Properties

Label 3900.2.a.t.1.1
Level $3900$
Weight $2$
Character 3900.1
Self dual yes
Analytic conductor $31.142$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(1,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,0,0,4,0,2,0,4,0,-2,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 3900.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.00000 q^{7} +1.00000 q^{9} -0.449490 q^{11} -1.00000 q^{13} +2.00000 q^{17} +6.89898 q^{19} +2.00000 q^{21} -4.89898 q^{23} +1.00000 q^{27} -2.00000 q^{29} -2.89898 q^{31} -0.449490 q^{33} +10.8990 q^{37} -1.00000 q^{39} +3.55051 q^{41} +7.79796 q^{43} +5.34847 q^{47} -3.00000 q^{49} +2.00000 q^{51} -2.89898 q^{53} +6.89898 q^{57} -4.44949 q^{59} +4.00000 q^{61} +2.00000 q^{63} -7.79796 q^{67} -4.89898 q^{69} +14.2474 q^{71} -7.79796 q^{73} -0.898979 q^{77} +10.0000 q^{79} +1.00000 q^{81} -8.44949 q^{83} -2.00000 q^{87} +1.34847 q^{89} -2.00000 q^{91} -2.89898 q^{93} +6.00000 q^{97} -0.449490 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 4 q^{7} + 2 q^{9} + 4 q^{11} - 2 q^{13} + 4 q^{17} + 4 q^{19} + 4 q^{21} + 2 q^{27} - 4 q^{29} + 4 q^{31} + 4 q^{33} + 12 q^{37} - 2 q^{39} + 12 q^{41} - 4 q^{43} - 4 q^{47} - 6 q^{49} + 4 q^{51}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.449490 −0.135526 −0.0677631 0.997701i \(-0.521586\pi\)
−0.0677631 + 0.997701i \(0.521586\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 6.89898 1.58273 0.791367 0.611341i \(-0.209370\pi\)
0.791367 + 0.611341i \(0.209370\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −4.89898 −1.02151 −0.510754 0.859727i \(-0.670634\pi\)
−0.510754 + 0.859727i \(0.670634\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −2.89898 −0.520672 −0.260336 0.965518i \(-0.583833\pi\)
−0.260336 + 0.965518i \(0.583833\pi\)
\(32\) 0 0
\(33\) −0.449490 −0.0782461
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.8990 1.79178 0.895891 0.444275i \(-0.146539\pi\)
0.895891 + 0.444275i \(0.146539\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 3.55051 0.554497 0.277248 0.960798i \(-0.410578\pi\)
0.277248 + 0.960798i \(0.410578\pi\)
\(42\) 0 0
\(43\) 7.79796 1.18918 0.594589 0.804030i \(-0.297315\pi\)
0.594589 + 0.804030i \(0.297315\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.34847 0.780154 0.390077 0.920782i \(-0.372448\pi\)
0.390077 + 0.920782i \(0.372448\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −2.89898 −0.398205 −0.199103 0.979979i \(-0.563803\pi\)
−0.199103 + 0.979979i \(0.563803\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.89898 0.913792
\(58\) 0 0
\(59\) −4.44949 −0.579274 −0.289637 0.957137i \(-0.593535\pi\)
−0.289637 + 0.957137i \(0.593535\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.79796 −0.952672 −0.476336 0.879263i \(-0.658035\pi\)
−0.476336 + 0.879263i \(0.658035\pi\)
\(68\) 0 0
\(69\) −4.89898 −0.589768
\(70\) 0 0
\(71\) 14.2474 1.69086 0.845431 0.534085i \(-0.179344\pi\)
0.845431 + 0.534085i \(0.179344\pi\)
\(72\) 0 0
\(73\) −7.79796 −0.912682 −0.456341 0.889805i \(-0.650840\pi\)
−0.456341 + 0.889805i \(0.650840\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.898979 −0.102448
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.44949 −0.927452 −0.463726 0.885979i \(-0.653488\pi\)
−0.463726 + 0.885979i \(0.653488\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) 1.34847 0.142937 0.0714687 0.997443i \(-0.477231\pi\)
0.0714687 + 0.997443i \(0.477231\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −2.89898 −0.300610
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) −0.449490 −0.0451754
\(100\) 0 0
\(101\) 14.8990 1.48250 0.741252 0.671227i \(-0.234232\pi\)
0.741252 + 0.671227i \(0.234232\pi\)
\(102\) 0 0
\(103\) 3.79796 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.7980 −1.33390 −0.666950 0.745103i \(-0.732400\pi\)
−0.666950 + 0.745103i \(0.732400\pi\)
\(108\) 0 0
\(109\) 10.8990 1.04393 0.521966 0.852966i \(-0.325199\pi\)
0.521966 + 0.852966i \(0.325199\pi\)
\(110\) 0 0
\(111\) 10.8990 1.03449
\(112\) 0 0
\(113\) 8.69694 0.818139 0.409070 0.912503i \(-0.365853\pi\)
0.409070 + 0.912503i \(0.365853\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −10.7980 −0.981633
\(122\) 0 0
\(123\) 3.55051 0.320139
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 7.79796 0.686572
\(130\) 0 0
\(131\) −4.89898 −0.428026 −0.214013 0.976831i \(-0.568653\pi\)
−0.214013 + 0.976831i \(0.568653\pi\)
\(132\) 0 0
\(133\) 13.7980 1.19643
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.2474 0.875499 0.437749 0.899097i \(-0.355776\pi\)
0.437749 + 0.899097i \(0.355776\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 5.34847 0.450422
\(142\) 0 0
\(143\) 0.449490 0.0375882
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) −6.24745 −0.511811 −0.255905 0.966702i \(-0.582374\pi\)
−0.255905 + 0.966702i \(0.582374\pi\)
\(150\) 0 0
\(151\) 18.8990 1.53798 0.768989 0.639263i \(-0.220760\pi\)
0.768989 + 0.639263i \(0.220760\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.79796 −0.462728 −0.231364 0.972867i \(-0.574319\pi\)
−0.231364 + 0.972867i \(0.574319\pi\)
\(158\) 0 0
\(159\) −2.89898 −0.229904
\(160\) 0 0
\(161\) −9.79796 −0.772187
\(162\) 0 0
\(163\) −6.89898 −0.540370 −0.270185 0.962808i \(-0.587085\pi\)
−0.270185 + 0.962808i \(0.587085\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.55051 −0.274747 −0.137373 0.990519i \(-0.543866\pi\)
−0.137373 + 0.990519i \(0.543866\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 6.89898 0.527578
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.44949 −0.334444
\(178\) 0 0
\(179\) −19.5959 −1.46467 −0.732334 0.680946i \(-0.761569\pi\)
−0.732334 + 0.680946i \(0.761569\pi\)
\(180\) 0 0
\(181\) −3.79796 −0.282300 −0.141150 0.989988i \(-0.545080\pi\)
−0.141150 + 0.989988i \(0.545080\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.898979 −0.0657399
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 16.8990 1.22277 0.611384 0.791334i \(-0.290613\pi\)
0.611384 + 0.791334i \(0.290613\pi\)
\(192\) 0 0
\(193\) 1.10102 0.0792532 0.0396266 0.999215i \(-0.487383\pi\)
0.0396266 + 0.999215i \(0.487383\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.5505 −0.822940 −0.411470 0.911423i \(-0.634984\pi\)
−0.411470 + 0.911423i \(0.634984\pi\)
\(198\) 0 0
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) −7.79796 −0.550026
\(202\) 0 0
\(203\) −4.00000 −0.280745
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.89898 −0.340503
\(208\) 0 0
\(209\) −3.10102 −0.214502
\(210\) 0 0
\(211\) 11.7980 0.812205 0.406102 0.913828i \(-0.366888\pi\)
0.406102 + 0.913828i \(0.366888\pi\)
\(212\) 0 0
\(213\) 14.2474 0.976219
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.79796 −0.393591
\(218\) 0 0
\(219\) −7.79796 −0.526937
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 14.8990 0.997709 0.498855 0.866686i \(-0.333754\pi\)
0.498855 + 0.866686i \(0.333754\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.4495 −1.35728 −0.678640 0.734471i \(-0.737430\pi\)
−0.678640 + 0.734471i \(0.737430\pi\)
\(228\) 0 0
\(229\) −24.6969 −1.63202 −0.816010 0.578038i \(-0.803819\pi\)
−0.816010 + 0.578038i \(0.803819\pi\)
\(230\) 0 0
\(231\) −0.898979 −0.0591485
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) 20.4495 1.32277 0.661384 0.750048i \(-0.269969\pi\)
0.661384 + 0.750048i \(0.269969\pi\)
\(240\) 0 0
\(241\) 10.8990 0.702065 0.351032 0.936363i \(-0.385831\pi\)
0.351032 + 0.936363i \(0.385831\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.89898 −0.438972
\(248\) 0 0
\(249\) −8.44949 −0.535465
\(250\) 0 0
\(251\) 19.5959 1.23688 0.618442 0.785831i \(-0.287764\pi\)
0.618442 + 0.785831i \(0.287764\pi\)
\(252\) 0 0
\(253\) 2.20204 0.138441
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.79796 0.236910 0.118455 0.992959i \(-0.462206\pi\)
0.118455 + 0.992959i \(0.462206\pi\)
\(258\) 0 0
\(259\) 21.7980 1.35446
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) −17.7980 −1.09747 −0.548735 0.835997i \(-0.684890\pi\)
−0.548735 + 0.835997i \(0.684890\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.34847 0.0825250
\(268\) 0 0
\(269\) 31.7980 1.93876 0.969378 0.245574i \(-0.0789764\pi\)
0.969378 + 0.245574i \(0.0789764\pi\)
\(270\) 0 0
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 13.7980 0.829039 0.414520 0.910040i \(-0.363950\pi\)
0.414520 + 0.910040i \(0.363950\pi\)
\(278\) 0 0
\(279\) −2.89898 −0.173557
\(280\) 0 0
\(281\) 30.2474 1.80441 0.902206 0.431306i \(-0.141947\pi\)
0.902206 + 0.431306i \(0.141947\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.10102 0.419160
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) −7.55051 −0.441106 −0.220553 0.975375i \(-0.570786\pi\)
−0.220553 + 0.975375i \(0.570786\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.449490 −0.0260820
\(298\) 0 0
\(299\) 4.89898 0.283315
\(300\) 0 0
\(301\) 15.5959 0.898934
\(302\) 0 0
\(303\) 14.8990 0.855924
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.59592 0.547668 0.273834 0.961777i \(-0.411708\pi\)
0.273834 + 0.961777i \(0.411708\pi\)
\(308\) 0 0
\(309\) 3.79796 0.216058
\(310\) 0 0
\(311\) −23.5959 −1.33800 −0.669001 0.743262i \(-0.733278\pi\)
−0.669001 + 0.743262i \(0.733278\pi\)
\(312\) 0 0
\(313\) 12.2020 0.689700 0.344850 0.938658i \(-0.387930\pi\)
0.344850 + 0.938658i \(0.387930\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.1464 −1.30003 −0.650016 0.759920i \(-0.725238\pi\)
−0.650016 + 0.759920i \(0.725238\pi\)
\(318\) 0 0
\(319\) 0.898979 0.0503332
\(320\) 0 0
\(321\) −13.7980 −0.770127
\(322\) 0 0
\(323\) 13.7980 0.767739
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.8990 0.602715
\(328\) 0 0
\(329\) 10.6969 0.589741
\(330\) 0 0
\(331\) −25.5959 −1.40688 −0.703439 0.710755i \(-0.748353\pi\)
−0.703439 + 0.710755i \(0.748353\pi\)
\(332\) 0 0
\(333\) 10.8990 0.597260
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 8.69694 0.472353
\(340\) 0 0
\(341\) 1.30306 0.0705647
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −12.2020 −0.653160 −0.326580 0.945170i \(-0.605896\pi\)
−0.326580 + 0.945170i \(0.605896\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −36.9444 −1.96635 −0.983176 0.182663i \(-0.941528\pi\)
−0.983176 + 0.182663i \(0.941528\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 9.34847 0.493393 0.246697 0.969093i \(-0.420655\pi\)
0.246697 + 0.969093i \(0.420655\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) 0 0
\(363\) −10.7980 −0.566746
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.7980 0.615848 0.307924 0.951411i \(-0.400366\pi\)
0.307924 + 0.951411i \(0.400366\pi\)
\(368\) 0 0
\(369\) 3.55051 0.184832
\(370\) 0 0
\(371\) −5.79796 −0.301015
\(372\) 0 0
\(373\) 23.7980 1.23221 0.616106 0.787663i \(-0.288709\pi\)
0.616106 + 0.787663i \(0.288709\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −0.696938 −0.0357993 −0.0178997 0.999840i \(-0.505698\pi\)
−0.0178997 + 0.999840i \(0.505698\pi\)
\(380\) 0 0
\(381\) −12.0000 −0.614779
\(382\) 0 0
\(383\) −27.5505 −1.40777 −0.703883 0.710316i \(-0.748552\pi\)
−0.703883 + 0.710316i \(0.748552\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.79796 0.396393
\(388\) 0 0
\(389\) −6.89898 −0.349792 −0.174896 0.984587i \(-0.555959\pi\)
−0.174896 + 0.984587i \(0.555959\pi\)
\(390\) 0 0
\(391\) −9.79796 −0.495504
\(392\) 0 0
\(393\) −4.89898 −0.247121
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.10102 −0.0552586 −0.0276293 0.999618i \(-0.508796\pi\)
−0.0276293 + 0.999618i \(0.508796\pi\)
\(398\) 0 0
\(399\) 13.7980 0.690762
\(400\) 0 0
\(401\) −35.1464 −1.75513 −0.877564 0.479459i \(-0.840833\pi\)
−0.877564 + 0.479459i \(0.840833\pi\)
\(402\) 0 0
\(403\) 2.89898 0.144408
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.89898 −0.242833
\(408\) 0 0
\(409\) −21.1010 −1.04338 −0.521689 0.853136i \(-0.674698\pi\)
−0.521689 + 0.853136i \(0.674698\pi\)
\(410\) 0 0
\(411\) 10.2474 0.505469
\(412\) 0 0
\(413\) −8.89898 −0.437890
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.0000 0.783523
\(418\) 0 0
\(419\) 18.6969 0.913405 0.456703 0.889619i \(-0.349030\pi\)
0.456703 + 0.889619i \(0.349030\pi\)
\(420\) 0 0
\(421\) 0.696938 0.0339667 0.0169834 0.999856i \(-0.494594\pi\)
0.0169834 + 0.999856i \(0.494594\pi\)
\(422\) 0 0
\(423\) 5.34847 0.260051
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 0 0
\(429\) 0.449490 0.0217016
\(430\) 0 0
\(431\) −19.1464 −0.922251 −0.461125 0.887335i \(-0.652554\pi\)
−0.461125 + 0.887335i \(0.652554\pi\)
\(432\) 0 0
\(433\) −37.5959 −1.80674 −0.903372 0.428857i \(-0.858916\pi\)
−0.903372 + 0.428857i \(0.858916\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −33.7980 −1.61678
\(438\) 0 0
\(439\) −35.5959 −1.69890 −0.849450 0.527669i \(-0.823066\pi\)
−0.849450 + 0.527669i \(0.823066\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 11.5959 0.550939 0.275469 0.961310i \(-0.411167\pi\)
0.275469 + 0.961310i \(0.411167\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.24745 −0.295494
\(448\) 0 0
\(449\) −35.1464 −1.65866 −0.829331 0.558757i \(-0.811278\pi\)
−0.829331 + 0.558757i \(0.811278\pi\)
\(450\) 0 0
\(451\) −1.59592 −0.0751488
\(452\) 0 0
\(453\) 18.8990 0.887952
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.3939 0.907207 0.453604 0.891204i \(-0.350138\pi\)
0.453604 + 0.891204i \(0.350138\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 19.1464 0.891738 0.445869 0.895098i \(-0.352895\pi\)
0.445869 + 0.895098i \(0.352895\pi\)
\(462\) 0 0
\(463\) −25.5959 −1.18954 −0.594772 0.803895i \(-0.702758\pi\)
−0.594772 + 0.803895i \(0.702758\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.89898 0.411796 0.205898 0.978573i \(-0.433989\pi\)
0.205898 + 0.978573i \(0.433989\pi\)
\(468\) 0 0
\(469\) −15.5959 −0.720153
\(470\) 0 0
\(471\) −5.79796 −0.267156
\(472\) 0 0
\(473\) −3.50510 −0.161165
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.89898 −0.132735
\(478\) 0 0
\(479\) 0.853572 0.0390007 0.0195003 0.999810i \(-0.493792\pi\)
0.0195003 + 0.999810i \(0.493792\pi\)
\(480\) 0 0
\(481\) −10.8990 −0.496951
\(482\) 0 0
\(483\) −9.79796 −0.445823
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.10102 0.231149 0.115575 0.993299i \(-0.463129\pi\)
0.115575 + 0.993299i \(0.463129\pi\)
\(488\) 0 0
\(489\) −6.89898 −0.311983
\(490\) 0 0
\(491\) 37.3939 1.68756 0.843781 0.536688i \(-0.180325\pi\)
0.843781 + 0.536688i \(0.180325\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.4949 1.27817
\(498\) 0 0
\(499\) 23.3939 1.04725 0.523627 0.851948i \(-0.324579\pi\)
0.523627 + 0.851948i \(0.324579\pi\)
\(500\) 0 0
\(501\) −3.55051 −0.158625
\(502\) 0 0
\(503\) −19.5959 −0.873739 −0.436869 0.899525i \(-0.643913\pi\)
−0.436869 + 0.899525i \(0.643913\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) 9.34847 0.414364 0.207182 0.978302i \(-0.433571\pi\)
0.207182 + 0.978302i \(0.433571\pi\)
\(510\) 0 0
\(511\) −15.5959 −0.689923
\(512\) 0 0
\(513\) 6.89898 0.304597
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −2.40408 −0.105731
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 0.202041 0.00883464 0.00441732 0.999990i \(-0.498594\pi\)
0.00441732 + 0.999990i \(0.498594\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.79796 −0.252563
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −4.44949 −0.193091
\(532\) 0 0
\(533\) −3.55051 −0.153790
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −19.5959 −0.845626
\(538\) 0 0
\(539\) 1.34847 0.0580827
\(540\) 0 0
\(541\) 29.1010 1.25115 0.625575 0.780164i \(-0.284864\pi\)
0.625575 + 0.780164i \(0.284864\pi\)
\(542\) 0 0
\(543\) −3.79796 −0.162986
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.40408 0.102791 0.0513956 0.998678i \(-0.483633\pi\)
0.0513956 + 0.998678i \(0.483633\pi\)
\(548\) 0 0
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) −13.7980 −0.587813
\(552\) 0 0
\(553\) 20.0000 0.850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.9444 −1.22641 −0.613207 0.789923i \(-0.710121\pi\)
−0.613207 + 0.789923i \(0.710121\pi\)
\(558\) 0 0
\(559\) −7.79796 −0.329819
\(560\) 0 0
\(561\) −0.898979 −0.0379549
\(562\) 0 0
\(563\) −3.10102 −0.130692 −0.0653462 0.997863i \(-0.520815\pi\)
−0.0653462 + 0.997863i \(0.520815\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) −13.1010 −0.549223 −0.274612 0.961555i \(-0.588549\pi\)
−0.274612 + 0.961555i \(0.588549\pi\)
\(570\) 0 0
\(571\) 1.59592 0.0667871 0.0333935 0.999442i \(-0.489369\pi\)
0.0333935 + 0.999442i \(0.489369\pi\)
\(572\) 0 0
\(573\) 16.8990 0.705965
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −28.6969 −1.19467 −0.597335 0.801992i \(-0.703774\pi\)
−0.597335 + 0.801992i \(0.703774\pi\)
\(578\) 0 0
\(579\) 1.10102 0.0457569
\(580\) 0 0
\(581\) −16.8990 −0.701088
\(582\) 0 0
\(583\) 1.30306 0.0539673
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.2474 0.753153 0.376576 0.926386i \(-0.377101\pi\)
0.376576 + 0.926386i \(0.377101\pi\)
\(588\) 0 0
\(589\) −20.0000 −0.824086
\(590\) 0 0
\(591\) −11.5505 −0.475125
\(592\) 0 0
\(593\) −21.3485 −0.876677 −0.438338 0.898810i \(-0.644433\pi\)
−0.438338 + 0.898810i \(0.644433\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000 0.245564
\(598\) 0 0
\(599\) 22.6969 0.927372 0.463686 0.886000i \(-0.346527\pi\)
0.463686 + 0.886000i \(0.346527\pi\)
\(600\) 0 0
\(601\) −6.20204 −0.252987 −0.126493 0.991967i \(-0.540372\pi\)
−0.126493 + 0.991967i \(0.540372\pi\)
\(602\) 0 0
\(603\) −7.79796 −0.317557
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.5959 1.03891 0.519453 0.854499i \(-0.326136\pi\)
0.519453 + 0.854499i \(0.326136\pi\)
\(608\) 0 0
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) −5.34847 −0.216376
\(612\) 0 0
\(613\) 46.4949 1.87791 0.938956 0.344038i \(-0.111795\pi\)
0.938956 + 0.344038i \(0.111795\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.4495 −0.662232 −0.331116 0.943590i \(-0.607425\pi\)
−0.331116 + 0.943590i \(0.607425\pi\)
\(618\) 0 0
\(619\) −1.59592 −0.0641454 −0.0320727 0.999486i \(-0.510211\pi\)
−0.0320727 + 0.999486i \(0.510211\pi\)
\(620\) 0 0
\(621\) −4.89898 −0.196589
\(622\) 0 0
\(623\) 2.69694 0.108051
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3.10102 −0.123843
\(628\) 0 0
\(629\) 21.7980 0.869142
\(630\) 0 0
\(631\) 20.2929 0.807846 0.403923 0.914793i \(-0.367646\pi\)
0.403923 + 0.914793i \(0.367646\pi\)
\(632\) 0 0
\(633\) 11.7980 0.468927
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) 14.2474 0.563620
\(640\) 0 0
\(641\) −33.1010 −1.30741 −0.653706 0.756749i \(-0.726787\pi\)
−0.653706 + 0.756749i \(0.726787\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.4949 1.90653 0.953266 0.302134i \(-0.0976989\pi\)
0.953266 + 0.302134i \(0.0976989\pi\)
\(648\) 0 0
\(649\) 2.00000 0.0785069
\(650\) 0 0
\(651\) −5.79796 −0.227240
\(652\) 0 0
\(653\) 2.49490 0.0976329 0.0488164 0.998808i \(-0.484455\pi\)
0.0488164 + 0.998808i \(0.484455\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −7.79796 −0.304227
\(658\) 0 0
\(659\) −10.6969 −0.416694 −0.208347 0.978055i \(-0.566808\pi\)
−0.208347 + 0.978055i \(0.566808\pi\)
\(660\) 0 0
\(661\) −15.7980 −0.614469 −0.307235 0.951634i \(-0.599404\pi\)
−0.307235 + 0.951634i \(0.599404\pi\)
\(662\) 0 0
\(663\) −2.00000 −0.0776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.79796 0.379378
\(668\) 0 0
\(669\) 14.8990 0.576028
\(670\) 0 0
\(671\) −1.79796 −0.0694094
\(672\) 0 0
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.3031 −0.741877 −0.370938 0.928657i \(-0.620964\pi\)
−0.370938 + 0.928657i \(0.620964\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) −20.4495 −0.783626
\(682\) 0 0
\(683\) 0.853572 0.0326610 0.0163305 0.999867i \(-0.494802\pi\)
0.0163305 + 0.999867i \(0.494802\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −24.6969 −0.942247
\(688\) 0 0
\(689\) 2.89898 0.110442
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 0 0
\(693\) −0.898979 −0.0341494
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 7.10102 0.268970
\(698\) 0 0
\(699\) −26.0000 −0.983410
\(700\) 0 0
\(701\) −34.8990 −1.31812 −0.659058 0.752092i \(-0.729045\pi\)
−0.659058 + 0.752092i \(0.729045\pi\)
\(702\) 0 0
\(703\) 75.1918 2.83591
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.7980 1.12067
\(708\) 0 0
\(709\) −14.4949 −0.544367 −0.272184 0.962245i \(-0.587746\pi\)
−0.272184 + 0.962245i \(0.587746\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) 14.2020 0.531871
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.4495 0.763700
\(718\) 0 0
\(719\) −9.79796 −0.365402 −0.182701 0.983169i \(-0.558484\pi\)
−0.182701 + 0.983169i \(0.558484\pi\)
\(720\) 0 0
\(721\) 7.59592 0.282887
\(722\) 0 0
\(723\) 10.8990 0.405337
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −25.3939 −0.941807 −0.470903 0.882185i \(-0.656072\pi\)
−0.470903 + 0.882185i \(0.656072\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 15.5959 0.576836
\(732\) 0 0
\(733\) 11.7980 0.435768 0.217884 0.975975i \(-0.430085\pi\)
0.217884 + 0.975975i \(0.430085\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.50510 0.129112
\(738\) 0 0
\(739\) 15.3939 0.566273 0.283136 0.959080i \(-0.408625\pi\)
0.283136 + 0.959080i \(0.408625\pi\)
\(740\) 0 0
\(741\) −6.89898 −0.253440
\(742\) 0 0
\(743\) −6.65153 −0.244021 −0.122010 0.992529i \(-0.538934\pi\)
−0.122010 + 0.992529i \(0.538934\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.44949 −0.309151
\(748\) 0 0
\(749\) −27.5959 −1.00833
\(750\) 0 0
\(751\) −4.40408 −0.160707 −0.0803536 0.996766i \(-0.525605\pi\)
−0.0803536 + 0.996766i \(0.525605\pi\)
\(752\) 0 0
\(753\) 19.5959 0.714115
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −53.1918 −1.93329 −0.966645 0.256120i \(-0.917556\pi\)
−0.966645 + 0.256120i \(0.917556\pi\)
\(758\) 0 0
\(759\) 2.20204 0.0799290
\(760\) 0 0
\(761\) −43.5505 −1.57870 −0.789352 0.613940i \(-0.789584\pi\)
−0.789352 + 0.613940i \(0.789584\pi\)
\(762\) 0 0
\(763\) 21.7980 0.789139
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.44949 0.160662
\(768\) 0 0
\(769\) −39.3939 −1.42058 −0.710290 0.703909i \(-0.751436\pi\)
−0.710290 + 0.703909i \(0.751436\pi\)
\(770\) 0 0
\(771\) 3.79796 0.136780
\(772\) 0 0
\(773\) −26.2474 −0.944055 −0.472028 0.881584i \(-0.656478\pi\)
−0.472028 + 0.881584i \(0.656478\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 21.7980 0.781997
\(778\) 0 0
\(779\) 24.4949 0.877621
\(780\) 0 0
\(781\) −6.40408 −0.229156
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16.2020 −0.577540 −0.288770 0.957398i \(-0.593246\pi\)
−0.288770 + 0.957398i \(0.593246\pi\)
\(788\) 0 0
\(789\) −17.7980 −0.633624
\(790\) 0 0
\(791\) 17.3939 0.618455
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −27.3939 −0.970341 −0.485170 0.874420i \(-0.661242\pi\)
−0.485170 + 0.874420i \(0.661242\pi\)
\(798\) 0 0
\(799\) 10.6969 0.378430
\(800\) 0 0
\(801\) 1.34847 0.0476458
\(802\) 0 0
\(803\) 3.50510 0.123692
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 31.7980 1.11934
\(808\) 0 0
\(809\) −53.5959 −1.88433 −0.942166 0.335146i \(-0.891214\pi\)
−0.942166 + 0.335146i \(0.891214\pi\)
\(810\) 0 0
\(811\) −16.6969 −0.586309 −0.293154 0.956065i \(-0.594705\pi\)
−0.293154 + 0.956065i \(0.594705\pi\)
\(812\) 0 0
\(813\) 10.0000 0.350715
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 53.7980 1.88215
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 16.0454 0.559989 0.279994 0.960002i \(-0.409667\pi\)
0.279994 + 0.960002i \(0.409667\pi\)
\(822\) 0 0
\(823\) −7.39388 −0.257734 −0.128867 0.991662i \(-0.541134\pi\)
−0.128867 + 0.991662i \(0.541134\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.4495 −1.54566 −0.772830 0.634613i \(-0.781160\pi\)
−0.772830 + 0.634613i \(0.781160\pi\)
\(828\) 0 0
\(829\) −17.3939 −0.604114 −0.302057 0.953290i \(-0.597673\pi\)
−0.302057 + 0.953290i \(0.597673\pi\)
\(830\) 0 0
\(831\) 13.7980 0.478646
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.89898 −0.100203
\(838\) 0 0
\(839\) −45.3485 −1.56560 −0.782802 0.622271i \(-0.786210\pi\)
−0.782802 + 0.622271i \(0.786210\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 30.2474 1.04178
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −21.5959 −0.742045
\(848\) 0 0
\(849\) 16.0000 0.549119
\(850\) 0 0
\(851\) −53.3939 −1.83032
\(852\) 0 0
\(853\) −44.6969 −1.53039 −0.765197 0.643796i \(-0.777358\pi\)
−0.765197 + 0.643796i \(0.777358\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −57.5959 −1.96744 −0.983720 0.179711i \(-0.942484\pi\)
−0.983720 + 0.179711i \(0.942484\pi\)
\(858\) 0 0
\(859\) 47.7980 1.63085 0.815423 0.578866i \(-0.196505\pi\)
0.815423 + 0.578866i \(0.196505\pi\)
\(860\) 0 0
\(861\) 7.10102 0.242002
\(862\) 0 0
\(863\) −0.853572 −0.0290559 −0.0145280 0.999894i \(-0.504625\pi\)
−0.0145280 + 0.999894i \(0.504625\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) −4.49490 −0.152479
\(870\) 0 0
\(871\) 7.79796 0.264224
\(872\) 0 0
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 38.0908 1.28624 0.643118 0.765767i \(-0.277641\pi\)
0.643118 + 0.765767i \(0.277641\pi\)
\(878\) 0 0
\(879\) −7.55051 −0.254672
\(880\) 0 0
\(881\) −32.2929 −1.08797 −0.543987 0.839094i \(-0.683086\pi\)
−0.543987 + 0.839094i \(0.683086\pi\)
\(882\) 0 0
\(883\) 5.39388 0.181518 0.0907592 0.995873i \(-0.471071\pi\)
0.0907592 + 0.995873i \(0.471071\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) −24.0000 −0.804934
\(890\) 0 0
\(891\) −0.449490 −0.0150585
\(892\) 0 0
\(893\) 36.8990 1.23478
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.89898 0.163572
\(898\) 0 0
\(899\) 5.79796 0.193373
\(900\) 0 0
\(901\) −5.79796 −0.193158
\(902\) 0 0
\(903\) 15.5959 0.519000
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.1918 −1.03571 −0.517854 0.855469i \(-0.673269\pi\)
−0.517854 + 0.855469i \(0.673269\pi\)
\(908\) 0 0
\(909\) 14.8990 0.494168
\(910\) 0 0
\(911\) −15.1010 −0.500319 −0.250160 0.968205i \(-0.580483\pi\)
−0.250160 + 0.968205i \(0.580483\pi\)
\(912\) 0 0
\(913\) 3.79796 0.125694
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.79796 −0.323557
\(918\) 0 0
\(919\) 13.5959 0.448488 0.224244 0.974533i \(-0.428009\pi\)
0.224244 + 0.974533i \(0.428009\pi\)
\(920\) 0 0
\(921\) 9.59592 0.316196
\(922\) 0 0
\(923\) −14.2474 −0.468960
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.79796 0.124741
\(928\) 0 0
\(929\) −21.3485 −0.700421 −0.350210 0.936671i \(-0.613890\pi\)
−0.350210 + 0.936671i \(0.613890\pi\)
\(930\) 0 0
\(931\) −20.6969 −0.678315
\(932\) 0 0
\(933\) −23.5959 −0.772496
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 31.3939 1.02559 0.512797 0.858510i \(-0.328609\pi\)
0.512797 + 0.858510i \(0.328609\pi\)
\(938\) 0 0
\(939\) 12.2020 0.398199
\(940\) 0 0
\(941\) −4.44949 −0.145049 −0.0725246 0.997367i \(-0.523106\pi\)
−0.0725246 + 0.997367i \(0.523106\pi\)
\(942\) 0 0
\(943\) −17.3939 −0.566423
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.2474 0.592962 0.296481 0.955039i \(-0.404187\pi\)
0.296481 + 0.955039i \(0.404187\pi\)
\(948\) 0 0
\(949\) 7.79796 0.253132
\(950\) 0 0
\(951\) −23.1464 −0.750574
\(952\) 0 0
\(953\) 35.3939 1.14652 0.573260 0.819373i \(-0.305678\pi\)
0.573260 + 0.819373i \(0.305678\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0.898979 0.0290599
\(958\) 0 0
\(959\) 20.4949 0.661815
\(960\) 0 0
\(961\) −22.5959 −0.728901
\(962\) 0 0
\(963\) −13.7980 −0.444633
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.6969 0.408306 0.204153 0.978939i \(-0.434556\pi\)
0.204153 + 0.978939i \(0.434556\pi\)
\(968\) 0 0
\(969\) 13.7980 0.443254
\(970\) 0 0
\(971\) 27.1010 0.869713 0.434857 0.900500i \(-0.356799\pi\)
0.434857 + 0.900500i \(0.356799\pi\)
\(972\) 0 0
\(973\) 32.0000 1.02587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27.5505 −0.881419 −0.440709 0.897650i \(-0.645273\pi\)
−0.440709 + 0.897650i \(0.645273\pi\)
\(978\) 0 0
\(979\) −0.606123 −0.0193718
\(980\) 0 0
\(981\) 10.8990 0.347978
\(982\) 0 0
\(983\) −48.4495 −1.54530 −0.772649 0.634833i \(-0.781069\pi\)
−0.772649 + 0.634833i \(0.781069\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 10.6969 0.340487
\(988\) 0 0
\(989\) −38.2020 −1.21475
\(990\) 0 0
\(991\) 0.404082 0.0128361 0.00641804 0.999979i \(-0.497957\pi\)
0.00641804 + 0.999979i \(0.497957\pi\)
\(992\) 0 0
\(993\) −25.5959 −0.812262
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 8.40408 0.266160 0.133080 0.991105i \(-0.457513\pi\)
0.133080 + 0.991105i \(0.457513\pi\)
\(998\) 0 0
\(999\) 10.8990 0.344828
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.a.t.1.1 2
5.2 odd 4 780.2.h.c.469.2 4
5.3 odd 4 780.2.h.c.469.4 yes 4
5.4 even 2 3900.2.a.o.1.1 2
15.2 even 4 2340.2.h.d.469.1 4
15.8 even 4 2340.2.h.d.469.2 4
20.3 even 4 3120.2.l.j.1249.2 4
20.7 even 4 3120.2.l.j.1249.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.h.c.469.2 4 5.2 odd 4
780.2.h.c.469.4 yes 4 5.3 odd 4
2340.2.h.d.469.1 4 15.2 even 4
2340.2.h.d.469.2 4 15.8 even 4
3120.2.l.j.1249.2 4 20.3 even 4
3120.2.l.j.1249.4 4 20.7 even 4
3900.2.a.o.1.1 2 5.4 even 2
3900.2.a.t.1.1 2 1.1 even 1 trivial