Properties

Label 3900.2.cd.f.2701.1
Level $3900$
Weight $2$
Character 3900.2701
Analytic conductor $31.142$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(901,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.cd (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,0,0,-2,0,12,0,-4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 13x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2701.1
Root \(-3.12250 - 1.80278i\) of defining polynomial
Character \(\chi\) \(=\) 3900.2701
Dual form 3900.2.cd.f.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(-3.12250 - 1.80278i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(3.00000 - 1.73205i) q^{11} +(-1.00000 - 3.46410i) q^{13} +(1.00000 - 1.73205i) q^{17} +(6.12250 + 3.53483i) q^{19} +3.60555i q^{21} +(2.62250 + 4.54230i) q^{23} +1.00000 q^{27} +(3.62250 + 6.27435i) q^{29} -3.46410i q^{31} +(-3.00000 - 1.73205i) q^{33} +(6.24500 - 3.60555i) q^{37} +(-2.50000 + 2.59808i) q^{39} +(6.24500 - 3.60555i) q^{41} +(4.12250 - 7.14038i) q^{43} +10.6752i q^{47} +(3.00000 + 5.19615i) q^{49} -2.00000 q^{51} -9.24500 q^{53} -7.06965i q^{57} +(-4.62250 - 2.66880i) q^{59} +(3.12250 - 1.80278i) q^{63} +(-0.122499 + 0.0707248i) q^{67} +(2.62250 - 4.54230i) q^{69} +(-6.24500 - 3.60555i) q^{71} +2.01495i q^{73} -12.4900 q^{77} -4.24500 q^{79} +(-0.500000 - 0.866025i) q^{81} -12.2658i q^{83} +(3.62250 - 6.27435i) q^{87} +(4.37750 - 2.52735i) q^{89} +(-3.12250 + 12.6194i) q^{91} +(-3.00000 + 1.73205i) q^{93} +(0.244998 + 0.141450i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{9} + 12 q^{11} - 4 q^{13} + 4 q^{17} + 12 q^{19} - 2 q^{23} + 4 q^{27} + 2 q^{29} - 12 q^{33} - 10 q^{39} + 4 q^{43} + 12 q^{49} - 8 q^{51} - 12 q^{53} - 6 q^{59} + 12 q^{67} - 2 q^{69}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.12250 1.80278i −1.18019 0.681385i −0.224134 0.974558i \(-0.571955\pi\)
−0.956059 + 0.293173i \(0.905289\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 1.73205i 0.904534 0.522233i 0.0258656 0.999665i \(-0.491766\pi\)
0.878668 + 0.477432i \(0.158432\pi\)
\(12\) 0 0
\(13\) −1.00000 3.46410i −0.277350 0.960769i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 0 0
\(19\) 6.12250 + 3.53483i 1.40460 + 0.810945i 0.994860 0.101259i \(-0.0322870\pi\)
0.409737 + 0.912203i \(0.365620\pi\)
\(20\) 0 0
\(21\) 3.60555i 0.786796i
\(22\) 0 0
\(23\) 2.62250 + 4.54230i 0.546829 + 0.947135i 0.998489 + 0.0549455i \(0.0174985\pi\)
−0.451661 + 0.892190i \(0.649168\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.62250 + 6.27435i 0.672681 + 1.16512i 0.977141 + 0.212593i \(0.0681908\pi\)
−0.304460 + 0.952525i \(0.598476\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 0 0
\(33\) −3.00000 1.73205i −0.522233 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.24500 3.60555i 1.02667 0.592749i 0.110642 0.993860i \(-0.464709\pi\)
0.916029 + 0.401111i \(0.131376\pi\)
\(38\) 0 0
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) 6.24500 3.60555i 0.975305 0.563093i 0.0744555 0.997224i \(-0.476278\pi\)
0.900849 + 0.434132i \(0.142945\pi\)
\(42\) 0 0
\(43\) 4.12250 7.14038i 0.628675 1.08890i −0.359143 0.933283i \(-0.616931\pi\)
0.987818 0.155615i \(-0.0497358\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.6752i 1.55714i 0.627559 + 0.778569i \(0.284054\pi\)
−0.627559 + 0.778569i \(0.715946\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) −9.24500 −1.26990 −0.634949 0.772554i \(-0.718979\pi\)
−0.634949 + 0.772554i \(0.718979\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.06965i 0.936398i
\(58\) 0 0
\(59\) −4.62250 2.66880i −0.601798 0.347448i 0.167951 0.985795i \(-0.446285\pi\)
−0.769749 + 0.638347i \(0.779618\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) 3.12250 1.80278i 0.393398 0.227128i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.122499 + 0.0707248i −0.0149656 + 0.00864041i −0.507464 0.861673i \(-0.669417\pi\)
0.492499 + 0.870313i \(0.336084\pi\)
\(68\) 0 0
\(69\) 2.62250 4.54230i 0.315712 0.546829i
\(70\) 0 0
\(71\) −6.24500 3.60555i −0.741145 0.427900i 0.0813405 0.996686i \(-0.474080\pi\)
−0.822485 + 0.568786i \(0.807413\pi\)
\(72\) 0 0
\(73\) 2.01495i 0.235832i 0.993024 + 0.117916i \(0.0376214\pi\)
−0.993024 + 0.117916i \(0.962379\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.4900 −1.42337
\(78\) 0 0
\(79\) −4.24500 −0.477600 −0.238800 0.971069i \(-0.576754\pi\)
−0.238800 + 0.971069i \(0.576754\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 12.2658i 1.34635i −0.739485 0.673174i \(-0.764931\pi\)
0.739485 0.673174i \(-0.235069\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.62250 6.27435i 0.388373 0.672681i
\(88\) 0 0
\(89\) 4.37750 2.52735i 0.464014 0.267899i −0.249716 0.968319i \(-0.580337\pi\)
0.713731 + 0.700420i \(0.247004\pi\)
\(90\) 0 0
\(91\) −3.12250 + 12.6194i −0.327327 + 1.32288i
\(92\) 0 0
\(93\) −3.00000 + 1.73205i −0.311086 + 0.179605i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.244998 + 0.141450i 0.0248758 + 0.0143620i 0.512386 0.858755i \(-0.328762\pi\)
−0.487511 + 0.873117i \(0.662095\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) −5.62250 9.73845i −0.559460 0.969012i −0.997542 0.0700774i \(-0.977675\pi\)
0.438082 0.898935i \(-0.355658\pi\)
\(102\) 0 0
\(103\) −14.2450 −1.40360 −0.701801 0.712373i \(-0.747620\pi\)
−0.701801 + 0.712373i \(0.747620\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.62250 + 2.81025i 0.156853 + 0.271677i 0.933732 0.357972i \(-0.116532\pi\)
−0.776879 + 0.629650i \(0.783198\pi\)
\(108\) 0 0
\(109\) 10.9581i 1.04960i −0.851227 0.524798i \(-0.824141\pi\)
0.851227 0.524798i \(-0.175859\pi\)
\(110\) 0 0
\(111\) −6.24500 3.60555i −0.592749 0.342224i
\(112\) 0 0
\(113\) 6.00000 10.3923i 0.564433 0.977626i −0.432670 0.901553i \(-0.642428\pi\)
0.997102 0.0760733i \(-0.0242383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.50000 + 0.866025i 0.323575 + 0.0800641i
\(118\) 0 0
\(119\) −6.24500 + 3.60555i −0.572478 + 0.330520i
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) −6.24500 3.60555i −0.563093 0.325102i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.12250 14.0686i −0.720755 1.24838i −0.960697 0.277598i \(-0.910462\pi\)
0.239942 0.970787i \(-0.422871\pi\)
\(128\) 0 0
\(129\) −8.24500 −0.725932
\(130\) 0 0
\(131\) 11.2450 0.982480 0.491240 0.871024i \(-0.336544\pi\)
0.491240 + 0.871024i \(0.336544\pi\)
\(132\) 0 0
\(133\) −12.7450 22.0750i −1.10513 1.91414i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.1125 + 8.14785i 1.20571 + 0.696118i 0.961820 0.273684i \(-0.0882423\pi\)
0.243892 + 0.969802i \(0.421576\pi\)
\(138\) 0 0
\(139\) 0.122499 0.212174i 0.0103902 0.0179964i −0.860784 0.508971i \(-0.830026\pi\)
0.871174 + 0.490975i \(0.163359\pi\)
\(140\) 0 0
\(141\) 9.24500 5.33760i 0.778569 0.449507i
\(142\) 0 0
\(143\) −9.00000 8.66025i −0.752618 0.724207i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.00000 5.19615i 0.247436 0.428571i
\(148\) 0 0
\(149\) 19.6225 + 11.3291i 1.60754 + 0.928112i 0.989919 + 0.141635i \(0.0452358\pi\)
0.617619 + 0.786478i \(0.288097\pi\)
\(150\) 0 0
\(151\) 21.2090i 1.72596i −0.505238 0.862980i \(-0.668595\pi\)
0.505238 0.862980i \(-0.331405\pi\)
\(152\) 0 0
\(153\) 1.00000 + 1.73205i 0.0808452 + 0.140028i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 4.62250 + 8.00640i 0.366588 + 0.634949i
\(160\) 0 0
\(161\) 18.9111i 1.49040i
\(162\) 0 0
\(163\) 9.49000 + 5.47905i 0.743314 + 0.429152i 0.823273 0.567646i \(-0.192146\pi\)
−0.0799591 + 0.996798i \(0.525479\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.37750 + 4.25940i −0.570888 + 0.329602i −0.757504 0.652831i \(-0.773581\pi\)
0.186616 + 0.982433i \(0.440248\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) −6.12250 + 3.53483i −0.468199 + 0.270315i
\(172\) 0 0
\(173\) 12.6225 21.8628i 0.959671 1.66220i 0.236373 0.971662i \(-0.424041\pi\)
0.723298 0.690536i \(-0.242625\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.33760i 0.401199i
\(178\) 0 0
\(179\) −3.24500 5.62050i −0.242543 0.420096i 0.718895 0.695118i \(-0.244648\pi\)
−0.961438 + 0.275022i \(0.911315\pi\)
\(180\) 0 0
\(181\) 13.4900 1.00270 0.501352 0.865244i \(-0.332836\pi\)
0.501352 + 0.865244i \(0.332836\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.92820i 0.506640i
\(188\) 0 0
\(189\) −3.12250 1.80278i −0.227128 0.131133i
\(190\) 0 0
\(191\) −6.24500 + 10.8167i −0.451872 + 0.782666i −0.998502 0.0547085i \(-0.982577\pi\)
0.546630 + 0.837374i \(0.315910\pi\)
\(192\) 0 0
\(193\) 7.50000 4.33013i 0.539862 0.311689i −0.205161 0.978728i \(-0.565772\pi\)
0.745023 + 0.667039i \(0.232439\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) −12.1225 + 20.9968i −0.859341 + 1.48842i 0.0132172 + 0.999913i \(0.495793\pi\)
−0.872558 + 0.488510i \(0.837541\pi\)
\(200\) 0 0
\(201\) 0.122499 + 0.0707248i 0.00864041 + 0.00498854i
\(202\) 0 0
\(203\) 26.1222i 1.83342i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −5.24500 −0.364553
\(208\) 0 0
\(209\) 24.4900 1.69401
\(210\) 0 0
\(211\) −9.24500 16.0128i −0.636452 1.10237i −0.986206 0.165525i \(-0.947068\pi\)
0.349754 0.936842i \(-0.386265\pi\)
\(212\) 0 0
\(213\) 7.21110i 0.494097i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.24500 + 10.8167i −0.423938 + 0.734282i
\(218\) 0 0
\(219\) 1.74500 1.00748i 0.117916 0.0680789i
\(220\) 0 0
\(221\) −7.00000 1.73205i −0.470871 0.116510i
\(222\) 0 0
\(223\) −21.3675 + 12.3365i −1.43087 + 0.826115i −0.997187 0.0749489i \(-0.976121\pi\)
−0.433686 + 0.901064i \(0.642787\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22.8675 13.2026i −1.51777 0.876284i −0.999782 0.0208962i \(-0.993348\pi\)
−0.517987 0.855388i \(-0.673319\pi\)
\(228\) 0 0
\(229\) 19.9013i 1.31511i 0.753406 + 0.657556i \(0.228410\pi\)
−0.753406 + 0.657556i \(0.771590\pi\)
\(230\) 0 0
\(231\) 6.24500 + 10.8167i 0.410891 + 0.711684i
\(232\) 0 0
\(233\) 2.75500 0.180486 0.0902431 0.995920i \(-0.471236\pi\)
0.0902431 + 0.995920i \(0.471236\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.12250 + 3.67628i 0.137871 + 0.238800i
\(238\) 0 0
\(239\) 16.0128i 1.03578i 0.855447 + 0.517891i \(0.173283\pi\)
−0.855447 + 0.517891i \(0.826717\pi\)
\(240\) 0 0
\(241\) −22.7450 13.1318i −1.46513 0.845896i −0.465893 0.884841i \(-0.654267\pi\)
−0.999241 + 0.0389456i \(0.987600\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.12250 24.7438i 0.389565 1.57441i
\(248\) 0 0
\(249\) −10.6225 + 6.13290i −0.673174 + 0.388657i
\(250\) 0 0
\(251\) 0.377501 0.653851i 0.0238277 0.0412707i −0.853866 0.520493i \(-0.825748\pi\)
0.877693 + 0.479223i \(0.159081\pi\)
\(252\) 0 0
\(253\) 15.7350 + 9.08460i 0.989251 + 0.571144i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.4900 18.1692i −0.654348 1.13336i −0.982057 0.188585i \(-0.939610\pi\)
0.327709 0.944779i \(-0.393723\pi\)
\(258\) 0 0
\(259\) −26.0000 −1.61556
\(260\) 0 0
\(261\) −7.24500 −0.448454
\(262\) 0 0
\(263\) 9.49000 + 16.4372i 0.585178 + 1.01356i 0.994853 + 0.101327i \(0.0323088\pi\)
−0.409675 + 0.912232i \(0.634358\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.37750 2.52735i −0.267899 0.154671i
\(268\) 0 0
\(269\) 12.0000 20.7846i 0.731653 1.26726i −0.224523 0.974469i \(-0.572083\pi\)
0.956176 0.292791i \(-0.0945841\pi\)
\(270\) 0 0
\(271\) −12.1225 + 6.99893i −0.736389 + 0.425155i −0.820755 0.571280i \(-0.806447\pi\)
0.0843657 + 0.996435i \(0.473114\pi\)
\(272\) 0 0
\(273\) 12.4900 3.60555i 0.755929 0.218218i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.25500 + 2.17373i −0.0754058 + 0.130607i −0.901263 0.433273i \(-0.857359\pi\)
0.825857 + 0.563880i \(0.190692\pi\)
\(278\) 0 0
\(279\) 3.00000 + 1.73205i 0.179605 + 0.103695i
\(280\) 0 0
\(281\) 22.6581i 1.35167i −0.737053 0.675835i \(-0.763783\pi\)
0.737053 0.675835i \(-0.236217\pi\)
\(282\) 0 0
\(283\) −12.4900 21.6333i −0.742453 1.28597i −0.951375 0.308034i \(-0.900329\pi\)
0.208922 0.977932i \(-0.433005\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26.0000 −1.53473
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 0.282899i 0.0165839i
\(292\) 0 0
\(293\) −1.86750 1.07820i −0.109100 0.0629891i 0.444457 0.895800i \(-0.353397\pi\)
−0.553557 + 0.832811i \(0.686730\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.00000 1.73205i 0.174078 0.100504i
\(298\) 0 0
\(299\) 13.1125 13.6269i 0.758315 0.788064i
\(300\) 0 0
\(301\) −25.7450 + 14.8639i −1.48392 + 0.856740i
\(302\) 0 0
\(303\) −5.62250 + 9.73845i −0.323004 + 0.559460i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.49400i 0.427705i 0.976866 + 0.213853i \(0.0686012\pi\)
−0.976866 + 0.213853i \(0.931399\pi\)
\(308\) 0 0
\(309\) 7.12250 + 12.3365i 0.405185 + 0.701801i
\(310\) 0 0
\(311\) 9.73499 0.552021 0.276010 0.961155i \(-0.410988\pi\)
0.276010 + 0.961155i \(0.410988\pi\)
\(312\) 0 0
\(313\) 7.00000 0.395663 0.197832 0.980236i \(-0.436610\pi\)
0.197832 + 0.980236i \(0.436610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.08460i 0.510242i −0.966909 0.255121i \(-0.917885\pi\)
0.966909 0.255121i \(-0.0821153\pi\)
\(318\) 0 0
\(319\) 21.7350 + 12.5487i 1.21693 + 0.702593i
\(320\) 0 0
\(321\) 1.62250 2.81025i 0.0905591 0.156853i
\(322\) 0 0
\(323\) 12.2450 7.06965i 0.681330 0.393366i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.49000 + 5.47905i −0.524798 + 0.302992i
\(328\) 0 0
\(329\) 19.2450 33.3333i 1.06101 1.83773i
\(330\) 0 0
\(331\) 12.1225 + 6.99893i 0.666313 + 0.384696i 0.794678 0.607031i \(-0.207640\pi\)
−0.128365 + 0.991727i \(0.540973\pi\)
\(332\) 0 0
\(333\) 7.21110i 0.395166i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −19.9800 −1.08838 −0.544190 0.838962i \(-0.683163\pi\)
−0.544190 + 0.838962i \(0.683163\pi\)
\(338\) 0 0
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) 0 0
\(343\) 3.60555i 0.194681i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) −1.50000 + 0.866025i −0.0802932 + 0.0463573i −0.539609 0.841916i \(-0.681428\pi\)
0.459316 + 0.888273i \(0.348095\pi\)
\(350\) 0 0
\(351\) −1.00000 3.46410i −0.0533761 0.184900i
\(352\) 0 0
\(353\) 7.62250 4.40085i 0.405705 0.234234i −0.283238 0.959050i \(-0.591409\pi\)
0.688943 + 0.724816i \(0.258075\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.24500 + 3.60555i 0.330520 + 0.190826i
\(358\) 0 0
\(359\) 8.23591i 0.434674i −0.976097 0.217337i \(-0.930263\pi\)
0.976097 0.217337i \(-0.0697371\pi\)
\(360\) 0 0
\(361\) 15.4900 + 26.8295i 0.815263 + 1.41208i
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.36750 + 2.36857i 0.0713828 + 0.123639i 0.899508 0.436905i \(-0.143925\pi\)
−0.828125 + 0.560544i \(0.810592\pi\)
\(368\) 0 0
\(369\) 7.21110i 0.375395i
\(370\) 0 0
\(371\) 28.8675 + 16.6667i 1.49873 + 0.865290i
\(372\) 0 0
\(373\) −3.50000 + 6.06218i −0.181223 + 0.313888i −0.942297 0.334777i \(-0.891339\pi\)
0.761074 + 0.648665i \(0.224672\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.1125 18.8231i 0.932841 0.969437i
\(378\) 0 0
\(379\) −9.12250 + 5.26688i −0.468591 + 0.270541i −0.715650 0.698459i \(-0.753869\pi\)
0.247059 + 0.969001i \(0.420536\pi\)
\(380\) 0 0
\(381\) −8.12250 + 14.0686i −0.416128 + 0.720755i
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.12250 + 7.14038i 0.209558 + 0.362966i
\(388\) 0 0
\(389\) −16.9800 −0.860920 −0.430460 0.902610i \(-0.641649\pi\)
−0.430460 + 0.902610i \(0.641649\pi\)
\(390\) 0 0
\(391\) 10.4900 0.530502
\(392\) 0 0
\(393\) −5.62250 9.73845i −0.283618 0.491240i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.5000 + 9.52628i 0.828111 + 0.478110i 0.853206 0.521575i \(-0.174655\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) 0 0
\(399\) −12.7450 + 22.0750i −0.638048 + 1.10513i
\(400\) 0 0
\(401\) −24.9800 + 14.4222i −1.24744 + 0.720211i −0.970598 0.240705i \(-0.922621\pi\)
−0.276843 + 0.960915i \(0.589288\pi\)
\(402\) 0 0
\(403\) −12.0000 + 3.46410i −0.597763 + 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.4900 21.6333i 0.619106 1.07232i
\(408\) 0 0
\(409\) 11.7550 + 6.78675i 0.581247 + 0.335583i 0.761629 0.648013i \(-0.224400\pi\)
−0.180382 + 0.983597i \(0.557733\pi\)
\(410\) 0 0
\(411\) 16.2957i 0.803808i
\(412\) 0 0
\(413\) 9.62250 + 16.6667i 0.473492 + 0.820113i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.244998 −0.0119976
\(418\) 0 0
\(419\) −16.8675 29.2154i −0.824031 1.42726i −0.902657 0.430360i \(-0.858387\pi\)
0.0786263 0.996904i \(-0.474947\pi\)
\(420\) 0 0
\(421\) 5.19615i 0.253245i −0.991951 0.126622i \(-0.959586\pi\)
0.991951 0.126622i \(-0.0404137\pi\)
\(422\) 0 0
\(423\) −9.24500 5.33760i −0.449507 0.259523i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.00000 + 12.1244i −0.144841 + 0.585369i
\(430\) 0 0
\(431\) 22.8675 13.2026i 1.10149 0.635945i 0.164877 0.986314i \(-0.447277\pi\)
0.936612 + 0.350369i \(0.113944\pi\)
\(432\) 0 0
\(433\) −5.24500 + 9.08460i −0.252059 + 0.436578i −0.964092 0.265567i \(-0.914441\pi\)
0.712034 + 0.702145i \(0.247774\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 37.0803i 1.77379i
\(438\) 0 0
\(439\) −13.1225 22.7288i −0.626303 1.08479i −0.988287 0.152604i \(-0.951234\pi\)
0.361985 0.932184i \(-0.382099\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 22.6581i 1.07169i
\(448\) 0 0
\(449\) 7.86750 + 4.54230i 0.371290 + 0.214364i 0.674022 0.738711i \(-0.264565\pi\)
−0.302732 + 0.953076i \(0.597899\pi\)
\(450\) 0 0
\(451\) 12.4900 21.6333i 0.588131 1.01867i
\(452\) 0 0
\(453\) −18.3675 + 10.6045i −0.862980 + 0.498242i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.01000 2.31518i 0.187580 0.108299i −0.403269 0.915081i \(-0.632126\pi\)
0.590849 + 0.806782i \(0.298793\pi\)
\(458\) 0 0
\(459\) 1.00000 1.73205i 0.0466760 0.0808452i
\(460\) 0 0
\(461\) −24.7350 14.2808i −1.15202 0.665121i −0.202644 0.979252i \(-0.564953\pi\)
−0.949380 + 0.314131i \(0.898287\pi\)
\(462\) 0 0
\(463\) 10.5338i 0.489545i −0.969581 0.244773i \(-0.921287\pi\)
0.969581 0.244773i \(-0.0787133\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.4900 0.948164 0.474082 0.880481i \(-0.342780\pi\)
0.474082 + 0.880481i \(0.342780\pi\)
\(468\) 0 0
\(469\) 0.510004 0.0235498
\(470\) 0 0
\(471\) −8.50000 14.7224i −0.391659 0.678374i
\(472\) 0 0
\(473\) 28.5615i 1.31326i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.62250 8.00640i 0.211650 0.366588i
\(478\) 0 0
\(479\) 32.1125 18.5402i 1.46726 0.847121i 0.467929 0.883766i \(-0.345000\pi\)
0.999328 + 0.0366446i \(0.0116670\pi\)
\(480\) 0 0
\(481\) −18.7350 18.0278i −0.854242 0.821995i
\(482\) 0 0
\(483\) −16.3775 + 9.45555i −0.745202 + 0.430243i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.61249 + 3.81773i 0.299641 + 0.172998i 0.642281 0.766469i \(-0.277988\pi\)
−0.342641 + 0.939467i \(0.611321\pi\)
\(488\) 0 0
\(489\) 10.9581i 0.495543i
\(490\) 0 0
\(491\) 5.75500 + 9.96796i 0.259720 + 0.449848i 0.966167 0.257918i \(-0.0830365\pi\)
−0.706447 + 0.707766i \(0.749703\pi\)
\(492\) 0 0
\(493\) 14.4900 0.652597
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.0000 + 22.5167i 0.583130 + 1.01001i
\(498\) 0 0
\(499\) 20.6432i 0.924115i 0.886850 + 0.462057i \(0.152889\pi\)
−0.886850 + 0.462057i \(0.847111\pi\)
\(500\) 0 0
\(501\) 7.37750 + 4.25940i 0.329602 + 0.190296i
\(502\) 0 0
\(503\) 1.86750 3.23460i 0.0832676 0.144224i −0.821384 0.570375i \(-0.806798\pi\)
0.904652 + 0.426152i \(0.140131\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11.5000 + 6.06218i 0.510733 + 0.269231i
\(508\) 0 0
\(509\) 9.00000 5.19615i 0.398918 0.230315i −0.287099 0.957901i \(-0.592691\pi\)
0.686017 + 0.727586i \(0.259358\pi\)
\(510\) 0 0
\(511\) 3.63250 6.29168i 0.160692 0.278328i
\(512\) 0 0
\(513\) 6.12250 + 3.53483i 0.270315 + 0.156066i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 18.4900 + 32.0256i 0.813189 + 1.40848i
\(518\) 0 0
\(519\) −25.2450 −1.10813
\(520\) 0 0
\(521\) 8.75500 0.383564 0.191782 0.981438i \(-0.438573\pi\)
0.191782 + 0.981438i \(0.438573\pi\)
\(522\) 0 0
\(523\) 9.36750 + 16.2250i 0.409612 + 0.709469i 0.994846 0.101395i \(-0.0323307\pi\)
−0.585234 + 0.810864i \(0.698997\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00000 3.46410i −0.261364 0.150899i
\(528\) 0 0
\(529\) −2.25500 + 3.90578i −0.0980436 + 0.169816i
\(530\) 0 0
\(531\) 4.62250 2.66880i 0.200599 0.115816i
\(532\) 0 0
\(533\) −18.7350 18.0278i −0.811503 0.780869i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −3.24500 + 5.62050i −0.140032 + 0.242543i
\(538\) 0 0
\(539\) 18.0000 + 10.3923i 0.775315 + 0.447628i
\(540\) 0 0
\(541\) 6.64530i 0.285704i 0.989744 + 0.142852i \(0.0456273\pi\)
−0.989744 + 0.142852i \(0.954373\pi\)
\(542\) 0 0
\(543\) −6.74500 11.6827i −0.289456 0.501352i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −22.2450 −0.951127 −0.475564 0.879681i \(-0.657756\pi\)
−0.475564 + 0.879681i \(0.657756\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 51.2196i 2.18203i
\(552\) 0 0
\(553\) 13.2550 + 7.65278i 0.563660 + 0.325429i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.9800 + 12.6902i −0.931322 + 0.537699i −0.887229 0.461328i \(-0.847373\pi\)
−0.0440927 + 0.999027i \(0.514040\pi\)
\(558\) 0 0
\(559\) −28.8575 7.14038i −1.22054 0.302006i
\(560\) 0 0
\(561\) −6.00000 + 3.46410i −0.253320 + 0.146254i
\(562\) 0 0
\(563\) 6.75500 11.7000i 0.284689 0.493096i −0.687844 0.725858i \(-0.741443\pi\)
0.972534 + 0.232762i \(0.0747762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.60555i 0.151419i
\(568\) 0 0
\(569\) −19.6225 33.9872i −0.822618 1.42482i −0.903726 0.428111i \(-0.859179\pi\)
0.0811083 0.996705i \(-0.474154\pi\)
\(570\) 0 0
\(571\) −10.7350 −0.449246 −0.224623 0.974446i \(-0.572115\pi\)
−0.224623 + 0.974446i \(0.572115\pi\)
\(572\) 0 0
\(573\) 12.4900 0.521777
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19.6184i 0.816723i −0.912820 0.408361i \(-0.866100\pi\)
0.912820 0.408361i \(-0.133900\pi\)
\(578\) 0 0
\(579\) −7.50000 4.33013i −0.311689 0.179954i
\(580\) 0 0
\(581\) −22.1125 + 38.3000i −0.917381 + 1.58895i
\(582\) 0 0
\(583\) −27.7350 + 16.0128i −1.14867 + 0.663183i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.2450 + 19.1940i −1.37217 + 0.792222i −0.991201 0.132367i \(-0.957742\pi\)
−0.380967 + 0.924589i \(0.624409\pi\)
\(588\) 0 0
\(589\) 12.2450 21.2090i 0.504546 0.873900i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.33760i 0.219189i 0.993976 + 0.109595i \(0.0349552\pi\)
−0.993976 + 0.109595i \(0.965045\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.2450 0.992282
\(598\) 0 0
\(599\) −21.7350 −0.888068 −0.444034 0.896010i \(-0.646453\pi\)
−0.444034 + 0.896010i \(0.646453\pi\)
\(600\) 0 0
\(601\) 5.50000 + 9.52628i 0.224350 + 0.388585i 0.956124 0.292962i \(-0.0946409\pi\)
−0.731774 + 0.681547i \(0.761308\pi\)
\(602\) 0 0
\(603\) 0.141450i 0.00576028i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 21.7350 37.6461i 0.882196 1.52801i 0.0333023 0.999445i \(-0.489398\pi\)
0.848894 0.528563i \(-0.177269\pi\)
\(608\) 0 0
\(609\) −22.6225 + 13.0611i −0.916710 + 0.529263i
\(610\) 0 0
\(611\) 36.9800 10.6752i 1.49605 0.431873i
\(612\) 0 0
\(613\) −22.2550 + 12.8489i −0.898871 + 0.518963i −0.876834 0.480794i \(-0.840349\pi\)
−0.0220373 + 0.999757i \(0.507015\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.3575 + 6.55725i 0.457235 + 0.263985i 0.710881 0.703312i \(-0.248296\pi\)
−0.253646 + 0.967297i \(0.581630\pi\)
\(618\) 0 0
\(619\) 38.5295i 1.54863i −0.632800 0.774315i \(-0.718095\pi\)
0.632800 0.774315i \(-0.281905\pi\)
\(620\) 0 0
\(621\) 2.62250 + 4.54230i 0.105237 + 0.182276i
\(622\) 0 0
\(623\) −18.2250 −0.730169
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −12.2450 21.2090i −0.489018 0.847004i
\(628\) 0 0
\(629\) 14.4222i 0.575051i
\(630\) 0 0
\(631\) 24.1225 + 13.9271i 0.960302 + 0.554430i 0.896266 0.443517i \(-0.146270\pi\)
0.0640357 + 0.997948i \(0.479603\pi\)
\(632\) 0 0
\(633\) −9.24500 + 16.0128i −0.367456 + 0.636452i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.0000 15.5885i 0.594322 0.617637i
\(638\) 0 0
\(639\) 6.24500 3.60555i 0.247048 0.142633i
\(640\) 0 0
\(641\) 22.1125 38.3000i 0.873391 1.51276i 0.0149242 0.999889i \(-0.495249\pi\)
0.858467 0.512869i \(-0.171417\pi\)
\(642\) 0 0
\(643\) −22.1025 12.7609i −0.871637 0.503240i −0.00374522 0.999993i \(-0.501192\pi\)
−0.867892 + 0.496753i \(0.834525\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.3775 + 21.4385i 0.486610 + 0.842833i 0.999882 0.0153933i \(-0.00490003\pi\)
−0.513272 + 0.858226i \(0.671567\pi\)
\(648\) 0 0
\(649\) −18.4900 −0.725796
\(650\) 0 0
\(651\) 12.4900 0.489522
\(652\) 0 0
\(653\) 17.2450 + 29.8692i 0.674849 + 1.16887i 0.976513 + 0.215458i \(0.0691246\pi\)
−0.301664 + 0.953414i \(0.597542\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.74500 1.00748i −0.0680789 0.0393053i
\(658\) 0 0
\(659\) −5.49000 + 9.50895i −0.213860 + 0.370416i −0.952919 0.303224i \(-0.901937\pi\)
0.739059 + 0.673640i \(0.235270\pi\)
\(660\) 0 0
\(661\) −4.01000 + 2.31518i −0.155971 + 0.0900499i −0.575954 0.817482i \(-0.695369\pi\)
0.419983 + 0.907532i \(0.362036\pi\)
\(662\) 0 0
\(663\) 2.00000 + 6.92820i 0.0776736 + 0.269069i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19.0000 + 32.9090i −0.735683 + 1.27424i
\(668\) 0 0
\(669\) 21.3675 + 12.3365i 0.826115 + 0.476958i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.50000 + 14.7224i 0.327651 + 0.567508i 0.982045 0.188645i \(-0.0604097\pi\)
−0.654394 + 0.756153i \(0.727076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.7350 −1.21967 −0.609837 0.792527i \(-0.708765\pi\)
−0.609837 + 0.792527i \(0.708765\pi\)
\(678\) 0 0
\(679\) −0.510004 0.883353i −0.0195722 0.0339000i
\(680\) 0 0
\(681\) 26.4051i 1.01185i
\(682\) 0 0
\(683\) 20.1125 + 11.6120i 0.769583 + 0.444319i 0.832726 0.553685i \(-0.186779\pi\)
−0.0631427 + 0.998005i \(0.520112\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 17.2350 9.95063i 0.657556 0.379640i
\(688\) 0 0
\(689\) 9.24500 + 32.0256i 0.352206 + 1.22008i
\(690\) 0 0
\(691\) −5.87750 + 3.39338i −0.223591 + 0.129090i −0.607612 0.794234i \(-0.707872\pi\)
0.384021 + 0.923324i \(0.374539\pi\)
\(692\) 0 0
\(693\) 6.24500 10.8167i 0.237228 0.410891i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.4222i 0.546280i
\(698\) 0 0
\(699\) −1.37750 2.38590i −0.0521019 0.0902431i
\(700\) 0 0
\(701\) 22.9800 0.867942 0.433971 0.900927i \(-0.357112\pi\)
0.433971 + 0.900927i \(0.357112\pi\)
\(702\) 0 0
\(703\) 50.9800 1.92275
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.5444i 1.52483i
\(708\) 0 0
\(709\) 13.7450 + 7.93568i 0.516204 + 0.298031i 0.735380 0.677655i \(-0.237004\pi\)
−0.219176 + 0.975685i \(0.570337\pi\)
\(710\) 0 0
\(711\) 2.12250 3.67628i 0.0795999 0.137871i
\(712\) 0 0
\(713\) 15.7350 9.08460i 0.589280 0.340221i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 13.8675 8.00640i 0.517891 0.299005i
\(718\) 0 0
\(719\) 19.3775 33.5628i 0.722659 1.25168i −0.237272 0.971443i \(-0.576253\pi\)
0.959930 0.280238i \(-0.0904135\pi\)
\(720\) 0 0
\(721\) 44.4800 + 25.6805i 1.65652 + 0.956393i
\(722\) 0 0
\(723\) 26.2637i 0.976756i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −51.2250 −1.89983 −0.949915 0.312509i \(-0.898831\pi\)
−0.949915 + 0.312509i \(0.898831\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −8.24500 14.2808i −0.304952 0.528193i
\(732\) 0 0
\(733\) 22.2338i 0.821223i 0.911810 + 0.410611i \(0.134685\pi\)
−0.911810 + 0.410611i \(0.865315\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.244998 + 0.424349i −0.00902462 + 0.0156311i
\(738\) 0 0
\(739\) −2.51000 + 1.44915i −0.0923320 + 0.0533079i −0.545455 0.838140i \(-0.683643\pi\)
0.453123 + 0.891448i \(0.350310\pi\)
\(740\) 0 0
\(741\) −24.4900 + 7.06965i −0.899662 + 0.259710i
\(742\) 0 0
\(743\) −30.2450 + 17.4620i −1.10958 + 0.640617i −0.938721 0.344678i \(-0.887988\pi\)
−0.170860 + 0.985295i \(0.554655\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10.6225 + 6.13290i 0.388657 + 0.224391i
\(748\) 0 0
\(749\) 11.7000i 0.427509i
\(750\) 0 0
\(751\) 5.75500 + 9.96796i 0.210003 + 0.363736i 0.951715 0.306982i \(-0.0993193\pi\)
−0.741712 + 0.670718i \(0.765986\pi\)
\(752\) 0 0
\(753\) −0.755002 −0.0275138
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13.5000 + 23.3827i 0.490666 + 0.849858i 0.999942 0.0107448i \(-0.00342025\pi\)
−0.509276 + 0.860603i \(0.670087\pi\)
\(758\) 0 0
\(759\) 18.1692i 0.659500i
\(760\) 0 0
\(761\) 3.00000 + 1.73205i 0.108750 + 0.0627868i 0.553388 0.832923i \(-0.313335\pi\)
−0.444639 + 0.895710i \(0.646668\pi\)
\(762\) 0 0
\(763\) −19.7550 + 34.2167i −0.715179 + 1.23873i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.62250 + 18.6816i −0.166909 + 0.674554i
\(768\) 0 0
\(769\) −1.74500 + 1.00748i −0.0629262 + 0.0363305i −0.531133 0.847288i \(-0.678234\pi\)
0.468207 + 0.883619i \(0.344900\pi\)
\(770\) 0 0
\(771\) −10.4900 + 18.1692i −0.377788 + 0.654348i
\(772\) 0 0
\(773\) 39.7350 + 22.9410i 1.42917 + 0.825131i 0.997055 0.0766886i \(-0.0244347\pi\)
0.432113 + 0.901819i \(0.357768\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 13.0000 + 22.5167i 0.466372 + 0.807781i
\(778\) 0 0
\(779\) 50.9800 1.82655
\(780\) 0 0
\(781\) −24.9800 −0.893854
\(782\) 0 0
\(783\) 3.62250 + 6.27435i 0.129458 + 0.224227i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 21.0000 + 12.1244i 0.748569 + 0.432187i 0.825177 0.564875i \(-0.191076\pi\)
−0.0766075 + 0.997061i \(0.524409\pi\)
\(788\) 0 0
\(789\) 9.49000 16.4372i 0.337853 0.585178i
\(790\) 0 0
\(791\) −37.4700 + 21.6333i −1.33228 + 0.769192i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.62250 + 13.2026i −0.270003 + 0.467659i −0.968862 0.247601i \(-0.920358\pi\)
0.698859 + 0.715259i \(0.253691\pi\)
\(798\) 0 0
\(799\) 18.4900 + 10.6752i 0.654129 + 0.377662i
\(800\) 0 0
\(801\) 5.05470i 0.178599i
\(802\) 0 0
\(803\) 3.49000 + 6.04485i 0.123159 + 0.213318i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −24.0000 −0.844840
\(808\) 0 0
\(809\) −2.13250 3.69360i −0.0749748 0.129860i 0.826101 0.563523i \(-0.190554\pi\)
−0.901075 + 0.433663i \(0.857221\pi\)
\(810\) 0 0
\(811\) 34.7825i 1.22138i 0.791871 + 0.610689i \(0.209107\pi\)
−0.791871 + 0.610689i \(0.790893\pi\)
\(812\) 0 0
\(813\) 12.1225 + 6.99893i 0.425155 + 0.245463i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 50.4800 29.1446i 1.76607 1.01964i
\(818\) 0 0
\(819\) −9.36750 9.01388i −0.327327 0.314970i
\(820\) 0 0
\(821\) 36.0925 20.8380i 1.25964 0.727251i 0.286633 0.958041i \(-0.407464\pi\)
0.973004 + 0.230789i \(0.0741307\pi\)
\(822\) 0 0
\(823\) 4.36750 7.56473i 0.152241 0.263690i −0.779810 0.626017i \(-0.784684\pi\)
0.932051 + 0.362327i \(0.118018\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.92820i 0.240917i 0.992718 + 0.120459i \(0.0384365\pi\)
−0.992718 + 0.120459i \(0.961563\pi\)
\(828\) 0 0
\(829\) −14.2550 24.6904i −0.495097 0.857533i 0.504887 0.863185i \(-0.331534\pi\)
−0.999984 + 0.00565264i \(0.998201\pi\)
\(830\) 0 0
\(831\) 2.51000 0.0870711
\(832\) 0 0
\(833\) 12.0000 0.415775
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.46410i 0.119737i
\(838\) 0 0
\(839\) 7.62250 + 4.40085i 0.263158 + 0.151934i 0.625774 0.780004i \(-0.284783\pi\)
−0.362616 + 0.931939i \(0.618116\pi\)
\(840\) 0 0
\(841\) −11.7450 + 20.3429i −0.405000 + 0.701480i
\(842\) 0 0
\(843\) −19.6225 + 11.3291i −0.675835 + 0.390193i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.12250 + 1.80278i −0.107290 + 0.0619441i
\(848\) 0 0
\(849\) −12.4900 + 21.6333i −0.428656 + 0.742453i
\(850\) 0 0
\(851\) 32.7550 + 18.9111i 1.12283 + 0.648264i
\(852\) 0 0
\(853\) 38.6709i 1.32407i 0.749474 + 0.662033i \(0.230306\pi\)
−0.749474 + 0.662033i \(0.769694\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.4900 1.38311 0.691556 0.722323i \(-0.256926\pi\)
0.691556 + 0.722323i \(0.256926\pi\)
\(858\) 0 0
\(859\) 14.7350 0.502752 0.251376 0.967890i \(-0.419117\pi\)
0.251376 + 0.967890i \(0.419117\pi\)
\(860\) 0 0
\(861\) 13.0000 + 22.5167i 0.443039 + 0.767366i
\(862\) 0 0
\(863\) 38.9538i 1.32600i 0.748618 + 0.663002i \(0.230718\pi\)
−0.748618 + 0.663002i \(0.769282\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.50000 11.2583i 0.220752 0.382353i
\(868\) 0 0
\(869\) −12.7350 + 7.35255i −0.432005 + 0.249418i
\(870\) 0 0
\(871\) 0.367497 + 0.353624i 0.0124522 + 0.0119821i
\(872\) 0 0
\(873\) −0.244998 + 0.141450i −0.00829193 + 0.00478735i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −26.4800 15.2882i −0.894166 0.516247i −0.0188630 0.999822i \(-0.506005\pi\)
−0.875303 + 0.483575i \(0.839338\pi\)
\(878\) 0 0
\(879\) 2.15640i 0.0727336i
\(880\) 0 0
\(881\) −23.7350 41.1102i −0.799652 1.38504i −0.919843 0.392287i \(-0.871684\pi\)
0.120190 0.992751i \(-0.461649\pi\)
\(882\) 0 0
\(883\) 4.49000 0.151100 0.0755502 0.997142i \(-0.475929\pi\)
0.0755502 + 0.997142i \(0.475929\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.6225 + 20.1308i 0.390245 + 0.675925i 0.992482 0.122393i \(-0.0390569\pi\)
−0.602236 + 0.798318i \(0.705724\pi\)
\(888\) 0 0
\(889\) 58.5722i 1.96445i
\(890\) 0 0
\(891\) −3.00000 1.73205i −0.100504 0.0580259i
\(892\) 0 0
\(893\) −37.7350 + 65.3589i −1.26275 + 2.18715i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −18.3575 4.54230i −0.612939 0.151663i
\(898\) 0 0
\(899\) 21.7350 12.5487i 0.724903 0.418523i
\(900\) 0 0
\(901\) −9.24500 + 16.0128i −0.307996 + 0.533464i
\(902\) 0 0
\(903\) 25.7450 + 14.8639i 0.856740 + 0.494639i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.24500 3.88845i −0.0745439 0.129114i 0.826344 0.563166i \(-0.190417\pi\)
−0.900888 + 0.434052i \(0.857083\pi\)
\(908\) 0 0
\(909\) 11.2450 0.372973
\(910\) 0 0
\(911\) 14.7550 0.488855 0.244428 0.969668i \(-0.421400\pi\)
0.244428 + 0.969668i \(0.421400\pi\)
\(912\) 0 0
\(913\) −21.2450 36.7974i −0.703107 1.21782i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −35.1125 20.2722i −1.15952 0.669447i
\(918\) 0 0
\(919\) −7.87750 + 13.6442i −0.259855 + 0.450082i −0.966203 0.257783i \(-0.917008\pi\)
0.706348 + 0.707865i \(0.250341\pi\)
\(920\) 0 0
\(921\) 6.49000 3.74700i 0.213853 0.123468i
\(922\) 0 0
\(923\) −6.24500 + 25.2389i −0.205557 + 0.830747i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.12250 12.3365i 0.233934 0.405185i
\(928\) 0 0
\(929\) −3.97999 2.29785i −0.130579 0.0753900i 0.433287 0.901256i \(-0.357354\pi\)
−0.563867 + 0.825866i \(0.690687\pi\)
\(930\) 0 0
\(931\) 42.4179i 1.39019i
\(932\) 0 0
\(933\) −4.86750 8.43075i −0.159355 0.276010i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 59.4900 1.94345 0.971727 0.236108i \(-0.0758720\pi\)
0.971727 + 0.236108i \(0.0758720\pi\)
\(938\) 0 0
\(939\) −3.50000 6.06218i −0.114218 0.197832i
\(940\) 0 0
\(941\) 36.7974i 1.19956i −0.800164 0.599781i \(-0.795254\pi\)
0.800164 0.599781i \(-0.204746\pi\)
\(942\) 0 0
\(943\) 32.7550 + 18.9111i 1.06665 + 0.615830i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.7350 + 7.35255i −0.413832 + 0.238926i −0.692435 0.721480i \(-0.743462\pi\)
0.278603 + 0.960406i \(0.410129\pi\)
\(948\) 0 0
\(949\) 6.97999 2.01495i 0.226580 0.0654080i
\(950\) 0 0
\(951\) −7.86750 + 4.54230i −0.255121 + 0.147294i
\(952\) 0 0
\(953\) 13.7550 23.8244i 0.445568 0.771747i −0.552523 0.833497i \(-0.686335\pi\)
0.998092 + 0.0617506i \(0.0196683\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 25.0974i 0.811284i
\(958\) 0 0
\(959\) −29.3775 50.8833i −0.948649 1.64311i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) −3.24500 −0.104569
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.565799i 0.0181949i 0.999959 + 0.00909743i \(0.00289584\pi\)
−0.999959 + 0.00909743i \(0.997104\pi\)
\(968\) 0 0
\(969\) −12.2450 7.06965i −0.393366 0.227110i
\(970\) 0 0
\(971\) 4.11249 7.12305i 0.131976 0.228590i −0.792462 0.609921i \(-0.791201\pi\)
0.924438 + 0.381332i \(0.124534\pi\)
\(972\) 0 0
\(973\) −0.765006 + 0.441676i −0.0245250 + 0.0141595i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.2250 12.8316i 0.711040 0.410519i −0.100406 0.994947i \(-0.532014\pi\)
0.811446 + 0.584427i \(0.198681\pi\)
\(978\) 0 0
\(979\) 8.75500 15.1641i 0.279811 0.484647i
\(980\) 0 0
\(981\) 9.49000 + 5.47905i 0.302992 + 0.174933i
\(982\) 0 0
\(983\) 44.8572i 1.43072i −0.698755 0.715362i \(-0.746262\pi\)
0.698755 0.715362i \(-0.253738\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −38.4900 −1.22515
\(988\) 0 0
\(989\) 43.2450 1.37511
\(990\) 0 0
\(991\) 15.6125 + 27.0416i 0.495947 + 0.859006i 0.999989 0.00467341i \(-0.00148760\pi\)
−0.504042 + 0.863679i \(0.668154\pi\)
\(992\) 0 0
\(993\) 13.9979i 0.444209i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.50000 2.59808i 0.0475055 0.0822819i −0.841295 0.540576i \(-0.818206\pi\)
0.888800 + 0.458295i \(0.151540\pi\)
\(998\) 0 0
\(999\) 6.24500 3.60555i 0.197583 0.114075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.cd.f.2701.1 yes 4
5.2 odd 4 3900.2.bw.i.49.2 8
5.3 odd 4 3900.2.bw.i.49.3 8
5.4 even 2 3900.2.cd.h.2701.2 yes 4
13.4 even 6 inner 3900.2.cd.f.901.1 4
65.4 even 6 3900.2.cd.h.901.2 yes 4
65.17 odd 12 3900.2.bw.i.2149.3 8
65.43 odd 12 3900.2.bw.i.2149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3900.2.bw.i.49.2 8 5.2 odd 4
3900.2.bw.i.49.3 8 5.3 odd 4
3900.2.bw.i.2149.2 8 65.43 odd 12
3900.2.bw.i.2149.3 8 65.17 odd 12
3900.2.cd.f.901.1 4 13.4 even 6 inner
3900.2.cd.f.2701.1 yes 4 1.1 even 1 trivial
3900.2.cd.h.901.2 yes 4 65.4 even 6
3900.2.cd.h.2701.2 yes 4 5.4 even 2