Properties

Label 3900.2.bw.i
Level $3900$
Weight $2$
Character orbit 3900.bw
Analytic conductor $31.142$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(49,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,24,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + (\beta_{5} + \beta_{4}) q^{7} + (\beta_1 + 1) q^{9} + (2 \beta_1 + 4) q^{11} + ( - \beta_{6} + 4 \beta_{3}) q^{13} + (2 \beta_{6} - 2 \beta_{3}) q^{17} + ( - \beta_{7} + 2 \beta_1 - 2) q^{19}+ \cdots + (4 \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} + 24 q^{11} - 24 q^{19} - 4 q^{29} + 20 q^{39} - 24 q^{49} - 16 q^{51} + 12 q^{59} + 4 q^{69} - 16 q^{79} - 4 q^{81} - 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 7\nu^{6} - 40\nu^{4} + 280\nu^{2} - 441 ) / 360 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 337\nu ) / 120 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - 97\nu ) / 120 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 77 ) / 20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -31\nu^{6} + 280\nu^{4} - 1240\nu^{2} + 1953 ) / 360 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -7\nu^{7} + 40\nu^{5} - 190\nu^{3} + 81\nu ) / 270 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 61\nu^{7} - 400\nu^{5} + 2440\nu^{3} - 3843\nu ) / 1080 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} + 7\beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} + 5\beta_{6} + 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 7\beta_{5} + 31\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 19\beta_{7} + 61\beta_{6} - 61\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -20\beta_{4} - 77 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -337\beta_{3} - 97\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(1 + \beta_{1}\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.12824 0.651388i
−1.99426 + 1.15139i
−1.12824 + 0.651388i
1.99426 1.15139i
1.12824 + 0.651388i
−1.99426 1.15139i
−1.12824 0.651388i
1.99426 + 1.15139i
0 −0.866025 + 0.500000i 0 0 0 −1.80278 + 3.12250i 0 0.500000 0.866025i 0
49.2 0 −0.866025 + 0.500000i 0 0 0 1.80278 3.12250i 0 0.500000 0.866025i 0
49.3 0 0.866025 0.500000i 0 0 0 −1.80278 + 3.12250i 0 0.500000 0.866025i 0
49.4 0 0.866025 0.500000i 0 0 0 1.80278 3.12250i 0 0.500000 0.866025i 0
2149.1 0 −0.866025 0.500000i 0 0 0 −1.80278 3.12250i 0 0.500000 + 0.866025i 0
2149.2 0 −0.866025 0.500000i 0 0 0 1.80278 + 3.12250i 0 0.500000 + 0.866025i 0
2149.3 0 0.866025 + 0.500000i 0 0 0 −1.80278 3.12250i 0 0.500000 + 0.866025i 0
2149.4 0 0.866025 + 0.500000i 0 0 0 1.80278 + 3.12250i 0 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.e even 6 1 inner
65.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3900.2.bw.i 8
5.b even 2 1 inner 3900.2.bw.i 8
5.c odd 4 1 3900.2.cd.f 4
5.c odd 4 1 3900.2.cd.h yes 4
13.e even 6 1 inner 3900.2.bw.i 8
65.l even 6 1 inner 3900.2.bw.i 8
65.r odd 12 1 3900.2.cd.f 4
65.r odd 12 1 3900.2.cd.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3900.2.bw.i 8 1.a even 1 1 trivial
3900.2.bw.i 8 5.b even 2 1 inner
3900.2.bw.i 8 13.e even 6 1 inner
3900.2.bw.i 8 65.l even 6 1 inner
3900.2.cd.f 4 5.c odd 4 1
3900.2.cd.f 4 65.r odd 12 1
3900.2.cd.h yes 4 5.c odd 4 1
3900.2.cd.h yes 4 65.r odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3900, [\chi])\):

\( T_{7}^{4} + 13T_{7}^{2} + 169 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 12 \) Copy content Toggle raw display
\( T_{17}^{4} - 4T_{17}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 13 T^{2} + 169)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 6 T + 12)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 22 T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 4 T^{2} + 16)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 12 T^{3} + 47 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 80 T^{6} + \cdots + 2085136 \) Copy content Toggle raw display
$29$ \( (T^{4} + 2 T^{3} + \cdots + 1444)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 52 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 52 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} - 86 T^{6} + \cdots + 1500625 \) Copy content Toggle raw display
$47$ \( (T^{4} - 128 T^{2} + 1600)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 96 T^{2} + 900)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 6 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} + 50 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( (T^{4} - 52 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 158 T^{2} + 625)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T - 35)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 176 T^{2} + 3844)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 30 T^{3} + \cdots + 3844)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 200 T^{6} + \cdots + 256 \) Copy content Toggle raw display
show more
show less