\) 0 0
\(219\) 10.7450 + 6.20363i 0.726080 + 0.419202i
\(220\) 0 0
\(221\) −7.00000 + 1.73205i −0.470871 + 0.116510i
\(222\) 0 0
\(223\) −1.51988 + 2.63250i −0.101778 + 0.176285i −0.912417 0.409261i \(-0.865787\pi\)
0.810639 + 0.585546i \(0.199120\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.38590 4.13250i −0.158358 0.274284i 0.775919 0.630833i \(-0.217287\pi\)
−0.934277 + 0.356549i \(0.883953\pi\)
\(228\) 0 0
\(229\) 23.3654i 1.54403i −0.635607 0.772013i \(-0.719250\pi\)
0.635607 0.772013i \(-0.280750\pi\)
\(230\) 0 0
\(231\) −6.24500 + 10.8167i −0.410891 + 0.711684i
\(232\) 0 0
\(233\) 15.2450i 0.998733i −0.866391 0.499367i \(-0.833566\pi\)
0.866391 0.499367i \(-0.166434\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −7.14038 4.12250i −0.463817 0.267785i
\(238\) 0 0
\(239\) 5.62050i 0.363560i −0.983339 0.181780i \(-0.941814\pi\)
0.983339 0.181780i \(-0.0581859\pi\)
\(240\) 0 0
\(241\) −10.2550 + 5.92073i −0.660583 + 0.381388i −0.792499 0.609873i \(-0.791220\pi\)
0.131916 + 0.991261i \(0.457887\pi\)
\(242\) 0 0
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.495074 0.122499i 0.0315008 0.00779442i
\(248\) 0 0
\(249\) 4.37750 + 2.52735i 0.277413 + 0.160164i
\(250\) 0 0
\(251\) 6.62250 + 11.4705i 0.418008 + 0.724012i 0.995739 0.0922157i \(-0.0293949\pi\)
−0.577731 + 0.816227i \(0.696062\pi\)
\(252\) 0 0
\(253\) 12.5487 + 21.7350i 0.788930 + 1.36647i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 25.0974 + 14.4900i 1.56553 + 0.903861i 0.996680 + 0.0814224i \(0.0259463\pi\)
0.568854 + 0.822439i \(0.307387\pi\)
\(258\) 0 0
\(259\) 26.0000 1.61556
\(260\) 0 0
\(261\) 5.24500 0.324657
\(262\) 0 0
\(263\) 26.8295 + 15.4900i 1.65438 + 0.955154i 0.975242 + 0.221139i \(0.0709774\pi\)
0.679133 + 0.734015i \(0.262356\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.13290 10.6225i −0.375328 0.650086i
\(268\) 0 0
\(269\) −12.0000 20.7846i −0.731653 1.26726i −0.956176 0.292791i \(-0.905416\pi\)
0.224523 0.974469i \(-0.427917\pi\)
\(270\) 0 0
\(271\) −5.87750 3.39338i −0.357033 0.206133i 0.310746 0.950493i \(-0.399421\pi\)
−0.667778 + 0.744360i \(0.732755\pi\)
\(272\) 0 0
\(273\) −3.60555 + 12.4900i −0.218218 + 0.755929i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.8070 13.7450i 1.43043 0.825857i 0.433273 0.901263i \(-0.357359\pi\)
0.997153 + 0.0754058i \(0.0240252\pi\)
\(278\) 0 0
\(279\) −3.00000 + 1.73205i −0.179605 + 0.103695i
\(280\) 0 0
\(281\) 15.4470i 0.921491i 0.887532 + 0.460746i \(0.152418\pi\)
−0.887532 + 0.460746i \(0.847582\pi\)
\(282\) 0 0
\(283\) −21.6333 12.4900i −1.28597 0.742453i −0.308034 0.951375i \(-0.599671\pi\)
−0.977932 + 0.208922i \(0.933005\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.0000i 1.53473i
\(288\) 0 0
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) 0 0
\(291\) 14.1393i 0.828861i
\(292\) 0 0
\(293\) −9.73845 16.8675i −0.568927 0.985410i −0.996672 0.0815107i \(-0.974026\pi\)
0.427746 0.903899i \(-0.359308\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.73205 + 3.00000i −0.100504 + 0.174078i
\(298\) 0 0
\(299\) 18.1125 + 18.8231i 1.04747 + 1.08857i
\(300\) 0 0
\(301\) −13.2550 7.65278i −0.764006 0.441099i
\(302\) 0 0
\(303\) 1.07820 0.622499i 0.0619410 0.0357616i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −21.3504 −1.21853 −0.609266 0.792966i \(-0.708536\pi\)
−0.609266 + 0.792966i \(0.708536\pi\)
\(308\) 0 0
\(309\) −0.877501 + 1.51988i −0.0499193 + 0.0864627i
\(310\) 0 0
\(311\) −27.7350 −1.57271 −0.786354 0.617777i \(-0.788034\pi\)
−0.786354 + 0.617777i \(0.788034\pi\)
\(312\) 0 0
\(313\) 7.00000i 0.395663i −0.980236 0.197832i \(-0.936610\pi\)
0.980236 0.197832i \(-0.0633900\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.5487 0.704805 0.352403 0.935848i \(-0.385365\pi\)
0.352403 + 0.935848i \(0.385365\pi\)
\(318\) 0 0
\(319\) 15.7350 9.08460i 0.880991 0.508640i
\(320\) 0 0
\(321\) −4.62250 8.00640i −0.258003 0.446874i
\(322\) 0 0
\(323\) −0.141450 + 0.244998i −0.00787047 + 0.0136321i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.94315 + 15.4900i −0.494558 + 0.856599i
\(328\) 0 0
\(329\) −6.75500 11.7000i −0.372415 0.645042i
\(330\) 0 0
\(331\) 5.87750 3.39338i 0.323057 0.186517i −0.329698 0.944087i \(-0.606947\pi\)
0.652754 + 0.757570i \(0.273613\pi\)
\(332\) 0 0
\(333\) 7.21110 0.395166
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.9800i 1.63311i 0.577265 + 0.816557i \(0.304120\pi\)
−0.577265 + 0.816557i \(0.695880\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) −6.00000 + 10.3923i −0.324918 + 0.562775i
\(342\) 0 0
\(343\) 3.60555 0.194681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.3923 6.00000i 0.557888 0.322097i −0.194409 0.980921i \(-0.562279\pi\)
0.752297 + 0.658824i \(0.228946\pi\)
\(348\) 0 0
\(349\) 1.50000 + 0.866025i 0.0802932 + 0.0463573i 0.539609 0.841916i \(-0.318572\pi\)
−0.459316 + 0.888273i \(0.651905\pi\)
\(350\) 0 0
\(351\) −1.00000 + 3.46410i −0.0533761 + 0.184900i
\(352\) 0 0
\(353\) 0.795301 1.37750i 0.0423296 0.0733170i −0.844084 0.536210i \(-0.819855\pi\)
0.886414 + 0.462893i \(0.153189\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.60555 6.24500i −0.190826 0.330520i
\(358\) 0 0
\(359\) 29.8692i 1.57644i −0.615396 0.788218i \(-0.711004\pi\)
0.615396 0.788218i \(-0.288996\pi\)
\(360\) 0 0
\(361\) −9.49000 + 16.4372i −0.499473 + 0.865113i
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −30.0814 17.3675i −1.57024 0.906576i −0.996139 0.0877883i \(-0.972020\pi\)
−0.574096 0.818788i \(-0.694647\pi\)
\(368\) 0 0
\(369\) 7.21110i 0.375395i
\(370\) 0 0
\(371\) 10.1325 5.85000i 0.526053 0.303717i
\(372\) 0 0
\(373\) −6.06218 + 3.50000i −0.313888 + 0.181223i −0.648665 0.761074i \(-0.724672\pi\)
0.334777 + 0.942297i \(0.391339\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.6269 13.1125i 0.701821 0.675328i
\(378\) 0 0
\(379\) 2.87750 + 1.66133i 0.147807 + 0.0853366i 0.572080 0.820198i \(-0.306137\pi\)
−0.424272 + 0.905535i \(0.639470\pi\)
\(380\) 0 0
\(381\) −1.87750 3.25193i −0.0961873 0.166601i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.67628 2.12250i −0.186876 0.107893i
\(388\) 0 0
\(389\) −32.9800 −1.67215 −0.836076 0.548614i \(-0.815156\pi\)
−0.836076 + 0.548614i \(0.815156\pi\)
\(390\) 0 0
\(391\) −14.4900 −0.732791
\(392\) 0 0
\(393\) −1.07820 0.622499i −0.0543880 0.0314009i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.52628 + 16.5000i 0.478110 + 0.828111i 0.999685 0.0250943i \(-0.00798860\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(398\) 0 0
\(399\) 0.255002 + 0.441676i 0.0127661 + 0.0221115i
\(400\) 0 0
\(401\) 24.9800 + 14.4222i 1.24744 + 0.720211i 0.970598 0.240705i \(-0.0773785\pi\)
0.276843 + 0.960915i \(0.410712\pi\)
\(402\) 0 0
\(403\) −3.46410 + 12.0000i −0.172559 + 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.6333 12.4900i 1.07232 0.619106i
\(408\) 0 0
\(409\) −24.2450 + 13.9979i −1.19884 + 0.692149i −0.960296 0.278983i \(-0.910003\pi\)
−0.238542 + 0.971132i \(0.576669\pi\)
\(410\) 0 0
\(411\) 19.7598i 0.974679i
\(412\) 0 0
\(413\) −5.85000 3.37750i −0.287860 0.166196i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.2450i 0.599640i
\(418\) 0 0
\(419\) −1.86750 + 3.23460i −0.0912332 + 0.158021i −0.908030 0.418905i \(-0.862414\pi\)
0.816797 + 0.576925i \(0.195748\pi\)
\(420\) 0 0
\(421\) 5.19615i 0.253245i 0.991951 + 0.126622i \(0.0404137\pi\)
−0.991951 + 0.126622i \(0.959586\pi\)
\(422\) 0 0
\(423\) −1.87350 3.24500i −0.0910927 0.157777i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.00000 + 12.1244i 0.144841 + 0.585369i
\(430\) 0 0
\(431\) 4.13250 + 2.38590i 0.199056 + 0.114925i 0.596215 0.802825i \(-0.296671\pi\)
−0.397159 + 0.917750i \(0.630004\pi\)
\(432\) 0 0
\(433\) 12.5487 7.24500i 0.603052 0.348172i −0.167189 0.985925i \(-0.553469\pi\)
0.770241 + 0.637752i \(0.220136\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.02480 0.0490230
\(438\) 0 0
\(439\) 6.87750 11.9122i 0.328245 0.568537i −0.653919 0.756565i \(-0.726876\pi\)
0.982164 + 0.188028i \(0.0602094\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 18.0000i 0.855206i −0.903967 0.427603i \(-0.859358\pi\)
0.903967 0.427603i \(-0.140642\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −15.4470 −0.730618
\(448\) 0 0
\(449\) 10.8675 6.27435i 0.512869 0.296105i −0.221143 0.975241i \(-0.570979\pi\)
0.734012 + 0.679136i \(0.237646\pi\)
\(450\) 0 0
\(451\) −12.4900 21.6333i −0.588131 1.01867i
\(452\) 0 0
\(453\) 0.212174 0.367497i 0.00996883 0.0172665i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.7374 + 28.9900i −0.782942 + 1.35609i 0.147279 + 0.989095i \(0.452948\pi\)
−0.930221 + 0.367000i \(0.880385\pi\)
\(458\) 0 0
\(459\) −1.00000 1.73205i −0.0466760 0.0808452i
\(460\) 0 0
\(461\) 12.7350 7.35255i 0.593128 0.342442i −0.173205 0.984886i \(-0.555412\pi\)
0.766333 + 0.642443i \(0.222079\pi\)
\(462\) 0 0
\(463\) 3.32265 0.154417 0.0772084 0.997015i \(-0.475399\pi\)
0.0772084 + 0.997015i \(0.475399\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.49000i 0.207772i −0.994589 0.103886i \(-0.966872\pi\)
0.994589 0.103886i \(-0.0331277\pi\)
\(468\) 0 0
\(469\) −25.4900 −1.17702
\(470\) 0 0
\(471\) −8.50000 + 14.7224i −0.391659 + 0.678374i
\(472\) 0 0
\(473\) −14.7051 −0.676141
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.81025 1.62250i 0.128673 0.0742891i
\(478\) 0 0
\(479\) −0.887505 0.512401i −0.0405511 0.0234122i 0.479587 0.877494i \(-0.340786\pi\)
−0.520139 + 0.854082i \(0.674120\pi\)
\(480\) 0 0
\(481\) 18.7350 18.0278i 0.854242 0.821995i
\(482\) 0 0
\(483\) −13.0611 + 22.6225i −0.594301 + 1.02936i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −14.2100 24.6125i −0.643918 1.11530i −0.984550 0.175102i \(-0.943974\pi\)
0.340632 0.940197i \(-0.389359\pi\)
\(488\) 0 0
\(489\) 17.8863i 0.808847i
\(490\) 0 0
\(491\) 18.2450 31.6013i 0.823385 1.42615i −0.0797619 0.996814i \(-0.525416\pi\)
0.903147 0.429331i \(-0.141251\pi\)
\(492\) 0 0
\(493\) 10.4900i 0.472446i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.5167 + 13.0000i 1.01001 + 0.583130i
\(498\) 0 0
\(499\) 27.8543i 1.24693i 0.781852 + 0.623464i \(0.214275\pi\)
−0.781852 + 0.623464i \(0.785725\pi\)
\(500\) 0 0
\(501\) 13.6225 7.86495i 0.608608 0.351380i
\(502\) 0 0
\(503\) −29.2154 + 16.8675i −1.30265 + 0.752085i −0.980858 0.194726i \(-0.937618\pi\)
−0.321791 + 0.946811i \(0.604285\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.06218 + 11.5000i 0.269231 + 0.510733i
\(508\) 0 0
\(509\) −9.00000 5.19615i −0.398918 0.230315i 0.287099 0.957901i \(-0.407309\pi\)
−0.686017 + 0.727586i \(0.740642\pi\)
\(510\) 0 0
\(511\) 22.3675 + 38.7416i 0.989480 + 1.71383i
\(512\) 0 0
\(513\) 0.0707248 + 0.122499i 0.00312258 + 0.00540846i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −11.2410 6.49000i −0.494379 0.285430i
\(518\) 0 0
\(519\) 12.7550 0.559882
\(520\) 0 0
\(521\) 21.2450 0.930760 0.465380 0.885111i \(-0.345918\pi\)
0.465380 + 0.885111i \(0.345918\pi\)
\(522\) 0 0
\(523\) 16.2250 + 9.36750i 0.709469 + 0.409612i 0.810864 0.585234i \(-0.198997\pi\)
−0.101395 + 0.994846i \(0.532331\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.46410 6.00000i −0.150899 0.261364i
\(528\) 0 0
\(529\) 14.7450 + 25.5391i 0.641087 + 1.11040i
\(530\) 0 0
\(531\) −1.62250 0.936750i −0.0704105 0.0406515i
\(532\) 0 0
\(533\) −18.0278 18.7350i −0.780869 0.811503i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −16.0128 + 9.24500i −0.691004 + 0.398951i
\(538\) 0 0
\(539\) −18.0000 + 10.3923i −0.775315 + 0.447628i
\(540\) 0 0
\(541\) 21.0675i 0.905763i −0.891571 0.452881i \(-0.850396\pi\)
0.891571 0.452881i \(-0.149604\pi\)
\(542\) 0 0
\(543\) −9.95063 5.74500i −0.427022 0.246541i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.75500i 0.417094i −0.978012 0.208547i \(-0.933127\pi\)
0.978012 0.208547i \(-0.0668734\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.741903i 0.0316061i
\(552\) 0 0
\(553\) −14.8639 25.7450i −0.632077 1.09479i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.1543 + 27.9800i −0.684478 + 1.18555i 0.289123 + 0.957292i \(0.406636\pi\)
−0.973601 + 0.228258i \(0.926697\pi\)
\(558\) 0 0
\(559\) −14.8575 + 3.67628i −0.628405 + 0.155490i
\(560\) 0 0
\(561\) −6.00000 3.46410i −0.253320 0.146254i
\(562\) 0 0
\(563\) 33.3333 19.2450i 1.40483 0.811080i 0.409948 0.912109i \(-0.365547\pi\)
0.994883 + 0.101029i \(0.0322134\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.60555 −0.151419
\(568\) 0 0
\(569\) 13.3775 23.1705i 0.560814 0.971358i −0.436612 0.899650i \(-0.643822\pi\)
0.997426 0.0717083i \(-0.0228451\pi\)
\(570\) 0 0
\(571\) 26.7350 1.11882 0.559412 0.828890i \(-0.311027\pi\)
0.559412 + 0.828890i \(0.311027\pi\)
\(572\) 0 0
\(573\) 12.4900i 0.521777i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9.22605 0.384086 0.192043 0.981387i \(-0.438489\pi\)
0.192043 + 0.981387i \(0.438489\pi\)
\(578\) 0 0
\(579\) 7.50000 4.33013i 0.311689 0.179954i
\(580\) 0 0
\(581\) 9.11249 + 15.7833i 0.378050 + 0.654802i
\(582\) 0 0
\(583\) 5.62050 9.73499i 0.232777 0.403182i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.9829 20.7550i 0.494587 0.856651i −0.505393 0.862889i \(-0.668652\pi\)
0.999981 + 0.00623863i \(0.00198583\pi\)
\(588\) 0 0
\(589\) 0.244998 + 0.424349i 0.0100950 + 0.0174850i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.87350 0.0769354 0.0384677 0.999260i \(-0.487752\pi\)
0.0384677 + 0.999260i \(0.487752\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.7550i 0.481100i
\(598\) 0 0
\(599\) −15.7350 −0.642914 −0.321457 0.946924i \(-0.604173\pi\)
−0.321457 + 0.946924i \(0.604173\pi\)
\(600\) 0 0
\(601\) 5.50000 9.52628i 0.224350 0.388585i −0.731774 0.681547i \(-0.761308\pi\)
0.956124 + 0.292962i \(0.0946409\pi\)
\(602\) 0 0
\(603\) −7.06965 −0.287899
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 27.2538 15.7350i 1.10620 0.638664i 0.168356 0.985726i \(-0.446154\pi\)
0.937842 + 0.347063i \(0.112821\pi\)
\(608\) 0 0
\(609\) 16.3775 + 9.45555i 0.663650 + 0.383158i
\(610\) 0 0
\(611\) −12.9800 3.74700i −0.525114 0.151587i
\(612\) 0 0
\(613\) −20.0600 + 34.7450i −0.810217 + 1.40334i 0.102495 + 0.994734i \(0.467318\pi\)
−0.912712 + 0.408604i \(0.866016\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.6816 32.3575i −0.752093 1.30266i −0.946807 0.321803i \(-0.895711\pi\)
0.194713 0.980860i \(-0.437622\pi\)
\(618\) 0 0
\(619\) 16.8962i 0.679114i −0.940585 0.339557i \(-0.889723\pi\)
0.940585 0.339557i \(-0.110277\pi\)
\(620\) 0 0
\(621\) −3.62250 + 6.27435i −0.145366 + 0.251781i
\(622\) 0 0
\(623\) 44.2250i 1.77184i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.424349 + 0.244998i 0.0169469 + 0.00978428i
\(628\) 0 0
\(629\) 14.4222i 0.575051i
\(630\) 0 0
\(631\) 17.8775 10.3216i 0.711692 0.410896i −0.0999952 0.994988i \(-0.531883\pi\)
0.811687 + 0.584092i \(0.198549\pi\)
\(632\) 0 0
\(633\) 5.62050 3.24500i 0.223395 0.128977i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.5885 + 15.0000i −0.617637 + 0.594322i
\(638\) 0 0
\(639\) 6.24500 + 3.60555i 0.247048 + 0.142633i
\(640\) 0 0
\(641\) −9.11249 15.7833i −0.359922 0.623403i 0.628026 0.778193i \(-0.283863\pi\)
−0.987947 + 0.154790i \(0.950530\pi\)
\(642\) 0 0
\(643\) −19.6891 34.1025i −0.776462 1.34487i −0.933969 0.357353i \(-0.883679\pi\)
0.157508 0.987518i \(-0.449654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.2551 + 18.6225i 1.26808 + 0.732126i 0.974624 0.223847i \(-0.0718616\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(648\) 0 0
\(649\) −6.49000 −0.254755
\(650\) 0 0
\(651\) −12.4900 −0.489522
\(652\) 0 0
\(653\) −8.23591 4.75500i −0.322296 0.186078i 0.330120 0.943939i \(-0.392911\pi\)
−0.652415 + 0.757862i \(0.726244\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.20363 + 10.7450i 0.242027 + 0.419202i
\(658\) 0 0
\(659\) −19.4900 33.7577i −0.759222 1.31501i −0.943248 0.332090i \(-0.892246\pi\)
0.184025 0.982922i \(-0.441087\pi\)
\(660\) 0 0
\(661\) −28.9900 16.7374i −1.12758 0.651009i −0.184255 0.982878i \(-0.558987\pi\)
−0.943325 + 0.331870i \(0.892321\pi\)
\(662\) 0 0
\(663\) −6.92820 2.00000i −0.269069 0.0776736i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 32.9090 19.0000i 1.27424 0.735683i
\(668\) 0 0
\(669\) −2.63250 + 1.51988i −0.101778 + 0.0587618i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.7224 8.50000i −0.567508 0.327651i 0.188645 0.982045i \(-0.439590\pi\)
−0.756153 + 0.654394i \(0.772924\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.73499i 0.220414i 0.993909 + 0.110207i \(0.0351513\pi\)
−0.993909 + 0.110207i \(0.964849\pi\)
\(678\) 0 0
\(679\) 25.4900 44.1500i 0.978216 1.69432i
\(680\) 0 0
\(681\) 4.77180i 0.182856i
\(682\) 0 0
\(683\) 6.41580 + 11.1125i 0.245494 + 0.425208i 0.962270 0.272095i \(-0.0877166\pi\)
−0.716777 + 0.697303i \(0.754383\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11.6827 20.2350i 0.445722 0.772013i
\(688\) 0 0
\(689\) 3.24500 11.2410i 0.123625 0.428248i
\(690\) 0 0
\(691\) −12.1225 6.99893i −0.461162 0.266252i 0.251371 0.967891i \(-0.419119\pi\)
−0.712533 + 0.701639i \(0.752452\pi\)
\(692\) 0 0
\(693\) −10.8167 + 6.24500i −0.410891 + 0.237228i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.4222 0.546280
\(698\) 0 0
\(699\) 7.62250 13.2026i 0.288309 0.499367i
\(700\) 0 0
\(701\) −26.9800 −1.01902 −0.509510 0.860465i \(-0.670173\pi\)
−0.509510 + 0.860465i \(0.670173\pi\)
\(702\) 0 0
\(703\) 1.02001i 0.0384703i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.48890 0.168823
\(708\) 0 0
\(709\) −1.25500 + 0.724576i −0.0471326 + 0.0272120i −0.523381 0.852099i \(-0.675330\pi\)
0.476249 + 0.879311i \(0.341996\pi\)
\(710\) 0 0
\(711\) −4.12250 7.14038i −0.154606 0.267785i
\(712\) 0 0
\(713\) −12.5487 + 21.7350i −0.469953 + 0.813982i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.81025 4.86750i 0.104951 0.181780i
\(718\) 0 0
\(719\) −25.6225 44.3795i −0.955558 1.65507i −0.733086 0.680136i \(-0.761921\pi\)
−0.222472 0.974939i \(-0.571413\pi\)
\(720\) 0 0
\(721\) −5.47999 + 3.16387i −0.204086 + 0.117829i
\(722\) 0 0
\(723\) −11.8415 −0.440388
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 11.2250i 0.416312i 0.978096 + 0.208156i \(0.0667461\pi\)
−0.978096 + 0.208156i \(0.933254\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 4.24500 7.35255i 0.157007 0.271944i
\(732\) 0 0
\(733\) −36.6560 −1.35392 −0.676960 0.736020i \(-0.736703\pi\)
−0.676960 + 0.736020i \(0.736703\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.2090 + 12.2450i −0.781242 + 0.451050i
\(738\) 0 0
\(739\) 27.4900 + 15.8714i 1.01124 + 0.583837i 0.911553 0.411182i \(-0.134884\pi\)
0.0996826 + 0.995019i \(0.468217\pi\)
\(740\) 0 0
\(741\) 0.489996 + 0.141450i 0.0180005 + 0.00519628i
\(742\) 0 0
\(743\) −10.2509 + 17.7550i −0.376067 + 0.651368i −0.990486 0.137612i \(-0.956057\pi\)
0.614419 + 0.788980i \(0.289391\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.52735 + 4.37750i 0.0924710 + 0.160164i
\(748\) 0 0
\(749\) 33.3333i 1.21797i
\(750\) 0 0
\(751\) 18.2450 31.6013i 0.665769 1.15315i −0.313307 0.949652i \(-0.601437\pi\)
0.979076 0.203494i \(-0.0652299\pi\)
\(752\) 0 0
\(753\) 13.2450i 0.482675i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23.3827 + 13.5000i 0.849858 + 0.490666i 0.860603 0.509276i \(-0.170087\pi\)
−0.0107448 + 0.999942i \(0.503420\pi\)
\(758\) 0 0
\(759\) 25.0974i 0.910978i
\(760\) 0 0
\(761\) 3.00000 1.73205i 0.108750 0.0627868i −0.444639 0.895710i \(-0.646668\pi\)
0.553388 + 0.832923i \(0.313335\pi\)
\(762\) 0 0
\(763\) −55.8500 + 32.2450i −2.02190 + 1.16735i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.55725 + 1.62250i −0.236769 + 0.0585850i
\(768\) 0 0
\(769\) −10.7450 6.20363i −0.387475 0.223709i 0.293591 0.955931i \(-0.405150\pi\)
−0.681065 + 0.732223i \(0.738483\pi\)
\(770\) 0 0
\(771\) 14.4900 + 25.0974i 0.521844 + 0.903861i
\(772\) 0 0
\(773\) −1.30770 2.26501i −0.0470348 0.0814666i 0.841550 0.540180i \(-0.181644\pi\)
−0.888584 + 0.458713i \(0.848310\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 22.5167 + 13.0000i 0.807781 + 0.466372i
\(778\) 0 0
\(779\) −1.02001 −0.0365456
\(780\) 0 0
\(781\) 24.9800 0.893854
\(782\) 0 0
\(783\) 4.54230 + 2.62250i 0.162329 + 0.0937205i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 12.1244 + 21.0000i 0.432187 + 0.748569i 0.997061 0.0766075i \(-0.0244088\pi\)
−0.564875 + 0.825177i \(0.691076\pi\)
\(788\) 0 0
\(789\) 15.4900 + 26.8295i 0.551458 + 0.955154i
\(790\) 0 0
\(791\) 37.4700 + 21.6333i 1.33228 + 0.769192i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.38590 1.37750i 0.0845130 0.0487936i −0.457148 0.889391i \(-0.651129\pi\)
0.541661 + 0.840597i \(0.317796\pi\)
\(798\) 0 0
\(799\) 6.49000 3.74700i 0.229600 0.132559i
\(800\) 0 0
\(801\) 12.2658i 0.433391i
\(802\) 0 0
\(803\) 37.2218 + 21.4900i 1.31353 + 0.758365i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.0000i 0.844840i
\(808\) 0 0
\(809\) 20.8675 36.1436i 0.733662 1.27074i −0.221646 0.975127i \(-0.571143\pi\)
0.955308 0.295613i \(-0.0955238\pi\)
\(810\) 0 0
\(811\) 27.5714i 0.968162i −0.875023 0.484081i \(-0.839154\pi\)
0.875023 0.484081i \(-0.160846\pi\)
\(812\) 0 0
\(813\) −3.39338 5.87750i −0.119011 0.206133i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.300227 + 0.520008i −0.0105036 + 0.0181928i
\(818\) 0 0
\(819\) −9.36750 + 9.01388i −0.327327 + 0.314970i
\(820\) 0 0
\(821\) −45.0925 26.0342i −1.57374 0.908598i −0.995705 0.0925857i \(-0.970487\pi\)
−0.578034 0.816013i \(-0.696180\pi\)
\(822\) 0 0
\(823\) −24.8852 + 14.3675i −0.867445 + 0.500819i −0.866498 0.499180i \(-0.833635\pi\)
−0.000946492 1.00000i \(0.500301\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.92820 0.240917 0.120459 0.992718i \(-0.461563\pi\)
0.120459 + 0.992718i \(0.461563\pi\)
\(828\) 0 0
\(829\) 26.7450 46.3237i 0.928892 1.60889i 0.143713 0.989619i \(-0.454096\pi\)
0.785179 0.619269i \(-0.212571\pi\)
\(830\) 0 0
\(831\) 27.4900 0.953617
\(832\) 0 0
\(833\) 12.0000i 0.415775i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.46410 −0.119737
\(838\) 0 0
\(839\) −1.37750 + 0.795301i −0.0475566 + 0.0274568i −0.523590 0.851970i \(-0.675408\pi\)
0.476033 + 0.879427i \(0.342074\pi\)
\(840\) 0 0
\(841\) 0.744998 + 1.29037i 0.0256896 + 0.0444957i
\(842\) 0 0
\(843\) −7.72350 + 13.3775i −0.266012 + 0.460746i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.80278 + 3.12250i −0.0619441 + 0.107290i
\(848\) 0 0
\(849\) −12.4900 21.6333i −0.428656 0.742453i
\(850\) 0 0
\(851\) 45.2450 26.1222i 1.55098 0.895458i
\(852\) 0 0
\(853\) −9.82651 −0.336453 −0.168227 0.985748i \(-0.553804\pi\)
−0.168227 + 0.985748i \(0.553804\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.5100i 0.529812i 0.964274 + 0.264906i \(0.0853409\pi\)
−0.964274 + 0.264906i \(0.914659\pi\)
\(858\) 0 0
\(859\) 22.7350 0.775708 0.387854 0.921721i \(-0.373216\pi\)
0.387854 + 0.921721i \(0.373216\pi\)
\(860\) 0 0
\(861\) 13.0000 22.5167i 0.443039 0.767366i
\(862\) 0 0
\(863\) 4.31280 0.146809 0.0734047 0.997302i \(-0.476614\pi\)
0.0734047 + 0.997302i \(0.476614\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11.2583 + 6.50000i −0.382353 + 0.220752i
\(868\) 0 0
\(869\) −24.7350 14.2808i −0.839077 0.484441i
\(870\) 0 0
\(871\) −18.3675 + 17.6741i −0.622359 + 0.598865i
\(872\) 0 0
\(873\) 7.06965 12.2450i 0.239271 0.414430i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.5562 + 23.4800i 0.457760 + 0.792863i 0.998842 0.0481065i \(-0.0153187\pi\)
−0.541083 + 0.840969i \(0.681985\pi\)
\(878\) 0 0
\(879\) 19.4769i 0.656940i
\(880\) 0 0
\(881\) 13.7350 23.7897i 0.462744 0.801496i −0.536353 0.843994i \(-0.680198\pi\)
0.999097 + 0.0424983i \(0.0135317\pi\)
\(882\) 0 0
\(883\) 20.4900i 0.689543i 0.938687 + 0.344772i \(0.112044\pi\)
−0.938687 + 0.344772i \(0.887956\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.31410 + 5.37750i 0.312737 + 0.180559i 0.648151 0.761512i \(-0.275543\pi\)
−0.335414 + 0.942071i \(0.608876\pi\)
\(888\) 0 0
\(889\) 13.5389i 0.454079i
\(890\) 0 0
\(891\) −3.00000 + 1.73205i −0.100504 + 0.0580259i
\(892\) 0 0
\(893\) −0.459004 + 0.265006i −0.0153600 + 0.00886809i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.27435 + 25.3575i 0.209495 + 0.846662i
\(898\) 0 0
\(899\) 15.7350 + 9.08460i 0.524791 + 0.302988i
\(900\) 0 0
\(901\) 3.24500 + 5.62050i 0.108107 + 0.187246i
\(902\) 0 0
\(903\) −7.65278 13.2550i −0.254669 0.441099i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17.7449 + 10.2450i 0.589208 + 0.340180i 0.764784 0.644286i \(-0.222845\pi\)
−0.175576 + 0.984466i \(0.556179\pi\)
\(908\) 0 0
\(909\) 1.24500 0.0412940
\(910\) 0 0
\(911\) 27.2450 0.902667 0.451334 0.892355i \(-0.350948\pi\)
0.451334 + 0.892355i \(0.350948\pi\)
\(912\) 0 0
\(913\) 15.1641 + 8.75500i 0.501859 + 0.289748i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.24445 3.88751i −0.0741183 0.128377i
\(918\) 0 0
\(919\) 14.1225 + 24.4609i 0.465858 + 0.806890i 0.999240 0.0389846i \(-0.0124123\pi\)
−0.533382 + 0.845875i \(0.679079\pi\)
\(920\) 0 0
\(921\) −18.4900 10.6752i −0.609266 0.351760i
\(922\) 0 0
\(923\) 25.2389 6.24500i 0.830747 0.205557i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.51988 + 0.877501i −0.0499193 + 0.0288209i
\(928\) 0 0
\(929\) −45.9800 + 26.5466i −1.50855 + 0.870964i −0.508604 + 0.861000i \(0.669838\pi\)
−0.999950 + 0.00996399i \(0.996828\pi\)
\(930\) 0 0
\(931\) 0.848698i 0.0278150i
\(932\) 0 0
\(933\) −24.0192 13.8675i −0.786354 0.454001i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.5100i 1.12739i 0.825982 + 0.563696i \(0.190621\pi\)
−0.825982 + 0.563696i \(0.809379\pi\)
\(938\) 0 0
\(939\) 3.50000 6.06218i 0.114218 0.197832i
\(940\) 0 0
\(941\) 15.1641i 0.494336i 0.968973 + 0.247168i \(0.0794999\pi\)
−0.968973 + 0.247168i \(0.920500\pi\)
\(942\) 0 0
\(943\) −26.1222 45.2450i −0.850656 1.47338i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.2808 + 24.7350i −0.464062 + 0.803779i −0.999159 0.0410117i \(-0.986942\pi\)
0.535096 + 0.844791i \(0.320275\pi\)
\(948\) 0 0
\(949\) 42.9800 + 12.4073i 1.39519 + 0.402757i
\(950\) 0 0
\(951\) 10.8675 + 6.27435i 0.352403 + 0.203460i
\(952\) 0 0
\(953\) 45.4577 26.2450i 1.47252 0.850159i 0.472996 0.881065i \(-0.343172\pi\)
0.999522 + 0.0309057i \(0.00983915\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 18.1692 0.587327
\(958\) 0 0
\(959\) 35.6225 61.7000i 1.15031 1.99240i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 9.24500i 0.297916i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −28.2786 −0.909379 −0.454689 0.890650i \(-0.650250\pi\)
−0.454689 + 0.890650i \(0.650250\pi\)
\(968\) 0 0
\(969\) −0.244998 + 0.141450i −0.00787047 + 0.00454402i
\(970\) 0 0
\(971\) −27.1125 46.9602i −0.870081 1.50703i −0.861912 0.507059i \(-0.830733\pi\)
−0.00816974 0.999967i \(-0.502601\pi\)
\(972\) 0 0
\(973\) −22.0750 + 38.2350i −0.707691 + 1.22576i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.2239 40.2250i 0.742999 1.28691i −0.208125 0.978102i \(-0.566736\pi\)
0.951124 0.308809i \(-0.0999305\pi\)
\(978\) 0 0
\(979\) −21.2450 36.7974i −0.678993 1.17605i
\(980\) 0 0
\(981\) −15.4900 + 8.94315i −0.494558 + 0.285533i
\(982\) 0 0
\(983\) −34.4649 −1.09926 −0.549630 0.835408i \(-0.685231\pi\)
−0.549630 + 0.835408i \(0.685231\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13.5100i 0.430028i
\(988\) 0 0
\(989\) −30.7550 −0.977952
\(990\) 0 0
\(991\) −15.6125 + 27.0416i −0.495947 + 0.859006i −0.999989 0.00467341i \(-0.998512\pi\)
0.504042 + 0.863679i \(0.331846\pi\)
\(992\) 0 0
\(993\) 6.78675 0.215371
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.59808 + 1.50000i −0.0822819 + 0.0475055i −0.540576 0.841295i \(-0.681794\pi\)
0.458295 + 0.888800i \(0.348460\pi\)
\(998\) 0 0
\(999\) 6.24500 + 3.60555i 0.197583 + 0.114075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.bw.i.2149.4 8
5.2 odd 4 3900.2.cd.h.901.1 yes 4
5.3 odd 4 3900.2.cd.f.901.2 4
5.4 even 2 inner 3900.2.bw.i.2149.1 8
13.10 even 6 inner 3900.2.bw.i.49.1 8
65.23 odd 12 3900.2.cd.f.2701.2 yes 4
65.49 even 6 inner 3900.2.bw.i.49.4 8
65.62 odd 12 3900.2.cd.h.2701.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3900.2.bw.i.49.1 8 13.10 even 6 inner
3900.2.bw.i.49.4 8 65.49 even 6 inner
3900.2.bw.i.2149.1 8 5.4 even 2 inner
3900.2.bw.i.2149.4 8 1.1 even 1 trivial
3900.2.cd.f.901.2 4 5.3 odd 4
3900.2.cd.f.2701.2 yes 4 65.23 odd 12
3900.2.cd.h.901.1 yes 4 5.2 odd 4
3900.2.cd.h.2701.1 yes 4 65.62 odd 12