Properties

Label 3900.2.cd.h.2701.1
Level $3900$
Weight $2$
Character 3900.2701
Analytic conductor $31.142$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(901,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.cd (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,0,0,-2,0,12,0,4,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 13x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2701.1
Root \(-3.12250 - 1.80278i\) of defining polynomial
Character \(\chi\) \(=\) 3900.2701
Dual form 3900.2.cd.h.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-3.12250 - 1.80278i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(3.00000 - 1.73205i) q^{11} +(1.00000 + 3.46410i) q^{13} +(-1.00000 + 1.73205i) q^{17} +(-0.122499 - 0.0707248i) q^{19} -3.60555i q^{21} +(3.62250 + 6.27435i) q^{23} -1.00000 q^{27} +(-2.62250 - 4.54230i) q^{29} -3.46410i q^{31} +(3.00000 + 1.73205i) q^{33} +(6.24500 - 3.60555i) q^{37} +(-2.50000 + 2.59808i) q^{39} +(-6.24500 + 3.60555i) q^{41} +(2.12250 - 3.67628i) q^{43} +3.74700i q^{47} +(3.00000 + 5.19615i) q^{49} -2.00000 q^{51} -3.24500 q^{53} -0.141450i q^{57} +(1.62250 + 0.936750i) q^{59} +(3.12250 - 1.80278i) q^{63} +(-6.12250 + 3.53483i) q^{67} +(-3.62250 + 6.27435i) q^{69} +(6.24500 + 3.60555i) q^{71} +12.4073i q^{73} -12.4900 q^{77} +8.24500 q^{79} +(-0.500000 - 0.866025i) q^{81} +5.05470i q^{83} +(2.62250 - 4.54230i) q^{87} +(10.6225 - 6.13290i) q^{89} +(3.12250 - 12.6194i) q^{91} +(3.00000 - 1.73205i) q^{93} +(12.2450 + 7.06965i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{9} + 12 q^{11} + 4 q^{13} - 4 q^{17} + 12 q^{19} + 2 q^{23} - 4 q^{27} + 2 q^{29} + 12 q^{33} - 10 q^{39} - 4 q^{43} + 12 q^{49} - 8 q^{51} + 12 q^{53} - 6 q^{59} - 12 q^{67} - 2 q^{69}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.12250 1.80278i −1.18019 0.681385i −0.224134 0.974558i \(-0.571955\pi\)
−0.956059 + 0.293173i \(0.905289\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 1.73205i 0.904534 0.522233i 0.0258656 0.999665i \(-0.491766\pi\)
0.878668 + 0.477432i \(0.158432\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) 0 0
\(19\) −0.122499 0.0707248i −0.0281032 0.0162254i 0.485883 0.874024i \(-0.338498\pi\)
−0.513986 + 0.857799i \(0.671832\pi\)
\(20\) 0 0
\(21\) 3.60555i 0.786796i
\(22\) 0 0
\(23\) 3.62250 + 6.27435i 0.755343 + 1.30829i 0.945203 + 0.326482i \(0.105863\pi\)
−0.189860 + 0.981811i \(0.560803\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.62250 4.54230i −0.486986 0.843484i 0.512902 0.858447i \(-0.328570\pi\)
−0.999888 + 0.0149628i \(0.995237\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 0 0
\(33\) 3.00000 + 1.73205i 0.522233 + 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.24500 3.60555i 1.02667 0.592749i 0.110642 0.993860i \(-0.464709\pi\)
0.916029 + 0.401111i \(0.131376\pi\)
\(38\) 0 0
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) −6.24500 + 3.60555i −0.975305 + 0.563093i −0.900849 0.434132i \(-0.857055\pi\)
−0.0744555 + 0.997224i \(0.523722\pi\)
\(42\) 0 0
\(43\) 2.12250 3.67628i 0.323678 0.560627i −0.657566 0.753397i \(-0.728414\pi\)
0.981244 + 0.192770i \(0.0617472\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.74700i 0.546556i 0.961935 + 0.273278i \(0.0881079\pi\)
−0.961935 + 0.273278i \(0.911892\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) −3.24500 −0.445735 −0.222867 0.974849i \(-0.571542\pi\)
−0.222867 + 0.974849i \(0.571542\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.141450i 0.0187355i
\(58\) 0 0
\(59\) 1.62250 + 0.936750i 0.211231 + 0.121954i 0.601884 0.798584i \(-0.294417\pi\)
−0.390652 + 0.920538i \(0.627750\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) 3.12250 1.80278i 0.393398 0.227128i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.12250 + 3.53483i −0.747982 + 0.431848i −0.824964 0.565185i \(-0.808805\pi\)
0.0769821 + 0.997032i \(0.475472\pi\)
\(68\) 0 0
\(69\) −3.62250 + 6.27435i −0.436098 + 0.755343i
\(70\) 0 0
\(71\) 6.24500 + 3.60555i 0.741145 + 0.427900i 0.822485 0.568786i \(-0.192587\pi\)
−0.0813405 + 0.996686i \(0.525920\pi\)
\(72\) 0 0
\(73\) 12.4073i 1.45216i 0.687611 + 0.726080i \(0.258660\pi\)
−0.687611 + 0.726080i \(0.741340\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.4900 −1.42337
\(78\) 0 0
\(79\) 8.24500 0.927635 0.463817 0.885931i \(-0.346479\pi\)
0.463817 + 0.885931i \(0.346479\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 5.05470i 0.554826i 0.960751 + 0.277413i \(0.0894770\pi\)
−0.960751 + 0.277413i \(0.910523\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.62250 4.54230i 0.281161 0.486986i
\(88\) 0 0
\(89\) 10.6225 6.13290i 1.12598 0.650086i 0.183061 0.983102i \(-0.441399\pi\)
0.942921 + 0.333015i \(0.108066\pi\)
\(90\) 0 0
\(91\) 3.12250 12.6194i 0.327327 1.32288i
\(92\) 0 0
\(93\) 3.00000 1.73205i 0.311086 0.179605i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.2450 + 7.06965i 1.24329 + 0.717814i 0.969763 0.244049i \(-0.0784759\pi\)
0.273528 + 0.961864i \(0.411809\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 0.622499 + 1.07820i 0.0619410 + 0.107285i 0.895333 0.445397i \(-0.146938\pi\)
−0.833392 + 0.552682i \(0.813604\pi\)
\(102\) 0 0
\(103\) 1.75500 0.172925 0.0864627 0.996255i \(-0.472444\pi\)
0.0864627 + 0.996255i \(0.472444\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.62250 + 8.00640i 0.446874 + 0.774008i 0.998181 0.0602944i \(-0.0192039\pi\)
−0.551307 + 0.834303i \(0.685871\pi\)
\(108\) 0 0
\(109\) 17.8863i 1.71320i 0.515983 + 0.856599i \(0.327427\pi\)
−0.515983 + 0.856599i \(0.672573\pi\)
\(110\) 0 0
\(111\) 6.24500 + 3.60555i 0.592749 + 0.342224i
\(112\) 0 0
\(113\) −6.00000 + 10.3923i −0.564433 + 0.977626i 0.432670 + 0.901553i \(0.357572\pi\)
−0.997102 + 0.0760733i \(0.975762\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.50000 0.866025i −0.323575 0.0800641i
\(118\) 0 0
\(119\) 6.24500 3.60555i 0.572478 0.330520i
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) −6.24500 3.60555i −0.563093 0.325102i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.87750 + 3.25193i 0.166601 + 0.288562i 0.937223 0.348731i \(-0.113387\pi\)
−0.770621 + 0.637293i \(0.780054\pi\)
\(128\) 0 0
\(129\) 4.24500 0.373751
\(130\) 0 0
\(131\) −1.24500 −0.108776 −0.0543880 0.998520i \(-0.517321\pi\)
−0.0543880 + 0.998520i \(0.517321\pi\)
\(132\) 0 0
\(133\) 0.255002 + 0.441676i 0.0221115 + 0.0382982i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.1125 + 9.87990i 1.46202 + 0.844097i 0.999105 0.0423059i \(-0.0134704\pi\)
0.462914 + 0.886403i \(0.346804\pi\)
\(138\) 0 0
\(139\) −6.12250 + 10.6045i −0.519304 + 0.899460i 0.480445 + 0.877025i \(0.340475\pi\)
−0.999748 + 0.0224352i \(0.992858\pi\)
\(140\) 0 0
\(141\) −3.24500 + 1.87350i −0.273278 + 0.157777i
\(142\) 0 0
\(143\) 9.00000 + 8.66025i 0.752618 + 0.724207i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.00000 + 5.19615i −0.247436 + 0.428571i
\(148\) 0 0
\(149\) 13.3775 + 7.72350i 1.09593 + 0.632734i 0.935148 0.354256i \(-0.115266\pi\)
0.160779 + 0.986990i \(0.448599\pi\)
\(150\) 0 0
\(151\) 0.424349i 0.0345330i 0.999851 + 0.0172665i \(0.00549638\pi\)
−0.999851 + 0.0172665i \(0.994504\pi\)
\(152\) 0 0
\(153\) −1.00000 1.73205i −0.0808452 0.140028i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.0000 −1.35675 −0.678374 0.734717i \(-0.737315\pi\)
−0.678374 + 0.734717i \(0.737315\pi\)
\(158\) 0 0
\(159\) −1.62250 2.81025i −0.128673 0.222867i
\(160\) 0 0
\(161\) 26.1222i 2.05872i
\(162\) 0 0
\(163\) 15.4900 + 8.94315i 1.21327 + 0.700482i 0.963470 0.267816i \(-0.0863018\pi\)
0.249800 + 0.968297i \(0.419635\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.6225 7.86495i 1.05414 0.608608i 0.130335 0.991470i \(-0.458395\pi\)
0.923806 + 0.382862i \(0.125061\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 0.122499 0.0707248i 0.00936773 0.00540846i
\(172\) 0 0
\(173\) −6.37750 + 11.0462i −0.484872 + 0.839824i −0.999849 0.0173806i \(-0.994467\pi\)
0.514977 + 0.857204i \(0.327801\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.87350i 0.140821i
\(178\) 0 0
\(179\) 9.24500 + 16.0128i 0.691004 + 1.19685i 0.971509 + 0.237001i \(0.0761645\pi\)
−0.280506 + 0.959852i \(0.590502\pi\)
\(180\) 0 0
\(181\) −11.4900 −0.854045 −0.427022 0.904241i \(-0.640437\pi\)
−0.427022 + 0.904241i \(0.640437\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.92820i 0.506640i
\(188\) 0 0
\(189\) 3.12250 + 1.80278i 0.227128 + 0.131133i
\(190\) 0 0
\(191\) 6.24500 10.8167i 0.451872 0.782666i −0.546630 0.837374i \(-0.684090\pi\)
0.998502 + 0.0547085i \(0.0174230\pi\)
\(192\) 0 0
\(193\) −7.50000 + 4.33013i −0.539862 + 0.311689i −0.745023 0.667039i \(-0.767561\pi\)
0.205161 + 0.978728i \(0.434228\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) −5.87750 + 10.1801i −0.416645 + 0.721650i −0.995600 0.0937095i \(-0.970128\pi\)
0.578955 + 0.815360i \(0.303461\pi\)
\(200\) 0 0
\(201\) −6.12250 3.53483i −0.431848 0.249327i
\(202\) 0 0
\(203\) 18.9111i 1.32730i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.24500 −0.503562
\(208\) 0 0
\(209\) −0.489996 −0.0338937
\(210\) 0 0
\(211\) 3.24500 + 5.62050i 0.223395 + 0.386931i 0.955837 0.293898i \(-0.0949527\pi\)
−0.732442 + 0.680830i \(0.761619\pi\)
\(212\) 0 0
\(213\) 7.21110i 0.494097i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.24500 + 10.8167i −0.423938 + 0.734282i
\(218\) 0 0
\(219\) −10.7450 + 6.20363i −0.726080 + 0.419202i
\(220\) 0 0
\(221\) −7.00000 1.73205i −0.470871 0.116510i
\(222\) 0 0
\(223\) 2.63250 1.51988i 0.176285 0.101778i −0.409261 0.912417i \(-0.634213\pi\)
0.585546 + 0.810639i \(0.300880\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.13250 + 2.38590i 0.274284 + 0.158358i 0.630833 0.775919i \(-0.282713\pi\)
−0.356549 + 0.934277i \(0.616047\pi\)
\(228\) 0 0
\(229\) 23.3654i 1.54403i −0.635607 0.772013i \(-0.719250\pi\)
0.635607 0.772013i \(-0.280750\pi\)
\(230\) 0 0
\(231\) −6.24500 10.8167i −0.410891 0.711684i
\(232\) 0 0
\(233\) −15.2450 −0.998733 −0.499367 0.866391i \(-0.666434\pi\)
−0.499367 + 0.866391i \(0.666434\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.12250 + 7.14038i 0.267785 + 0.463817i
\(238\) 0 0
\(239\) 5.62050i 0.363560i −0.983339 0.181780i \(-0.941814\pi\)
0.983339 0.181780i \(-0.0581859\pi\)
\(240\) 0 0
\(241\) −10.2550 5.92073i −0.660583 0.381388i 0.131916 0.991261i \(-0.457887\pi\)
−0.792499 + 0.609873i \(0.791220\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.122499 0.495074i 0.00779442 0.0315008i
\(248\) 0 0
\(249\) −4.37750 + 2.52735i −0.277413 + 0.160164i
\(250\) 0 0
\(251\) 6.62250 11.4705i 0.418008 0.724012i −0.577731 0.816227i \(-0.696062\pi\)
0.995739 + 0.0922157i \(0.0293949\pi\)
\(252\) 0 0
\(253\) 21.7350 + 12.5487i 1.36647 + 0.788930i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.4900 25.0974i −0.903861 1.56553i −0.822439 0.568854i \(-0.807387\pi\)
−0.0814224 0.996680i \(-0.525946\pi\)
\(258\) 0 0
\(259\) −26.0000 −1.61556
\(260\) 0 0
\(261\) 5.24500 0.324657
\(262\) 0 0
\(263\) 15.4900 + 26.8295i 0.955154 + 1.65438i 0.734015 + 0.679133i \(0.237644\pi\)
0.221139 + 0.975242i \(0.429023\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 10.6225 + 6.13290i 0.650086 + 0.375328i
\(268\) 0 0
\(269\) 12.0000 20.7846i 0.731653 1.26726i −0.224523 0.974469i \(-0.572083\pi\)
0.956176 0.292791i \(-0.0945841\pi\)
\(270\) 0 0
\(271\) −5.87750 + 3.39338i −0.357033 + 0.206133i −0.667778 0.744360i \(-0.732755\pi\)
0.310746 + 0.950493i \(0.399421\pi\)
\(272\) 0 0
\(273\) 12.4900 3.60555i 0.755929 0.218218i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 13.7450 23.8070i 0.825857 1.43043i −0.0754058 0.997153i \(-0.524025\pi\)
0.901263 0.433273i \(-0.142641\pi\)
\(278\) 0 0
\(279\) 3.00000 + 1.73205i 0.179605 + 0.103695i
\(280\) 0 0
\(281\) 15.4470i 0.921491i −0.887532 0.460746i \(-0.847582\pi\)
0.887532 0.460746i \(-0.152418\pi\)
\(282\) 0 0
\(283\) −12.4900 21.6333i −0.742453 1.28597i −0.951375 0.308034i \(-0.900329\pi\)
0.208922 0.977932i \(-0.433005\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.0000 1.53473
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 14.1393i 0.828861i
\(292\) 0 0
\(293\) −16.8675 9.73845i −0.985410 0.568927i −0.0815107 0.996672i \(-0.525974\pi\)
−0.903899 + 0.427746i \(0.859308\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.00000 + 1.73205i −0.174078 + 0.100504i
\(298\) 0 0
\(299\) −18.1125 + 18.8231i −1.04747 + 1.08857i
\(300\) 0 0
\(301\) −13.2550 + 7.65278i −0.764006 + 0.441099i
\(302\) 0 0
\(303\) −0.622499 + 1.07820i −0.0357616 + 0.0619410i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 21.3504i 1.21853i 0.792966 + 0.609266i \(0.208536\pi\)
−0.792966 + 0.609266i \(0.791464\pi\)
\(308\) 0 0
\(309\) 0.877501 + 1.51988i 0.0499193 + 0.0864627i
\(310\) 0 0
\(311\) −27.7350 −1.57271 −0.786354 0.617777i \(-0.788034\pi\)
−0.786354 + 0.617777i \(0.788034\pi\)
\(312\) 0 0
\(313\) −7.00000 −0.395663 −0.197832 0.980236i \(-0.563390\pi\)
−0.197832 + 0.980236i \(0.563390\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.5487i 0.704805i −0.935848 0.352403i \(-0.885365\pi\)
0.935848 0.352403i \(-0.114635\pi\)
\(318\) 0 0
\(319\) −15.7350 9.08460i −0.880991 0.508640i
\(320\) 0 0
\(321\) −4.62250 + 8.00640i −0.258003 + 0.446874i
\(322\) 0 0
\(323\) 0.244998 0.141450i 0.0136321 0.00787047i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −15.4900 + 8.94315i −0.856599 + 0.494558i
\(328\) 0 0
\(329\) 6.75500 11.7000i 0.372415 0.645042i
\(330\) 0 0
\(331\) 5.87750 + 3.39338i 0.323057 + 0.186517i 0.652754 0.757570i \(-0.273613\pi\)
−0.329698 + 0.944087i \(0.606947\pi\)
\(332\) 0 0
\(333\) 7.21110i 0.395166i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.9800 −1.63311 −0.816557 0.577265i \(-0.804120\pi\)
−0.816557 + 0.577265i \(0.804120\pi\)
\(338\) 0 0
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) 0 0
\(343\) 3.60555i 0.194681i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) −1.50000 + 0.866025i −0.0802932 + 0.0463573i −0.539609 0.841916i \(-0.681428\pi\)
0.459316 + 0.888273i \(0.348095\pi\)
\(350\) 0 0
\(351\) −1.00000 3.46410i −0.0533761 0.184900i
\(352\) 0 0
\(353\) −1.37750 + 0.795301i −0.0733170 + 0.0423296i −0.536210 0.844084i \(-0.680145\pi\)
0.462893 + 0.886414i \(0.346811\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.24500 + 3.60555i 0.330520 + 0.190826i
\(358\) 0 0
\(359\) 29.8692i 1.57644i −0.615396 0.788218i \(-0.711004\pi\)
0.615396 0.788218i \(-0.288996\pi\)
\(360\) 0 0
\(361\) −9.49000 16.4372i −0.499473 0.865113i
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.3675 + 30.0814i 0.906576 + 1.57024i 0.818788 + 0.574096i \(0.194647\pi\)
0.0877883 + 0.996139i \(0.472020\pi\)
\(368\) 0 0
\(369\) 7.21110i 0.375395i
\(370\) 0 0
\(371\) 10.1325 + 5.85000i 0.526053 + 0.303717i
\(372\) 0 0
\(373\) 3.50000 6.06218i 0.181223 0.313888i −0.761074 0.648665i \(-0.775328\pi\)
0.942297 + 0.334777i \(0.108661\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.1125 13.6269i 0.675328 0.701821i
\(378\) 0 0
\(379\) −2.87750 + 1.66133i −0.147807 + 0.0853366i −0.572080 0.820198i \(-0.693863\pi\)
0.424272 + 0.905535i \(0.360530\pi\)
\(380\) 0 0
\(381\) −1.87750 + 3.25193i −0.0961873 + 0.166601i
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.12250 + 3.67628i 0.107893 + 0.186876i
\(388\) 0 0
\(389\) 32.9800 1.67215 0.836076 0.548614i \(-0.184844\pi\)
0.836076 + 0.548614i \(0.184844\pi\)
\(390\) 0 0
\(391\) −14.4900 −0.732791
\(392\) 0 0
\(393\) −0.622499 1.07820i −0.0314009 0.0543880i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −16.5000 9.52628i −0.828111 0.478110i 0.0250943 0.999685i \(-0.492011\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) −0.255002 + 0.441676i −0.0127661 + 0.0221115i
\(400\) 0 0
\(401\) 24.9800 14.4222i 1.24744 0.720211i 0.276843 0.960915i \(-0.410712\pi\)
0.970598 + 0.240705i \(0.0773785\pi\)
\(402\) 0 0
\(403\) 12.0000 3.46410i 0.597763 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.4900 21.6333i 0.619106 1.07232i
\(408\) 0 0
\(409\) 24.2450 + 13.9979i 1.19884 + 0.692149i 0.960296 0.278983i \(-0.0899972\pi\)
0.238542 + 0.971132i \(0.423331\pi\)
\(410\) 0 0
\(411\) 19.7598i 0.974679i
\(412\) 0 0
\(413\) −3.37750 5.85000i −0.166196 0.287860i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.2450 −0.599640
\(418\) 0 0
\(419\) 1.86750 + 3.23460i 0.0912332 + 0.158021i 0.908030 0.418905i \(-0.137586\pi\)
−0.816797 + 0.576925i \(0.804252\pi\)
\(420\) 0 0
\(421\) 5.19615i 0.253245i −0.991951 0.126622i \(-0.959586\pi\)
0.991951 0.126622i \(-0.0404137\pi\)
\(422\) 0 0
\(423\) −3.24500 1.87350i −0.157777 0.0910927i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.00000 + 12.1244i −0.144841 + 0.585369i
\(430\) 0 0
\(431\) 4.13250 2.38590i 0.199056 0.114925i −0.397159 0.917750i \(-0.630004\pi\)
0.596215 + 0.802825i \(0.296671\pi\)
\(432\) 0 0
\(433\) −7.24500 + 12.5487i −0.348172 + 0.603052i −0.985925 0.167189i \(-0.946531\pi\)
0.637752 + 0.770241i \(0.279864\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.02480i 0.0490230i
\(438\) 0 0
\(439\) −6.87750 11.9122i −0.328245 0.568537i 0.653919 0.756565i \(-0.273124\pi\)
−0.982164 + 0.188028i \(0.939791\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 15.4470i 0.730618i
\(448\) 0 0
\(449\) −10.8675 6.27435i −0.512869 0.296105i 0.221143 0.975241i \(-0.429021\pi\)
−0.734012 + 0.679136i \(0.762354\pi\)
\(450\) 0 0
\(451\) −12.4900 + 21.6333i −0.588131 + 1.01867i
\(452\) 0 0
\(453\) −0.367497 + 0.212174i −0.0172665 + 0.00996883i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.9900 + 16.7374i −1.35609 + 0.782942i −0.989095 0.147279i \(-0.952948\pi\)
−0.367000 + 0.930221i \(0.619615\pi\)
\(458\) 0 0
\(459\) 1.00000 1.73205i 0.0466760 0.0808452i
\(460\) 0 0
\(461\) 12.7350 + 7.35255i 0.593128 + 0.342442i 0.766333 0.642443i \(-0.222079\pi\)
−0.173205 + 0.984886i \(0.555412\pi\)
\(462\) 0 0
\(463\) 3.32265i 0.154417i 0.997015 + 0.0772084i \(0.0246007\pi\)
−0.997015 + 0.0772084i \(0.975399\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.49000 0.207772 0.103886 0.994589i \(-0.466872\pi\)
0.103886 + 0.994589i \(0.466872\pi\)
\(468\) 0 0
\(469\) 25.4900 1.17702
\(470\) 0 0
\(471\) −8.50000 14.7224i −0.391659 0.678374i
\(472\) 0 0
\(473\) 14.7051i 0.676141i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.62250 2.81025i 0.0742891 0.128673i
\(478\) 0 0
\(479\) 0.887505 0.512401i 0.0405511 0.0234122i −0.479587 0.877494i \(-0.659214\pi\)
0.520139 + 0.854082i \(0.325880\pi\)
\(480\) 0 0
\(481\) 18.7350 + 18.0278i 0.854242 + 0.821995i
\(482\) 0 0
\(483\) 22.6225 13.0611i 1.02936 0.594301i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.6125 + 14.2100i 1.11530 + 0.643918i 0.940197 0.340632i \(-0.110641\pi\)
0.175102 + 0.984550i \(0.443974\pi\)
\(488\) 0 0
\(489\) 17.8863i 0.808847i
\(490\) 0 0
\(491\) 18.2450 + 31.6013i 0.823385 + 1.42615i 0.903147 + 0.429331i \(0.141251\pi\)
−0.0797619 + 0.996814i \(0.525416\pi\)
\(492\) 0 0
\(493\) 10.4900 0.472446
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.0000 22.5167i −0.583130 1.01001i
\(498\) 0 0
\(499\) 27.8543i 1.24693i 0.781852 + 0.623464i \(0.214275\pi\)
−0.781852 + 0.623464i \(0.785725\pi\)
\(500\) 0 0
\(501\) 13.6225 + 7.86495i 0.608608 + 0.351380i
\(502\) 0 0
\(503\) 16.8675 29.2154i 0.752085 1.30265i −0.194726 0.980858i \(-0.562382\pi\)
0.946811 0.321791i \(-0.104285\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −11.5000 6.06218i −0.510733 0.269231i
\(508\) 0 0
\(509\) 9.00000 5.19615i 0.398918 0.230315i −0.287099 0.957901i \(-0.592691\pi\)
0.686017 + 0.727586i \(0.259358\pi\)
\(510\) 0 0
\(511\) 22.3675 38.7416i 0.989480 1.71383i
\(512\) 0 0
\(513\) 0.122499 + 0.0707248i 0.00540846 + 0.00312258i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.49000 + 11.2410i 0.285430 + 0.494379i
\(518\) 0 0
\(519\) −12.7550 −0.559882
\(520\) 0 0
\(521\) 21.2450 0.930760 0.465380 0.885111i \(-0.345918\pi\)
0.465380 + 0.885111i \(0.345918\pi\)
\(522\) 0 0
\(523\) 9.36750 + 16.2250i 0.409612 + 0.709469i 0.994846 0.101395i \(-0.0323307\pi\)
−0.585234 + 0.810864i \(0.698997\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 + 3.46410i 0.261364 + 0.150899i
\(528\) 0 0
\(529\) −14.7450 + 25.5391i −0.641087 + 1.11040i
\(530\) 0 0
\(531\) −1.62250 + 0.936750i −0.0704105 + 0.0406515i
\(532\) 0 0
\(533\) −18.7350 18.0278i −0.811503 0.780869i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −9.24500 + 16.0128i −0.398951 + 0.691004i
\(538\) 0 0
\(539\) 18.0000 + 10.3923i 0.775315 + 0.447628i
\(540\) 0 0
\(541\) 21.0675i 0.905763i 0.891571 + 0.452881i \(0.149604\pi\)
−0.891571 + 0.452881i \(0.850396\pi\)
\(542\) 0 0
\(543\) −5.74500 9.95063i −0.246541 0.427022i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.75500 0.417094 0.208547 0.978012i \(-0.433127\pi\)
0.208547 + 0.978012i \(0.433127\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.741903i 0.0316061i
\(552\) 0 0
\(553\) −25.7450 14.8639i −1.09479 0.632077i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −27.9800 + 16.1543i −1.18555 + 0.684478i −0.957292 0.289123i \(-0.906636\pi\)
−0.228258 + 0.973601i \(0.573303\pi\)
\(558\) 0 0
\(559\) 14.8575 + 3.67628i 0.628405 + 0.155490i
\(560\) 0 0
\(561\) −6.00000 + 3.46410i −0.253320 + 0.146254i
\(562\) 0 0
\(563\) −19.2450 + 33.3333i −0.811080 + 1.40483i 0.101029 + 0.994883i \(0.467787\pi\)
−0.912109 + 0.409948i \(0.865547\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.60555i 0.151419i
\(568\) 0 0
\(569\) −13.3775 23.1705i −0.560814 0.971358i −0.997426 0.0717083i \(-0.977155\pi\)
0.436612 0.899650i \(-0.356178\pi\)
\(570\) 0 0
\(571\) 26.7350 1.11882 0.559412 0.828890i \(-0.311027\pi\)
0.559412 + 0.828890i \(0.311027\pi\)
\(572\) 0 0
\(573\) 12.4900 0.521777
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9.22605i 0.384086i −0.981387 0.192043i \(-0.938489\pi\)
0.981387 0.192043i \(-0.0615112\pi\)
\(578\) 0 0
\(579\) −7.50000 4.33013i −0.311689 0.179954i
\(580\) 0 0
\(581\) 9.11249 15.7833i 0.378050 0.654802i
\(582\) 0 0
\(583\) −9.73499 + 5.62050i −0.403182 + 0.232777i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.7550 11.9829i 0.856651 0.494587i −0.00623863 0.999981i \(-0.501986\pi\)
0.862889 + 0.505393i \(0.168652\pi\)
\(588\) 0 0
\(589\) −0.244998 + 0.424349i −0.0100950 + 0.0174850i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.87350i 0.0769354i 0.999260 + 0.0384677i \(0.0122477\pi\)
−0.999260 + 0.0384677i \(0.987752\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.7550 −0.481100
\(598\) 0 0
\(599\) 15.7350 0.642914 0.321457 0.946924i \(-0.395827\pi\)
0.321457 + 0.946924i \(0.395827\pi\)
\(600\) 0 0
\(601\) 5.50000 + 9.52628i 0.224350 + 0.388585i 0.956124 0.292962i \(-0.0946409\pi\)
−0.731774 + 0.681547i \(0.761308\pi\)
\(602\) 0 0
\(603\) 7.06965i 0.287899i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15.7350 27.2538i 0.638664 1.10620i −0.347063 0.937842i \(-0.612821\pi\)
0.985726 0.168356i \(-0.0538458\pi\)
\(608\) 0 0
\(609\) −16.3775 + 9.45555i −0.663650 + 0.383158i
\(610\) 0 0
\(611\) −12.9800 + 3.74700i −0.525114 + 0.151587i
\(612\) 0 0
\(613\) 34.7450 20.0600i 1.40334 0.810217i 0.408604 0.912712i \(-0.366016\pi\)
0.994734 + 0.102495i \(0.0326825\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.3575 + 18.6816i 1.30266 + 0.752093i 0.980860 0.194713i \(-0.0623776\pi\)
0.321803 + 0.946807i \(0.395711\pi\)
\(618\) 0 0
\(619\) 16.8962i 0.679114i −0.940585 0.339557i \(-0.889723\pi\)
0.940585 0.339557i \(-0.110277\pi\)
\(620\) 0 0
\(621\) −3.62250 6.27435i −0.145366 0.251781i
\(622\) 0 0
\(623\) −44.2250 −1.77184
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.244998 0.424349i −0.00978428 0.0169469i
\(628\) 0 0
\(629\) 14.4222i 0.575051i
\(630\) 0 0
\(631\) 17.8775 + 10.3216i 0.711692 + 0.410896i 0.811687 0.584092i \(-0.198549\pi\)
−0.0999952 + 0.994988i \(0.531883\pi\)
\(632\) 0 0
\(633\) −3.24500 + 5.62050i −0.128977 + 0.223395i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.0000 + 15.5885i −0.594322 + 0.617637i
\(638\) 0 0
\(639\) −6.24500 + 3.60555i −0.247048 + 0.142633i
\(640\) 0 0
\(641\) −9.11249 + 15.7833i −0.359922 + 0.623403i −0.987947 0.154790i \(-0.950530\pi\)
0.628026 + 0.778193i \(0.283863\pi\)
\(642\) 0 0
\(643\) −34.1025 19.6891i −1.34487 0.776462i −0.357353 0.933969i \(-0.616321\pi\)
−0.987518 + 0.157508i \(0.949654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.6225 32.2551i −0.732126 1.26808i −0.955973 0.293455i \(-0.905195\pi\)
0.223847 0.974624i \(-0.428138\pi\)
\(648\) 0 0
\(649\) 6.49000 0.254755
\(650\) 0 0
\(651\) −12.4900 −0.489522
\(652\) 0 0
\(653\) −4.75500 8.23591i −0.186078 0.322296i 0.757862 0.652415i \(-0.226244\pi\)
−0.943939 + 0.330120i \(0.892911\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −10.7450 6.20363i −0.419202 0.242027i
\(658\) 0 0
\(659\) 19.4900 33.7577i 0.759222 1.31501i −0.184025 0.982922i \(-0.558913\pi\)
0.943248 0.332090i \(-0.107754\pi\)
\(660\) 0 0
\(661\) −28.9900 + 16.7374i −1.12758 + 0.651009i −0.943325 0.331870i \(-0.892321\pi\)
−0.184255 + 0.982878i \(0.558987\pi\)
\(662\) 0 0
\(663\) −2.00000 6.92820i −0.0776736 0.269069i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 19.0000 32.9090i 0.735683 1.27424i
\(668\) 0 0
\(669\) 2.63250 + 1.51988i 0.101778 + 0.0587618i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8.50000 14.7224i −0.327651 0.567508i 0.654394 0.756153i \(-0.272924\pi\)
−0.982045 + 0.188645i \(0.939590\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.73499 −0.220414 −0.110207 0.993909i \(-0.535151\pi\)
−0.110207 + 0.993909i \(0.535151\pi\)
\(678\) 0 0
\(679\) −25.4900 44.1500i −0.978216 1.69432i
\(680\) 0 0
\(681\) 4.77180i 0.182856i
\(682\) 0 0
\(683\) 11.1125 + 6.41580i 0.425208 + 0.245494i 0.697303 0.716777i \(-0.254383\pi\)
−0.272095 + 0.962270i \(0.587717\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 20.2350 11.6827i 0.772013 0.445722i
\(688\) 0 0
\(689\) −3.24500 11.2410i −0.123625 0.428248i
\(690\) 0 0
\(691\) −12.1225 + 6.99893i −0.461162 + 0.266252i −0.712533 0.701639i \(-0.752452\pi\)
0.251371 + 0.967891i \(0.419119\pi\)
\(692\) 0 0
\(693\) 6.24500 10.8167i 0.237228 0.410891i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.4222i 0.546280i
\(698\) 0 0
\(699\) −7.62250 13.2026i −0.288309 0.499367i
\(700\) 0 0
\(701\) −26.9800 −1.01902 −0.509510 0.860465i \(-0.670173\pi\)
−0.509510 + 0.860465i \(0.670173\pi\)
\(702\) 0 0
\(703\) −1.02001 −0.0384703
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.48890i 0.168823i
\(708\) 0 0
\(709\) 1.25500 + 0.724576i 0.0471326 + 0.0272120i 0.523381 0.852099i \(-0.324670\pi\)
−0.476249 + 0.879311i \(0.658004\pi\)
\(710\) 0 0
\(711\) −4.12250 + 7.14038i −0.154606 + 0.267785i
\(712\) 0 0
\(713\) 21.7350 12.5487i 0.813982 0.469953i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.86750 2.81025i 0.181780 0.104951i
\(718\) 0 0
\(719\) 25.6225 44.3795i 0.955558 1.65507i 0.222472 0.974939i \(-0.428587\pi\)
0.733086 0.680136i \(-0.238079\pi\)
\(720\) 0 0
\(721\) −5.47999 3.16387i −0.204086 0.117829i
\(722\) 0 0
\(723\) 11.8415i 0.440388i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −11.2250 −0.416312 −0.208156 0.978096i \(-0.566746\pi\)
−0.208156 + 0.978096i \(0.566746\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.24500 + 7.35255i 0.157007 + 0.271944i
\(732\) 0 0
\(733\) 36.6560i 1.35392i −0.736020 0.676960i \(-0.763297\pi\)
0.736020 0.676960i \(-0.236703\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.2450 + 21.2090i −0.451050 + 0.781242i
\(738\) 0 0
\(739\) −27.4900 + 15.8714i −1.01124 + 0.583837i −0.911553 0.411182i \(-0.865116\pi\)
−0.0996826 + 0.995019i \(0.531783\pi\)
\(740\) 0 0
\(741\) 0.489996 0.141450i 0.0180005 0.00519628i
\(742\) 0 0
\(743\) 17.7550 10.2509i 0.651368 0.376067i −0.137612 0.990486i \(-0.543943\pi\)
0.788980 + 0.614419i \(0.210609\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.37750 2.52735i −0.160164 0.0924710i
\(748\) 0 0
\(749\) 33.3333i 1.21797i
\(750\) 0 0
\(751\) 18.2450 + 31.6013i 0.665769 + 1.15315i 0.979076 + 0.203494i \(0.0652299\pi\)
−0.313307 + 0.949652i \(0.601437\pi\)
\(752\) 0 0
\(753\) 13.2450 0.482675
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −13.5000 23.3827i −0.490666 0.849858i 0.509276 0.860603i \(-0.329913\pi\)
−0.999942 + 0.0107448i \(0.996580\pi\)
\(758\) 0 0
\(759\) 25.0974i 0.910978i
\(760\) 0 0
\(761\) 3.00000 + 1.73205i 0.108750 + 0.0627868i 0.553388 0.832923i \(-0.313335\pi\)
−0.444639 + 0.895710i \(0.646668\pi\)
\(762\) 0 0
\(763\) 32.2450 55.8500i 1.16735 2.02190i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.62250 + 6.55725i −0.0585850 + 0.236769i
\(768\) 0 0
\(769\) 10.7450 6.20363i 0.387475 0.223709i −0.293591 0.955931i \(-0.594850\pi\)
0.681065 + 0.732223i \(0.261517\pi\)
\(770\) 0 0
\(771\) 14.4900 25.0974i 0.521844 0.903861i
\(772\) 0 0
\(773\) −2.26501 1.30770i −0.0814666 0.0470348i 0.458713 0.888584i \(-0.348310\pi\)
−0.540180 + 0.841550i \(0.681644\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −13.0000 22.5167i −0.466372 0.807781i
\(778\) 0 0
\(779\) 1.02001 0.0365456
\(780\) 0 0
\(781\) 24.9800 0.893854
\(782\) 0 0
\(783\) 2.62250 + 4.54230i 0.0937205 + 0.162329i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −21.0000 12.1244i −0.748569 0.432187i 0.0766075 0.997061i \(-0.475591\pi\)
−0.825177 + 0.564875i \(0.808924\pi\)
\(788\) 0 0
\(789\) −15.4900 + 26.8295i −0.551458 + 0.955154i
\(790\) 0 0
\(791\) 37.4700 21.6333i 1.33228 0.769192i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.37750 2.38590i 0.0487936 0.0845130i −0.840597 0.541661i \(-0.817796\pi\)
0.889391 + 0.457148i \(0.151129\pi\)
\(798\) 0 0
\(799\) −6.49000 3.74700i −0.229600 0.132559i
\(800\) 0 0
\(801\) 12.2658i 0.433391i
\(802\) 0 0
\(803\) 21.4900 + 37.2218i 0.758365 + 1.31353i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.0000 0.844840
\(808\) 0 0
\(809\) −20.8675 36.1436i −0.733662 1.27074i −0.955308 0.295613i \(-0.904476\pi\)
0.221646 0.975127i \(-0.428857\pi\)
\(810\) 0 0
\(811\) 27.5714i 0.968162i 0.875023 + 0.484081i \(0.160846\pi\)
−0.875023 + 0.484081i \(0.839154\pi\)
\(812\) 0 0
\(813\) −5.87750 3.39338i −0.206133 0.119011i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.520008 + 0.300227i −0.0181928 + 0.0105036i
\(818\) 0 0
\(819\) 9.36750 + 9.01388i 0.327327 + 0.314970i
\(820\) 0 0
\(821\) −45.0925 + 26.0342i −1.57374 + 0.908598i −0.578034 + 0.816013i \(0.696180\pi\)
−0.995705 + 0.0925857i \(0.970487\pi\)
\(822\) 0 0
\(823\) 14.3675 24.8852i 0.500819 0.867445i −0.499180 0.866498i \(-0.666365\pi\)
1.00000 0.000946492i \(-0.000301278\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.92820i 0.240917i −0.992718 0.120459i \(-0.961563\pi\)
0.992718 0.120459i \(-0.0384365\pi\)
\(828\) 0 0
\(829\) −26.7450 46.3237i −0.928892 1.60889i −0.785179 0.619269i \(-0.787429\pi\)
−0.143713 0.989619i \(-0.545904\pi\)
\(830\) 0 0
\(831\) 27.4900 0.953617
\(832\) 0 0
\(833\) −12.0000 −0.415775
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.46410i 0.119737i
\(838\) 0 0
\(839\) 1.37750 + 0.795301i 0.0475566 + 0.0274568i 0.523590 0.851970i \(-0.324592\pi\)
−0.476033 + 0.879427i \(0.657926\pi\)
\(840\) 0 0
\(841\) 0.744998 1.29037i 0.0256896 0.0444957i
\(842\) 0 0
\(843\) 13.3775 7.72350i 0.460746 0.266012i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.12250 + 1.80278i −0.107290 + 0.0619441i
\(848\) 0 0
\(849\) 12.4900 21.6333i 0.428656 0.742453i
\(850\) 0 0
\(851\) 45.2450 + 26.1222i 1.55098 + 0.895458i
\(852\) 0 0
\(853\) 9.82651i 0.336453i −0.985748 0.168227i \(-0.946196\pi\)
0.985748 0.168227i \(-0.0538040\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.5100 −0.529812 −0.264906 0.964274i \(-0.585341\pi\)
−0.264906 + 0.964274i \(0.585341\pi\)
\(858\) 0 0
\(859\) −22.7350 −0.775708 −0.387854 0.921721i \(-0.626784\pi\)
−0.387854 + 0.921721i \(0.626784\pi\)
\(860\) 0 0
\(861\) 13.0000 + 22.5167i 0.443039 + 0.767366i
\(862\) 0 0
\(863\) 4.31280i 0.146809i 0.997302 + 0.0734047i \(0.0233865\pi\)
−0.997302 + 0.0734047i \(0.976614\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −6.50000 + 11.2583i −0.220752 + 0.382353i
\(868\) 0 0
\(869\) 24.7350 14.2808i 0.839077 0.484441i
\(870\) 0 0
\(871\) −18.3675 17.6741i −0.622359 0.598865i
\(872\) 0 0
\(873\) −12.2450 + 7.06965i −0.414430 + 0.239271i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23.4800 13.5562i −0.792863 0.457760i 0.0481065 0.998842i \(-0.484681\pi\)
−0.840969 + 0.541083i \(0.818015\pi\)
\(878\) 0 0
\(879\) 19.4769i 0.656940i
\(880\) 0 0
\(881\) 13.7350 + 23.7897i 0.462744 + 0.801496i 0.999097 0.0424983i \(-0.0135317\pi\)
−0.536353 + 0.843994i \(0.680198\pi\)
\(882\) 0 0
\(883\) 20.4900 0.689543 0.344772 0.938687i \(-0.387956\pi\)
0.344772 + 0.938687i \(0.387956\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.37750 9.31410i −0.180559 0.312737i 0.761512 0.648151i \(-0.224457\pi\)
−0.942071 + 0.335414i \(0.891124\pi\)
\(888\) 0 0
\(889\) 13.5389i 0.454079i
\(890\) 0 0
\(891\) −3.00000 1.73205i −0.100504 0.0580259i
\(892\) 0 0
\(893\) 0.265006 0.459004i 0.00886809 0.0153600i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −25.3575 6.27435i −0.846662 0.209495i
\(898\) 0 0
\(899\) −15.7350 + 9.08460i −0.524791 + 0.302988i
\(900\) 0 0
\(901\) 3.24500 5.62050i 0.108107 0.187246i
\(902\) 0 0
\(903\) −13.2550 7.65278i −0.441099 0.254669i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10.2450 17.7449i −0.340180 0.589208i 0.644286 0.764784i \(-0.277155\pi\)
−0.984466 + 0.175576i \(0.943821\pi\)
\(908\) 0 0
\(909\) −1.24500 −0.0412940
\(910\) 0 0
\(911\) 27.2450 0.902667 0.451334 0.892355i \(-0.350948\pi\)
0.451334 + 0.892355i \(0.350948\pi\)
\(912\) 0 0
\(913\) 8.75500 + 15.1641i 0.289748 + 0.501859i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.88751 + 2.24445i 0.128377 + 0.0741183i
\(918\) 0 0
\(919\) −14.1225 + 24.4609i −0.465858 + 0.806890i −0.999240 0.0389846i \(-0.987588\pi\)
0.533382 + 0.845875i \(0.320921\pi\)
\(920\) 0 0
\(921\) −18.4900 + 10.6752i −0.609266 + 0.351760i
\(922\) 0 0
\(923\) −6.24500 + 25.2389i −0.205557 + 0.830747i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −0.877501 + 1.51988i −0.0288209 + 0.0499193i
\(928\) 0 0
\(929\) 45.9800 + 26.5466i 1.50855 + 0.870964i 0.999950 + 0.00996399i \(0.00317169\pi\)
0.508604 + 0.861000i \(0.330162\pi\)
\(930\) 0 0
\(931\) 0.848698i 0.0278150i
\(932\) 0 0
\(933\) −13.8675 24.0192i −0.454001 0.786354i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −34.5100 −1.12739 −0.563696 0.825982i \(-0.690621\pi\)
−0.563696 + 0.825982i \(0.690621\pi\)
\(938\) 0 0
\(939\) −3.50000 6.06218i −0.114218 0.197832i
\(940\) 0 0
\(941\) 15.1641i 0.494336i −0.968973 0.247168i \(-0.920500\pi\)
0.968973 0.247168i \(-0.0794999\pi\)
\(942\) 0 0
\(943\) −45.2450 26.1222i −1.47338 0.850656i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.7350 + 14.2808i −0.803779 + 0.464062i −0.844791 0.535096i \(-0.820275\pi\)
0.0410117 + 0.999159i \(0.486942\pi\)
\(948\) 0 0
\(949\) −42.9800 + 12.4073i −1.39519 + 0.402757i
\(950\) 0 0
\(951\) 10.8675 6.27435i 0.352403 0.203460i
\(952\) 0 0
\(953\) −26.2450 + 45.4577i −0.850159 + 1.47252i 0.0309057 + 0.999522i \(0.490161\pi\)
−0.881065 + 0.472996i \(0.843172\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 18.1692i 0.587327i
\(958\) 0 0
\(959\) −35.6225 61.7000i −1.15031 1.99240i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) −9.24500 −0.297916
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 28.2786i 0.909379i 0.890650 + 0.454689i \(0.150250\pi\)
−0.890650 + 0.454689i \(0.849750\pi\)
\(968\) 0 0
\(969\) 0.244998 + 0.141450i 0.00787047 + 0.00454402i
\(970\) 0 0
\(971\) −27.1125 + 46.9602i −0.870081 + 1.50703i −0.00816974 + 0.999967i \(0.502601\pi\)
−0.861912 + 0.507059i \(0.830733\pi\)
\(972\) 0 0
\(973\) 38.2350 22.0750i 1.22576 0.707691i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.2250 23.2239i 1.28691 0.742999i 0.308809 0.951124i \(-0.400070\pi\)
0.978102 + 0.208125i \(0.0667362\pi\)
\(978\) 0 0
\(979\) 21.2450 36.7974i 0.678993 1.17605i
\(980\) 0 0
\(981\) −15.4900 8.94315i −0.494558 0.285533i
\(982\) 0 0
\(983\) 34.4649i 1.09926i −0.835408 0.549630i \(-0.814769\pi\)
0.835408 0.549630i \(-0.185231\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13.5100 0.430028
\(988\) 0 0
\(989\) 30.7550 0.977952
\(990\) 0 0
\(991\) −15.6125 27.0416i −0.495947 0.859006i 0.504042 0.863679i \(-0.331846\pi\)
−0.999989 + 0.00467341i \(0.998512\pi\)
\(992\) 0 0
\(993\) 6.78675i 0.215371i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.50000 + 2.59808i −0.0475055 + 0.0822819i −0.888800 0.458295i \(-0.848460\pi\)
0.841295 + 0.540576i \(0.181794\pi\)
\(998\) 0 0
\(999\) −6.24500 + 3.60555i −0.197583 + 0.114075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.cd.h.2701.1 yes 4
5.2 odd 4 3900.2.bw.i.49.4 8
5.3 odd 4 3900.2.bw.i.49.1 8
5.4 even 2 3900.2.cd.f.2701.2 yes 4
13.4 even 6 inner 3900.2.cd.h.901.1 yes 4
65.4 even 6 3900.2.cd.f.901.2 4
65.17 odd 12 3900.2.bw.i.2149.1 8
65.43 odd 12 3900.2.bw.i.2149.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3900.2.bw.i.49.1 8 5.3 odd 4
3900.2.bw.i.49.4 8 5.2 odd 4
3900.2.bw.i.2149.1 8 65.17 odd 12
3900.2.bw.i.2149.4 8 65.43 odd 12
3900.2.cd.f.901.2 4 65.4 even 6
3900.2.cd.f.2701.2 yes 4 5.4 even 2
3900.2.cd.h.901.1 yes 4 13.4 even 6 inner
3900.2.cd.h.2701.1 yes 4 1.1 even 1 trivial