Properties

Label 3900.2.bw.i.2149.3
Level $3900$
Weight $2$
Character 3900.2149
Analytic conductor $31.142$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(49,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,24,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2149.3
Root \(-1.12824 - 0.651388i\) of defining polynomial
Character \(\chi\) \(=\) 3900.2149
Dual form 3900.2.bw.i.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{3} +(-1.80278 - 3.12250i) q^{7} +(0.500000 + 0.866025i) q^{9} +(3.00000 + 1.73205i) q^{11} +(3.46410 + 1.00000i) q^{13} +(-1.73205 + 1.00000i) q^{17} +(-6.12250 + 3.53483i) q^{19} -3.60555i q^{21} +(-4.54230 - 2.62250i) q^{23} +1.00000i q^{27} +(-3.62250 + 6.27435i) q^{29} +3.46410i q^{31} +(1.73205 + 3.00000i) q^{33} +(-3.60555 + 6.24500i) q^{37} +(2.50000 + 2.59808i) q^{39} +(6.24500 + 3.60555i) q^{41} +(7.14038 - 4.12250i) q^{43} +10.6752 q^{47} +(-3.00000 + 5.19615i) q^{49} -2.00000 q^{51} +9.24500i q^{53} -7.06965 q^{57} +(4.62250 - 2.66880i) q^{59} +(1.80278 - 3.12250i) q^{63} +(0.0707248 - 0.122499i) q^{67} +(-2.62250 - 4.54230i) q^{69} +(-6.24500 + 3.60555i) q^{71} -2.01495 q^{73} -12.4900i q^{77} +4.24500 q^{79} +(-0.500000 + 0.866025i) q^{81} +12.2658 q^{83} +(-6.27435 + 3.62250i) q^{87} +(-4.37750 - 2.52735i) q^{89} +(-3.12250 - 12.6194i) q^{91} +(-1.73205 + 3.00000i) q^{93} +(0.141450 + 0.244998i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} + 24 q^{11} - 24 q^{19} - 4 q^{29} + 20 q^{39} - 24 q^{49} - 16 q^{51} + 12 q^{59} + 4 q^{69} - 16 q^{79} - 4 q^{81} - 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.80278 3.12250i −0.681385 1.18019i −0.974558 0.224134i \(-0.928045\pi\)
0.293173 0.956059i \(-0.405289\pi\)
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 0 0
\(13\) 3.46410 + 1.00000i 0.960769 + 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.73205 + 1.00000i −0.420084 + 0.242536i −0.695113 0.718900i \(-0.744646\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) 0 0
\(19\) −6.12250 + 3.53483i −1.40460 + 0.810945i −0.994860 0.101259i \(-0.967713\pi\)
−0.409737 + 0.912203i \(0.634380\pi\)
\(20\) 0 0
\(21\) 3.60555i 0.786796i
\(22\) 0 0
\(23\) −4.54230 2.62250i −0.947135 0.546829i −0.0549455 0.998489i \(-0.517498\pi\)
−0.892190 + 0.451661i \(0.850832\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −3.62250 + 6.27435i −0.672681 + 1.16512i 0.304460 + 0.952525i \(0.401524\pi\)
−0.977141 + 0.212593i \(0.931809\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0 0
\(33\) 1.73205 + 3.00000i 0.301511 + 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.60555 + 6.24500i −0.592749 + 1.02667i 0.401111 + 0.916029i \(0.368624\pi\)
−0.993860 + 0.110642i \(0.964709\pi\)
\(38\) 0 0
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) 0 0
\(41\) 6.24500 + 3.60555i 0.975305 + 0.563093i 0.900849 0.434132i \(-0.142945\pi\)
0.0744555 + 0.997224i \(0.476278\pi\)
\(42\) 0 0
\(43\) 7.14038 4.12250i 1.08890 0.628675i 0.155615 0.987818i \(-0.450264\pi\)
0.933283 + 0.359143i \(0.116931\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.6752 1.55714 0.778569 0.627559i \(-0.215946\pi\)
0.778569 + 0.627559i \(0.215946\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 9.24500i 1.26990i 0.772554 + 0.634949i \(0.218979\pi\)
−0.772554 + 0.634949i \(0.781021\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −7.06965 −0.936398
\(58\) 0 0
\(59\) 4.62250 2.66880i 0.601798 0.347448i −0.167951 0.985795i \(-0.553715\pi\)
0.769749 + 0.638347i \(0.220382\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 0 0
\(63\) 1.80278 3.12250i 0.227128 0.393398i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.0707248 0.122499i 0.00864041 0.0149656i −0.861673 0.507464i \(-0.830583\pi\)
0.870313 + 0.492499i \(0.163916\pi\)
\(68\) 0 0
\(69\) −2.62250 4.54230i −0.315712 0.546829i
\(70\) 0 0
\(71\) −6.24500 + 3.60555i −0.741145 + 0.427900i −0.822485 0.568786i \(-0.807413\pi\)
0.0813405 + 0.996686i \(0.474080\pi\)
\(72\) 0 0
\(73\) −2.01495 −0.235832 −0.117916 0.993024i \(-0.537621\pi\)
−0.117916 + 0.993024i \(0.537621\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.4900i 1.42337i
\(78\) 0 0
\(79\) 4.24500 0.477600 0.238800 0.971069i \(-0.423246\pi\)
0.238800 + 0.971069i \(0.423246\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 12.2658 1.34635 0.673174 0.739485i \(-0.264931\pi\)
0.673174 + 0.739485i \(0.264931\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.27435 + 3.62250i −0.672681 + 0.388373i
\(88\) 0 0
\(89\) −4.37750 2.52735i −0.464014 0.267899i 0.249716 0.968319i \(-0.419663\pi\)
−0.713731 + 0.700420i \(0.752996\pi\)
\(90\) 0 0
\(91\) −3.12250 12.6194i −0.327327 1.32288i
\(92\) 0 0
\(93\) −1.73205 + 3.00000i −0.179605 + 0.311086i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.141450 + 0.244998i 0.0143620 + 0.0248758i 0.873117 0.487511i \(-0.162095\pi\)
−0.858755 + 0.512386i \(0.828762\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) −5.62250 + 9.73845i −0.559460 + 0.969012i 0.438082 + 0.898935i \(0.355658\pi\)
−0.997542 + 0.0700774i \(0.977675\pi\)
\(102\) 0 0
\(103\) 14.2450i 1.40360i 0.712373 + 0.701801i \(0.247620\pi\)
−0.712373 + 0.701801i \(0.752380\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.81025 + 1.62250i 0.271677 + 0.156853i 0.629650 0.776879i \(-0.283198\pi\)
−0.357972 + 0.933732i \(0.616532\pi\)
\(108\) 0 0
\(109\) 10.9581i 1.04960i −0.851227 0.524798i \(-0.824141\pi\)
0.851227 0.524798i \(-0.175859\pi\)
\(110\) 0 0
\(111\) −6.24500 + 3.60555i −0.592749 + 0.342224i
\(112\) 0 0
\(113\) 10.3923 6.00000i 0.977626 0.564433i 0.0760733 0.997102i \(-0.475762\pi\)
0.901553 + 0.432670i \(0.142428\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.866025 + 3.50000i 0.0800641 + 0.323575i
\(118\) 0 0
\(119\) 6.24500 + 3.60555i 0.572478 + 0.330520i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 3.60555 + 6.24500i 0.325102 + 0.563093i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −14.0686 8.12250i −1.24838 0.720755i −0.277598 0.960697i \(-0.589538\pi\)
−0.970787 + 0.239942i \(0.922871\pi\)
\(128\) 0 0
\(129\) 8.24500 0.725932
\(130\) 0 0
\(131\) 11.2450 0.982480 0.491240 0.871024i \(-0.336544\pi\)
0.491240 + 0.871024i \(0.336544\pi\)
\(132\) 0 0
\(133\) 22.0750 + 12.7450i 1.91414 + 1.10513i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.14785 + 14.1125i 0.696118 + 1.20571i 0.969802 + 0.243892i \(0.0784243\pi\)
−0.273684 + 0.961820i \(0.588242\pi\)
\(138\) 0 0
\(139\) −0.122499 0.212174i −0.0103902 0.0179964i 0.860784 0.508971i \(-0.169974\pi\)
−0.871174 + 0.490975i \(0.836641\pi\)
\(140\) 0 0
\(141\) 9.24500 + 5.33760i 0.778569 + 0.449507i
\(142\) 0 0
\(143\) 8.66025 + 9.00000i 0.724207 + 0.752618i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.19615 + 3.00000i −0.428571 + 0.247436i
\(148\) 0 0
\(149\) −19.6225 + 11.3291i −1.60754 + 0.928112i −0.617619 + 0.786478i \(0.711903\pi\)
−0.989919 + 0.141635i \(0.954764\pi\)
\(150\) 0 0
\(151\) 21.2090i 1.72596i 0.505238 + 0.862980i \(0.331405\pi\)
−0.505238 + 0.862980i \(0.668595\pi\)
\(152\) 0 0
\(153\) −1.73205 1.00000i −0.140028 0.0808452i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.0000i 1.35675i 0.734717 + 0.678374i \(0.237315\pi\)
−0.734717 + 0.678374i \(0.762685\pi\)
\(158\) 0 0
\(159\) −4.62250 + 8.00640i −0.366588 + 0.634949i
\(160\) 0 0
\(161\) 18.9111i 1.49040i
\(162\) 0 0
\(163\) −5.47905 9.49000i −0.429152 0.743314i 0.567646 0.823273i \(-0.307854\pi\)
−0.996798 + 0.0799591i \(0.974521\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.25940 7.37750i 0.329602 0.570888i −0.652831 0.757504i \(-0.726419\pi\)
0.982433 + 0.186616i \(0.0597520\pi\)
\(168\) 0 0
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 0 0
\(171\) −6.12250 3.53483i −0.468199 0.270315i
\(172\) 0 0
\(173\) 21.8628 12.6225i 1.66220 0.959671i 0.690536 0.723298i \(-0.257375\pi\)
0.971662 0.236373i \(-0.0759587\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.33760 0.401199
\(178\) 0 0
\(179\) 3.24500 5.62050i 0.242543 0.420096i −0.718895 0.695118i \(-0.755352\pi\)
0.961438 + 0.275022i \(0.0886853\pi\)
\(180\) 0 0
\(181\) 13.4900 1.00270 0.501352 0.865244i \(-0.332836\pi\)
0.501352 + 0.865244i \(0.332836\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −6.92820 −0.506640
\(188\) 0 0
\(189\) 3.12250 1.80278i 0.227128 0.131133i
\(190\) 0 0
\(191\) −6.24500 10.8167i −0.451872 0.782666i 0.546630 0.837374i \(-0.315910\pi\)
−0.998502 + 0.0547085i \(0.982577\pi\)
\(192\) 0 0
\(193\) 4.33013 7.50000i 0.311689 0.539862i −0.667039 0.745023i \(-0.732439\pi\)
0.978728 + 0.205161i \(0.0657718\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) 12.1225 + 20.9968i 0.859341 + 1.48842i 0.872558 + 0.488510i \(0.162459\pi\)
−0.0132172 + 0.999913i \(0.504207\pi\)
\(200\) 0 0
\(201\) 0.122499 0.0707248i 0.00864041 0.00498854i
\(202\) 0 0
\(203\) 26.1222 1.83342
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.24500i 0.364553i
\(208\) 0 0
\(209\) −24.4900 −1.69401
\(210\) 0 0
\(211\) −9.24500 + 16.0128i −0.636452 + 1.10237i 0.349754 + 0.936842i \(0.386265\pi\)
−0.986206 + 0.165525i \(0.947068\pi\)
\(212\) 0 0
\(213\) −7.21110 −0.494097
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.8167 6.24500i 0.734282 0.423938i
\(218\) 0 0
\(219\) −1.74500 1.00748i −0.117916 0.0680789i
\(220\) 0 0
\(221\) −7.00000 + 1.73205i −0.470871 + 0.116510i
\(222\) 0 0
\(223\) −12.3365 + 21.3675i −0.826115 + 1.43087i 0.0749489 + 0.997187i \(0.476121\pi\)
−0.901064 + 0.433686i \(0.857213\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.2026 22.8675i −0.876284 1.51777i −0.855388 0.517987i \(-0.826681\pi\)
−0.0208962 0.999782i \(-0.506652\pi\)
\(228\) 0 0
\(229\) 19.9013i 1.31511i 0.753406 + 0.657556i \(0.228410\pi\)
−0.753406 + 0.657556i \(0.771590\pi\)
\(230\) 0 0
\(231\) 6.24500 10.8167i 0.410891 0.711684i
\(232\) 0 0
\(233\) 2.75500i 0.180486i −0.995920 0.0902431i \(-0.971236\pi\)
0.995920 0.0902431i \(-0.0287644\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3.67628 + 2.12250i 0.238800 + 0.137871i
\(238\) 0 0
\(239\) 16.0128i 1.03578i 0.855447 + 0.517891i \(0.173283\pi\)
−0.855447 + 0.517891i \(0.826717\pi\)
\(240\) 0 0
\(241\) −22.7450 + 13.1318i −1.46513 + 0.845896i −0.999241 0.0389456i \(-0.987600\pi\)
−0.465893 + 0.884841i \(0.654267\pi\)
\(242\) 0 0
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −24.7438 + 6.12250i −1.57441 + 0.389565i
\(248\) 0 0
\(249\) 10.6225 + 6.13290i 0.673174 + 0.388657i
\(250\) 0 0
\(251\) 0.377501 + 0.653851i 0.0238277 + 0.0412707i 0.877693 0.479223i \(-0.159081\pi\)
−0.853866 + 0.520493i \(0.825748\pi\)
\(252\) 0 0
\(253\) −9.08460 15.7350i −0.571144 0.989251i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.1692 10.4900i −1.13336 0.654348i −0.188585 0.982057i \(-0.560390\pi\)
−0.944779 + 0.327709i \(0.893723\pi\)
\(258\) 0 0
\(259\) 26.0000 1.61556
\(260\) 0 0
\(261\) −7.24500 −0.448454
\(262\) 0 0
\(263\) −16.4372 9.49000i −1.01356 0.585178i −0.101327 0.994853i \(-0.532309\pi\)
−0.912232 + 0.409675i \(0.865642\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.52735 4.37750i −0.154671 0.267899i
\(268\) 0 0
\(269\) −12.0000 20.7846i −0.731653 1.26726i −0.956176 0.292791i \(-0.905416\pi\)
0.224523 0.974469i \(-0.427917\pi\)
\(270\) 0 0
\(271\) −12.1225 6.99893i −0.736389 0.425155i 0.0843657 0.996435i \(-0.473114\pi\)
−0.820755 + 0.571280i \(0.806447\pi\)
\(272\) 0 0
\(273\) 3.60555 12.4900i 0.218218 0.755929i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.17373 1.25500i 0.130607 0.0754058i −0.433273 0.901263i \(-0.642641\pi\)
0.563880 + 0.825857i \(0.309308\pi\)
\(278\) 0 0
\(279\) −3.00000 + 1.73205i −0.179605 + 0.103695i
\(280\) 0 0
\(281\) 22.6581i 1.35167i 0.737053 + 0.675835i \(0.236217\pi\)
−0.737053 + 0.675835i \(0.763783\pi\)
\(282\) 0 0
\(283\) 21.6333 + 12.4900i 1.28597 + 0.742453i 0.977932 0.208922i \(-0.0669955\pi\)
0.308034 + 0.951375i \(0.400329\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.0000i 1.53473i
\(288\) 0 0
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) 0 0
\(291\) 0.282899i 0.0165839i
\(292\) 0 0
\(293\) 1.07820 + 1.86750i 0.0629891 + 0.109100i 0.895800 0.444457i \(-0.146603\pi\)
−0.832811 + 0.553557i \(0.813270\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.73205 + 3.00000i −0.100504 + 0.174078i
\(298\) 0 0
\(299\) −13.1125 13.6269i −0.758315 0.788064i
\(300\) 0 0
\(301\) −25.7450 14.8639i −1.48392 0.856740i
\(302\) 0 0
\(303\) −9.73845 + 5.62250i −0.559460 + 0.323004i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.49400 0.427705 0.213853 0.976866i \(-0.431399\pi\)
0.213853 + 0.976866i \(0.431399\pi\)
\(308\) 0 0
\(309\) −7.12250 + 12.3365i −0.405185 + 0.701801i
\(310\) 0 0
\(311\) 9.73499 0.552021 0.276010 0.961155i \(-0.410988\pi\)
0.276010 + 0.961155i \(0.410988\pi\)
\(312\) 0 0
\(313\) 7.00000i 0.395663i −0.980236 0.197832i \(-0.936610\pi\)
0.980236 0.197832i \(-0.0633900\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.08460 −0.510242 −0.255121 0.966909i \(-0.582115\pi\)
−0.255121 + 0.966909i \(0.582115\pi\)
\(318\) 0 0
\(319\) −21.7350 + 12.5487i −1.21693 + 0.702593i
\(320\) 0 0
\(321\) 1.62250 + 2.81025i 0.0905591 + 0.156853i
\(322\) 0 0
\(323\) 7.06965 12.2450i 0.393366 0.681330i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.47905 9.49000i 0.302992 0.524798i
\(328\) 0 0
\(329\) −19.2450 33.3333i −1.06101 1.83773i
\(330\) 0 0
\(331\) 12.1225 6.99893i 0.666313 0.384696i −0.128365 0.991727i \(-0.540973\pi\)
0.794678 + 0.607031i \(0.207640\pi\)
\(332\) 0 0
\(333\) −7.21110 −0.395166
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.9800i 1.08838i −0.838962 0.544190i \(-0.816837\pi\)
0.838962 0.544190i \(-0.183163\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) −6.00000 + 10.3923i −0.324918 + 0.562775i
\(342\) 0 0
\(343\) −3.60555 −0.194681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.3923 6.00000i 0.557888 0.322097i −0.194409 0.980921i \(-0.562279\pi\)
0.752297 + 0.658824i \(0.228946\pi\)
\(348\) 0 0
\(349\) 1.50000 + 0.866025i 0.0802932 + 0.0463573i 0.539609 0.841916i \(-0.318572\pi\)
−0.459316 + 0.888273i \(0.651905\pi\)
\(350\) 0 0
\(351\) −1.00000 + 3.46410i −0.0533761 + 0.184900i
\(352\) 0 0
\(353\) 4.40085 7.62250i 0.234234 0.405705i −0.724816 0.688943i \(-0.758075\pi\)
0.959050 + 0.283238i \(0.0914086\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.60555 + 6.24500i 0.190826 + 0.330520i
\(358\) 0 0
\(359\) 8.23591i 0.434674i −0.976097 0.217337i \(-0.930263\pi\)
0.976097 0.217337i \(-0.0697371\pi\)
\(360\) 0 0
\(361\) 15.4900 26.8295i 0.815263 1.41208i
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.36857 + 1.36750i 0.123639 + 0.0713828i 0.560544 0.828125i \(-0.310592\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(368\) 0 0
\(369\) 7.21110i 0.375395i
\(370\) 0 0
\(371\) 28.8675 16.6667i 1.49873 0.865290i
\(372\) 0 0
\(373\) −6.06218 + 3.50000i −0.313888 + 0.181223i −0.648665 0.761074i \(-0.724672\pi\)
0.334777 + 0.942297i \(0.391339\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.8231 + 18.1125i −0.969437 + 0.932841i
\(378\) 0 0
\(379\) 9.12250 + 5.26688i 0.468591 + 0.270541i 0.715650 0.698459i \(-0.246131\pi\)
−0.247059 + 0.969001i \(0.579464\pi\)
\(380\) 0 0
\(381\) −8.12250 14.0686i −0.416128 0.720755i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.14038 + 4.12250i 0.362966 + 0.209558i
\(388\) 0 0
\(389\) 16.9800 0.860920 0.430460 0.902610i \(-0.358351\pi\)
0.430460 + 0.902610i \(0.358351\pi\)
\(390\) 0 0
\(391\) 10.4900 0.530502
\(392\) 0 0
\(393\) 9.73845 + 5.62250i 0.491240 + 0.283618i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.52628 + 16.5000i 0.478110 + 0.828111i 0.999685 0.0250943i \(-0.00798860\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(398\) 0 0
\(399\) 12.7450 + 22.0750i 0.638048 + 1.10513i
\(400\) 0 0
\(401\) −24.9800 14.4222i −1.24744 0.720211i −0.276843 0.960915i \(-0.589288\pi\)
−0.970598 + 0.240705i \(0.922621\pi\)
\(402\) 0 0
\(403\) −3.46410 + 12.0000i −0.172559 + 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21.6333 + 12.4900i −1.07232 + 0.619106i
\(408\) 0 0
\(409\) −11.7550 + 6.78675i −0.581247 + 0.335583i −0.761629 0.648013i \(-0.775600\pi\)
0.180382 + 0.983597i \(0.442267\pi\)
\(410\) 0 0
\(411\) 16.2957i 0.803808i
\(412\) 0 0
\(413\) −16.6667 9.62250i −0.820113 0.473492i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.244998i 0.0119976i
\(418\) 0 0
\(419\) 16.8675 29.2154i 0.824031 1.42726i −0.0786263 0.996904i \(-0.525053\pi\)
0.902657 0.430360i \(-0.141613\pi\)
\(420\) 0 0
\(421\) 5.19615i 0.253245i 0.991951 + 0.126622i \(0.0404137\pi\)
−0.991951 + 0.126622i \(0.959586\pi\)
\(422\) 0 0
\(423\) 5.33760 + 9.24500i 0.259523 + 0.449507i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.00000 + 12.1244i 0.144841 + 0.585369i
\(430\) 0 0
\(431\) 22.8675 + 13.2026i 1.10149 + 0.635945i 0.936612 0.350369i \(-0.113944\pi\)
0.164877 + 0.986314i \(0.447277\pi\)
\(432\) 0 0
\(433\) −9.08460 + 5.24500i −0.436578 + 0.252059i −0.702145 0.712034i \(-0.747774\pi\)
0.265567 + 0.964092i \(0.414441\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 37.0803 1.77379
\(438\) 0 0
\(439\) 13.1225 22.7288i 0.626303 1.08479i −0.361985 0.932184i \(-0.617901\pi\)
0.988287 0.152604i \(-0.0487659\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 18.0000i 0.855206i −0.903967 0.427603i \(-0.859358\pi\)
0.903967 0.427603i \(-0.140642\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −22.6581 −1.07169
\(448\) 0 0
\(449\) −7.86750 + 4.54230i −0.371290 + 0.214364i −0.674022 0.738711i \(-0.735435\pi\)
0.302732 + 0.953076i \(0.402101\pi\)
\(450\) 0 0
\(451\) 12.4900 + 21.6333i 0.588131 + 1.01867i
\(452\) 0 0
\(453\) −10.6045 + 18.3675i −0.498242 + 0.862980i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.31518 + 4.01000i −0.108299 + 0.187580i −0.915081 0.403269i \(-0.867874\pi\)
0.806782 + 0.590849i \(0.201207\pi\)
\(458\) 0 0
\(459\) −1.00000 1.73205i −0.0466760 0.0808452i
\(460\) 0 0
\(461\) −24.7350 + 14.2808i −1.15202 + 0.665121i −0.949380 0.314131i \(-0.898287\pi\)
−0.202644 + 0.979252i \(0.564953\pi\)
\(462\) 0 0
\(463\) 10.5338 0.489545 0.244773 0.969581i \(-0.421287\pi\)
0.244773 + 0.969581i \(0.421287\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.4900i 0.948164i 0.880481 + 0.474082i \(0.157220\pi\)
−0.880481 + 0.474082i \(0.842780\pi\)
\(468\) 0 0
\(469\) −0.510004 −0.0235498
\(470\) 0 0
\(471\) −8.50000 + 14.7224i −0.391659 + 0.678374i
\(472\) 0 0
\(473\) 28.5615 1.31326
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −8.00640 + 4.62250i −0.366588 + 0.211650i
\(478\) 0 0
\(479\) −32.1125 18.5402i −1.46726 0.847121i −0.467929 0.883766i \(-0.655000\pi\)
−0.999328 + 0.0366446i \(0.988333\pi\)
\(480\) 0 0
\(481\) −18.7350 + 18.0278i −0.854242 + 0.821995i
\(482\) 0 0
\(483\) −9.45555 + 16.3775i −0.430243 + 0.745202i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.81773 + 6.61249i 0.172998 + 0.299641i 0.939467 0.342641i \(-0.111321\pi\)
−0.766469 + 0.642281i \(0.777988\pi\)
\(488\) 0 0
\(489\) 10.9581i 0.495543i
\(490\) 0 0
\(491\) 5.75500 9.96796i 0.259720 0.449848i −0.706447 0.707766i \(-0.749703\pi\)
0.966167 + 0.257918i \(0.0830365\pi\)
\(492\) 0 0
\(493\) 14.4900i 0.652597i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.5167 + 13.0000i 1.01001 + 0.583130i
\(498\) 0 0
\(499\) 20.6432i 0.924115i 0.886850 + 0.462057i \(0.152889\pi\)
−0.886850 + 0.462057i \(0.847111\pi\)
\(500\) 0 0
\(501\) 7.37750 4.25940i 0.329602 0.190296i
\(502\) 0 0
\(503\) 3.23460 1.86750i 0.144224 0.0832676i −0.426152 0.904652i \(-0.640131\pi\)
0.570375 + 0.821384i \(0.306798\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.06218 + 11.5000i 0.269231 + 0.510733i
\(508\) 0 0
\(509\) −9.00000 5.19615i −0.398918 0.230315i 0.287099 0.957901i \(-0.407309\pi\)
−0.686017 + 0.727586i \(0.740642\pi\)
\(510\) 0 0
\(511\) 3.63250 + 6.29168i 0.160692 + 0.278328i
\(512\) 0 0
\(513\) −3.53483 6.12250i −0.156066 0.270315i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 32.0256 + 18.4900i 1.40848 + 0.813189i
\(518\) 0 0
\(519\) 25.2450 1.10813
\(520\) 0 0
\(521\) 8.75500 0.383564 0.191782 0.981438i \(-0.438573\pi\)
0.191782 + 0.981438i \(0.438573\pi\)
\(522\) 0 0
\(523\) −16.2250 9.36750i −0.709469 0.409612i 0.101395 0.994846i \(-0.467669\pi\)
−0.810864 + 0.585234i \(0.801003\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.46410 6.00000i −0.150899 0.261364i
\(528\) 0 0
\(529\) 2.25500 + 3.90578i 0.0980436 + 0.169816i
\(530\) 0 0
\(531\) 4.62250 + 2.66880i 0.200599 + 0.115816i
\(532\) 0 0
\(533\) 18.0278 + 18.7350i 0.780869 + 0.811503i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.62050 3.24500i 0.242543 0.140032i
\(538\) 0 0
\(539\) −18.0000 + 10.3923i −0.775315 + 0.447628i
\(540\) 0 0
\(541\) 6.64530i 0.285704i −0.989744 0.142852i \(-0.954373\pi\)
0.989744 0.142852i \(-0.0456273\pi\)
\(542\) 0 0
\(543\) 11.6827 + 6.74500i 0.501352 + 0.289456i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22.2450i 0.951127i −0.879681 0.475564i \(-0.842244\pi\)
0.879681 0.475564i \(-0.157756\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 51.2196i 2.18203i
\(552\) 0 0
\(553\) −7.65278 13.2550i −0.325429 0.563660i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.6902 21.9800i 0.537699 0.931322i −0.461328 0.887229i \(-0.652627\pi\)
0.999027 0.0440927i \(-0.0140397\pi\)
\(558\) 0 0
\(559\) 28.8575 7.14038i 1.22054 0.302006i
\(560\) 0 0
\(561\) −6.00000 3.46410i −0.253320 0.146254i
\(562\) 0 0
\(563\) 11.7000 6.75500i 0.493096 0.284689i −0.232762 0.972534i \(-0.574776\pi\)
0.725858 + 0.687844i \(0.241443\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.60555 0.151419
\(568\) 0 0
\(569\) 19.6225 33.9872i 0.822618 1.42482i −0.0811083 0.996705i \(-0.525846\pi\)
0.903726 0.428111i \(-0.140821\pi\)
\(570\) 0 0
\(571\) −10.7350 −0.449246 −0.224623 0.974446i \(-0.572115\pi\)
−0.224623 + 0.974446i \(0.572115\pi\)
\(572\) 0 0
\(573\) 12.4900i 0.521777i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −19.6184 −0.816723 −0.408361 0.912820i \(-0.633900\pi\)
−0.408361 + 0.912820i \(0.633900\pi\)
\(578\) 0 0
\(579\) 7.50000 4.33013i 0.311689 0.179954i
\(580\) 0 0
\(581\) −22.1125 38.3000i −0.917381 1.58895i
\(582\) 0 0
\(583\) −16.0128 + 27.7350i −0.663183 + 1.14867i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.1940 33.2450i 0.792222 1.37217i −0.132367 0.991201i \(-0.542258\pi\)
0.924589 0.380967i \(-0.124409\pi\)
\(588\) 0 0
\(589\) −12.2450 21.2090i −0.504546 0.873900i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5.33760 −0.219189 −0.109595 0.993976i \(-0.534955\pi\)
−0.109595 + 0.993976i \(0.534955\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.2450i 0.992282i
\(598\) 0 0
\(599\) 21.7350 0.888068 0.444034 0.896010i \(-0.353547\pi\)
0.444034 + 0.896010i \(0.353547\pi\)
\(600\) 0 0
\(601\) 5.50000 9.52628i 0.224350 0.388585i −0.731774 0.681547i \(-0.761308\pi\)
0.956124 + 0.292962i \(0.0946409\pi\)
\(602\) 0 0
\(603\) 0.141450 0.00576028
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −37.6461 + 21.7350i −1.52801 + 0.882196i −0.528563 + 0.848894i \(0.677269\pi\)
−0.999445 + 0.0333023i \(0.989398\pi\)
\(608\) 0 0
\(609\) 22.6225 + 13.0611i 0.916710 + 0.529263i
\(610\) 0 0
\(611\) 36.9800 + 10.6752i 1.49605 + 0.431873i
\(612\) 0 0
\(613\) −12.8489 + 22.2550i −0.518963 + 0.898871i 0.480794 + 0.876834i \(0.340349\pi\)
−0.999757 + 0.0220373i \(0.992985\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.55725 + 11.3575i 0.263985 + 0.457235i 0.967297 0.253646i \(-0.0816297\pi\)
−0.703312 + 0.710881i \(0.748296\pi\)
\(618\) 0 0
\(619\) 38.5295i 1.54863i −0.632800 0.774315i \(-0.718095\pi\)
0.632800 0.774315i \(-0.281905\pi\)
\(620\) 0 0
\(621\) 2.62250 4.54230i 0.105237 0.182276i
\(622\) 0 0
\(623\) 18.2250i 0.730169i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −21.2090 12.2450i −0.847004 0.489018i
\(628\) 0 0
\(629\) 14.4222i 0.575051i
\(630\) 0 0
\(631\) 24.1225 13.9271i 0.960302 0.554430i 0.0640357 0.997948i \(-0.479603\pi\)
0.896266 + 0.443517i \(0.146270\pi\)
\(632\) 0 0
\(633\) −16.0128 + 9.24500i −0.636452 + 0.367456i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.5885 + 15.0000i −0.617637 + 0.594322i
\(638\) 0 0
\(639\) −6.24500 3.60555i −0.247048 0.142633i
\(640\) 0 0
\(641\) 22.1125 + 38.3000i 0.873391 + 1.51276i 0.858467 + 0.512869i \(0.171417\pi\)
0.0149242 + 0.999889i \(0.495249\pi\)
\(642\) 0 0
\(643\) 12.7609 + 22.1025i 0.503240 + 0.871637i 0.999993 + 0.00374522i \(0.00119214\pi\)
−0.496753 + 0.867892i \(0.665475\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.4385 + 12.3775i 0.842833 + 0.486610i 0.858226 0.513272i \(-0.171567\pi\)
−0.0153933 + 0.999882i \(0.504900\pi\)
\(648\) 0 0
\(649\) 18.4900 0.725796
\(650\) 0 0
\(651\) 12.4900 0.489522
\(652\) 0 0
\(653\) −29.8692 17.2450i −1.16887 0.674849i −0.215458 0.976513i \(-0.569125\pi\)
−0.953414 + 0.301664i \(0.902458\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.00748 1.74500i −0.0393053 0.0680789i
\(658\) 0 0
\(659\) 5.49000 + 9.50895i 0.213860 + 0.370416i 0.952919 0.303224i \(-0.0980631\pi\)
−0.739059 + 0.673640i \(0.764730\pi\)
\(660\) 0 0
\(661\) −4.01000 2.31518i −0.155971 0.0900499i 0.419983 0.907532i \(-0.362036\pi\)
−0.575954 + 0.817482i \(0.695369\pi\)
\(662\) 0 0
\(663\) −6.92820 2.00000i −0.269069 0.0776736i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 32.9090 19.0000i 1.27424 0.735683i
\(668\) 0 0
\(669\) −21.3675 + 12.3365i −0.826115 + 0.476958i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.7224 8.50000i −0.567508 0.327651i 0.188645 0.982045i \(-0.439590\pi\)
−0.756153 + 0.654394i \(0.772924\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.7350i 1.21967i −0.792527 0.609837i \(-0.791235\pi\)
0.792527 0.609837i \(-0.208765\pi\)
\(678\) 0 0
\(679\) 0.510004 0.883353i 0.0195722 0.0339000i
\(680\) 0 0
\(681\) 26.4051i 1.01185i
\(682\) 0 0
\(683\) −11.6120 20.1125i −0.444319 0.769583i 0.553685 0.832726i \(-0.313221\pi\)
−0.998005 + 0.0631427i \(0.979888\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −9.95063 + 17.2350i −0.379640 + 0.657556i
\(688\) 0 0
\(689\) −9.24500 + 32.0256i −0.352206 + 1.22008i
\(690\) 0 0
\(691\) −5.87750 3.39338i −0.223591 0.129090i 0.384021 0.923324i \(-0.374539\pi\)
−0.607612 + 0.794234i \(0.707872\pi\)
\(692\) 0 0
\(693\) 10.8167 6.24500i 0.410891 0.237228i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −14.4222 −0.546280
\(698\) 0 0
\(699\) 1.37750 2.38590i 0.0521019 0.0902431i
\(700\) 0 0
\(701\) 22.9800 0.867942 0.433971 0.900927i \(-0.357112\pi\)
0.433971 + 0.900927i \(0.357112\pi\)
\(702\) 0 0
\(703\) 50.9800i 1.92275i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.5444 1.52483
\(708\) 0 0
\(709\) −13.7450 + 7.93568i −0.516204 + 0.298031i −0.735380 0.677655i \(-0.762996\pi\)
0.219176 + 0.975685i \(0.429663\pi\)
\(710\) 0 0
\(711\) 2.12250 + 3.67628i 0.0795999 + 0.137871i
\(712\) 0 0
\(713\) 9.08460 15.7350i 0.340221 0.589280i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.00640 + 13.8675i −0.299005 + 0.517891i
\(718\) 0 0
\(719\) −19.3775 33.5628i −0.722659 1.25168i −0.959930 0.280238i \(-0.909586\pi\)
0.237272 0.971443i \(-0.423747\pi\)
\(720\) 0 0
\(721\) 44.4800 25.6805i 1.65652 0.956393i
\(722\) 0 0
\(723\) −26.2637 −0.976756
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 51.2250i 1.89983i −0.312509 0.949915i \(-0.601169\pi\)
0.312509 0.949915i \(-0.398831\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.24500 + 14.2808i −0.304952 + 0.528193i
\(732\) 0 0
\(733\) −22.2338 −0.821223 −0.410611 0.911810i \(-0.634685\pi\)
−0.410611 + 0.911810i \(0.634685\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.424349 0.244998i 0.0156311 0.00902462i
\(738\) 0 0
\(739\) 2.51000 + 1.44915i 0.0923320 + 0.0533079i 0.545455 0.838140i \(-0.316357\pi\)
−0.453123 + 0.891448i \(0.649690\pi\)
\(740\) 0 0
\(741\) −24.4900 7.06965i −0.899662 0.259710i
\(742\) 0 0
\(743\) −17.4620 + 30.2450i −0.640617 + 1.10958i 0.344678 + 0.938721i \(0.387988\pi\)
−0.985295 + 0.170860i \(0.945345\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.13290 + 10.6225i 0.224391 + 0.388657i
\(748\) 0 0
\(749\) 11.7000i 0.427509i
\(750\) 0 0
\(751\) 5.75500 9.96796i 0.210003 0.363736i −0.741712 0.670718i \(-0.765986\pi\)
0.951715 + 0.306982i \(0.0993193\pi\)
\(752\) 0 0
\(753\) 0.755002i 0.0275138i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23.3827 + 13.5000i 0.849858 + 0.490666i 0.860603 0.509276i \(-0.170087\pi\)
−0.0107448 + 0.999942i \(0.503420\pi\)
\(758\) 0 0
\(759\) 18.1692i 0.659500i
\(760\) 0 0
\(761\) 3.00000 1.73205i 0.108750 0.0627868i −0.444639 0.895710i \(-0.646668\pi\)
0.553388 + 0.832923i \(0.313335\pi\)
\(762\) 0 0
\(763\) −34.2167 + 19.7550i −1.23873 + 0.715179i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.6816 4.62250i 0.674554 0.166909i
\(768\) 0 0
\(769\) 1.74500 + 1.00748i 0.0629262 + 0.0363305i 0.531133 0.847288i \(-0.321766\pi\)
−0.468207 + 0.883619i \(0.655100\pi\)
\(770\) 0 0
\(771\) −10.4900 18.1692i −0.377788 0.654348i
\(772\) 0 0
\(773\) −22.9410 39.7350i −0.825131 1.42917i −0.901819 0.432113i \(-0.857768\pi\)
0.0766886 0.997055i \(-0.475565\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 22.5167 + 13.0000i 0.807781 + 0.466372i
\(778\) 0 0
\(779\) −50.9800 −1.82655
\(780\) 0 0
\(781\) −24.9800 −0.893854
\(782\) 0 0
\(783\) −6.27435 3.62250i −0.224227 0.129458i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 12.1244 + 21.0000i 0.432187 + 0.748569i 0.997061 0.0766075i \(-0.0244088\pi\)
−0.564875 + 0.825177i \(0.691076\pi\)
\(788\) 0 0
\(789\) −9.49000 16.4372i −0.337853 0.585178i
\(790\) 0 0
\(791\) −37.4700 21.6333i −1.33228 0.769192i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.2026 7.62250i 0.467659 0.270003i −0.247601 0.968862i \(-0.579642\pi\)
0.715259 + 0.698859i \(0.246309\pi\)
\(798\) 0 0
\(799\) −18.4900 + 10.6752i −0.654129 + 0.377662i
\(800\) 0 0
\(801\) 5.05470i 0.178599i
\(802\) 0 0
\(803\) −6.04485 3.49000i −0.213318 0.123159i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.0000i 0.844840i
\(808\) 0 0
\(809\) 2.13250 3.69360i 0.0749748 0.129860i −0.826101 0.563523i \(-0.809446\pi\)
0.901075 + 0.433663i \(0.142779\pi\)
\(810\) 0 0
\(811\) 34.7825i 1.22138i −0.791871 0.610689i \(-0.790893\pi\)
0.791871 0.610689i \(-0.209107\pi\)
\(812\) 0 0
\(813\) −6.99893 12.1225i −0.245463 0.425155i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −29.1446 + 50.4800i −1.01964 + 1.76607i
\(818\) 0 0
\(819\) 9.36750 9.01388i 0.327327 0.314970i
\(820\) 0 0
\(821\) 36.0925 + 20.8380i 1.25964 + 0.727251i 0.973004 0.230789i \(-0.0741307\pi\)
0.286633 + 0.958041i \(0.407464\pi\)
\(822\) 0 0
\(823\) 7.56473 4.36750i 0.263690 0.152241i −0.362327 0.932051i \(-0.618018\pi\)
0.626017 + 0.779810i \(0.284684\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.92820 0.240917 0.120459 0.992718i \(-0.461563\pi\)
0.120459 + 0.992718i \(0.461563\pi\)
\(828\) 0 0
\(829\) 14.2550 24.6904i 0.495097 0.857533i −0.504887 0.863185i \(-0.668466\pi\)
0.999984 + 0.00565264i \(0.00179930\pi\)
\(830\) 0 0
\(831\) 2.51000 0.0870711
\(832\) 0 0
\(833\) 12.0000i 0.415775i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.46410 −0.119737
\(838\) 0 0
\(839\) −7.62250 + 4.40085i −0.263158 + 0.151934i −0.625774 0.780004i \(-0.715217\pi\)
0.362616 + 0.931939i \(0.381884\pi\)
\(840\) 0 0
\(841\) −11.7450 20.3429i −0.405000 0.701480i
\(842\) 0 0
\(843\) −11.3291 + 19.6225i −0.390193 + 0.675835i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.80278 3.12250i 0.0619441 0.107290i
\(848\) 0 0
\(849\) 12.4900 + 21.6333i 0.428656 + 0.742453i
\(850\) 0 0
\(851\) 32.7550 18.9111i 1.12283 0.648264i
\(852\) 0 0
\(853\) −38.6709 −1.32407 −0.662033 0.749474i \(-0.730306\pi\)
−0.662033 + 0.749474i \(0.730306\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.4900i 1.38311i 0.722323 + 0.691556i \(0.243074\pi\)
−0.722323 + 0.691556i \(0.756926\pi\)
\(858\) 0 0
\(859\) −14.7350 −0.502752 −0.251376 0.967890i \(-0.580883\pi\)
−0.251376 + 0.967890i \(0.580883\pi\)
\(860\) 0 0
\(861\) 13.0000 22.5167i 0.443039 0.767366i
\(862\) 0 0
\(863\) −38.9538 −1.32600 −0.663002 0.748618i \(-0.730718\pi\)
−0.663002 + 0.748618i \(0.730718\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11.2583 + 6.50000i −0.382353 + 0.220752i
\(868\) 0 0
\(869\) 12.7350 + 7.35255i 0.432005 + 0.249418i
\(870\) 0 0
\(871\) 0.367497 0.353624i 0.0124522 0.0119821i
\(872\) 0 0
\(873\) −0.141450 + 0.244998i −0.00478735 + 0.00829193i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15.2882 26.4800i −0.516247 0.894166i −0.999822 0.0188630i \(-0.993995\pi\)
0.483575 0.875303i \(-0.339338\pi\)
\(878\) 0 0
\(879\) 2.15640i 0.0727336i
\(880\) 0 0
\(881\) −23.7350 + 41.1102i −0.799652 + 1.38504i 0.120190 + 0.992751i \(0.461649\pi\)
−0.919843 + 0.392287i \(0.871684\pi\)
\(882\) 0 0
\(883\) 4.49000i 0.151100i −0.997142 0.0755502i \(-0.975929\pi\)
0.997142 0.0755502i \(-0.0240713\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.1308 + 11.6225i 0.675925 + 0.390245i 0.798318 0.602236i \(-0.205724\pi\)
−0.122393 + 0.992482i \(0.539057\pi\)
\(888\) 0 0
\(889\) 58.5722i 1.96445i
\(890\) 0 0
\(891\) −3.00000 + 1.73205i −0.100504 + 0.0580259i
\(892\) 0 0
\(893\) −65.3589 + 37.7350i −2.18715 + 1.26275i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4.54230 18.3575i −0.151663 0.612939i
\(898\) 0 0
\(899\) −21.7350 12.5487i −0.724903 0.418523i
\(900\) 0 0
\(901\) −9.24500 16.0128i −0.307996 0.533464i
\(902\) 0 0
\(903\) −14.8639 25.7450i −0.494639 0.856740i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −3.88845 2.24500i −0.129114 0.0745439i 0.434052 0.900888i \(-0.357083\pi\)
−0.563166 + 0.826344i \(0.690417\pi\)
\(908\) 0 0
\(909\) −11.2450 −0.372973
\(910\) 0 0
\(911\) 14.7550 0.488855 0.244428 0.969668i \(-0.421400\pi\)
0.244428 + 0.969668i \(0.421400\pi\)
\(912\) 0 0
\(913\) 36.7974 + 21.2450i 1.21782 + 0.703107i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.2722 35.1125i −0.669447 1.15952i
\(918\) 0 0
\(919\) 7.87750 + 13.6442i 0.259855 + 0.450082i 0.966203 0.257783i \(-0.0829920\pi\)
−0.706348 + 0.707865i \(0.749659\pi\)
\(920\) 0 0
\(921\) 6.49000 + 3.74700i 0.213853 + 0.123468i
\(922\) 0 0
\(923\) −25.2389 + 6.24500i −0.830747 + 0.205557i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −12.3365 + 7.12250i −0.405185 + 0.233934i
\(928\) 0 0
\(929\) 3.97999 2.29785i 0.130579 0.0753900i −0.433287 0.901256i \(-0.642646\pi\)
0.563867 + 0.825866i \(0.309313\pi\)
\(930\) 0 0
\(931\) 42.4179i 1.39019i
\(932\) 0 0
\(933\) 8.43075 + 4.86750i 0.276010 + 0.159355i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 59.4900i 1.94345i 0.236108 + 0.971727i \(0.424128\pi\)
−0.236108 + 0.971727i \(0.575872\pi\)
\(938\) 0 0
\(939\) 3.50000 6.06218i 0.114218 0.197832i
\(940\) 0 0
\(941\) 36.7974i 1.19956i 0.800164 + 0.599781i \(0.204746\pi\)
−0.800164 + 0.599781i \(0.795254\pi\)
\(942\) 0 0
\(943\) −18.9111 32.7550i −0.615830 1.06665i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.35255 12.7350i 0.238926 0.413832i −0.721480 0.692435i \(-0.756538\pi\)
0.960406 + 0.278603i \(0.0898714\pi\)
\(948\) 0 0
\(949\) −6.97999 2.01495i −0.226580 0.0654080i
\(950\) 0 0
\(951\) −7.86750 4.54230i −0.255121 0.147294i
\(952\) 0 0
\(953\) 23.8244 13.7550i 0.771747 0.445568i −0.0617506 0.998092i \(-0.519668\pi\)
0.833497 + 0.552523i \(0.186335\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −25.0974 −0.811284
\(958\) 0 0
\(959\) 29.3775 50.8833i 0.948649 1.64311i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 3.24500i 0.104569i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.565799 0.0181949 0.00909743 0.999959i \(-0.497104\pi\)
0.00909743 + 0.999959i \(0.497104\pi\)
\(968\) 0 0
\(969\) 12.2450 7.06965i 0.393366 0.227110i
\(970\) 0 0
\(971\) 4.11249 + 7.12305i 0.131976 + 0.228590i 0.924438 0.381332i \(-0.124534\pi\)
−0.792462 + 0.609921i \(0.791201\pi\)
\(972\) 0 0
\(973\) −0.441676 + 0.765006i −0.0141595 + 0.0245250i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.8316 + 22.2250i −0.410519 + 0.711040i −0.994947 0.100406i \(-0.967986\pi\)
0.584427 + 0.811446i \(0.301319\pi\)
\(978\) 0 0
\(979\) −8.75500 15.1641i −0.279811 0.484647i
\(980\) 0 0
\(981\) 9.49000 5.47905i 0.302992 0.174933i
\(982\) 0 0
\(983\) 44.8572 1.43072 0.715362 0.698755i \(-0.246262\pi\)
0.715362 + 0.698755i \(0.246262\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 38.4900i 1.22515i
\(988\) 0 0
\(989\) −43.2450 −1.37511
\(990\) 0 0
\(991\) 15.6125 27.0416i 0.495947 0.859006i −0.504042 0.863679i \(-0.668154\pi\)
0.999989 + 0.00467341i \(0.00148760\pi\)
\(992\) 0 0
\(993\) 13.9979 0.444209
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.59808 + 1.50000i −0.0822819 + 0.0475055i −0.540576 0.841295i \(-0.681794\pi\)
0.458295 + 0.888800i \(0.348460\pi\)
\(998\) 0 0
\(999\) −6.24500 3.60555i −0.197583 0.114075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.bw.i.2149.3 8
5.2 odd 4 3900.2.cd.h.901.2 yes 4
5.3 odd 4 3900.2.cd.f.901.1 4
5.4 even 2 inner 3900.2.bw.i.2149.2 8
13.10 even 6 inner 3900.2.bw.i.49.2 8
65.23 odd 12 3900.2.cd.f.2701.1 yes 4
65.49 even 6 inner 3900.2.bw.i.49.3 8
65.62 odd 12 3900.2.cd.h.2701.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3900.2.bw.i.49.2 8 13.10 even 6 inner
3900.2.bw.i.49.3 8 65.49 even 6 inner
3900.2.bw.i.2149.2 8 5.4 even 2 inner
3900.2.bw.i.2149.3 8 1.1 even 1 trivial
3900.2.cd.f.901.1 4 5.3 odd 4
3900.2.cd.f.2701.1 yes 4 65.23 odd 12
3900.2.cd.h.901.2 yes 4 5.2 odd 4
3900.2.cd.h.2701.2 yes 4 65.62 odd 12