Properties

Label 3120.2.l.j.1249.4
Level $3120$
Weight $2$
Character 3120.1249
Analytic conductor $24.913$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3120,2,Mod(1249,3120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3120.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,0,0,-4,0,-8,0,0,0,-4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.4
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 3120.1249
Dual form 3120.2.l.j.1249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(0.224745 + 2.22474i) q^{5} -2.00000i q^{7} -1.00000 q^{9} +0.449490 q^{11} +1.00000i q^{13} +(-2.22474 + 0.224745i) q^{15} +2.00000i q^{17} +6.89898 q^{19} +2.00000 q^{21} -4.89898i q^{23} +(-4.89898 + 1.00000i) q^{25} -1.00000i q^{27} +2.00000 q^{29} +2.89898 q^{31} +0.449490i q^{33} +(4.44949 - 0.449490i) q^{35} +10.8990i q^{37} -1.00000 q^{39} +3.55051 q^{41} +7.79796i q^{43} +(-0.224745 - 2.22474i) q^{45} -5.34847i q^{47} +3.00000 q^{49} -2.00000 q^{51} +2.89898i q^{53} +(0.101021 + 1.00000i) q^{55} +6.89898i q^{57} -4.44949 q^{59} +4.00000 q^{61} +2.00000i q^{63} +(-2.22474 + 0.224745i) q^{65} +7.79796i q^{67} +4.89898 q^{69} -14.2474 q^{71} +7.79796i q^{73} +(-1.00000 - 4.89898i) q^{75} -0.898979i q^{77} +10.0000 q^{79} +1.00000 q^{81} -8.44949i q^{83} +(-4.44949 + 0.449490i) q^{85} +2.00000i q^{87} -1.34847 q^{89} +2.00000 q^{91} +2.89898i q^{93} +(1.55051 + 15.3485i) q^{95} +6.00000i q^{97} -0.449490 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{9} - 8 q^{11} - 4 q^{15} + 8 q^{19} + 8 q^{21} + 8 q^{29} - 8 q^{31} + 8 q^{35} - 4 q^{39} + 24 q^{41} + 4 q^{45} + 12 q^{49} - 8 q^{51} + 20 q^{55} - 8 q^{59} + 16 q^{61} - 4 q^{65}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.224745 + 2.22474i 0.100509 + 0.994936i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.449490 0.135526 0.0677631 0.997701i \(-0.478414\pi\)
0.0677631 + 0.997701i \(0.478414\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −2.22474 + 0.224745i −0.574427 + 0.0580289i
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 6.89898 1.58273 0.791367 0.611341i \(-0.209370\pi\)
0.791367 + 0.611341i \(0.209370\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 4.89898i 1.02151i −0.859727 0.510754i \(-0.829366\pi\)
0.859727 0.510754i \(-0.170634\pi\)
\(24\) 0 0
\(25\) −4.89898 + 1.00000i −0.979796 + 0.200000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 2.89898 0.520672 0.260336 0.965518i \(-0.416167\pi\)
0.260336 + 0.965518i \(0.416167\pi\)
\(32\) 0 0
\(33\) 0.449490i 0.0782461i
\(34\) 0 0
\(35\) 4.44949 0.449490i 0.752101 0.0759776i
\(36\) 0 0
\(37\) 10.8990i 1.79178i 0.444275 + 0.895891i \(0.353461\pi\)
−0.444275 + 0.895891i \(0.646539\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 3.55051 0.554497 0.277248 0.960798i \(-0.410578\pi\)
0.277248 + 0.960798i \(0.410578\pi\)
\(42\) 0 0
\(43\) 7.79796i 1.18918i 0.804030 + 0.594589i \(0.202685\pi\)
−0.804030 + 0.594589i \(0.797315\pi\)
\(44\) 0 0
\(45\) −0.224745 2.22474i −0.0335030 0.331645i
\(46\) 0 0
\(47\) 5.34847i 0.780154i −0.920782 0.390077i \(-0.872448\pi\)
0.920782 0.390077i \(-0.127552\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 2.89898i 0.398205i 0.979979 + 0.199103i \(0.0638027\pi\)
−0.979979 + 0.199103i \(0.936197\pi\)
\(54\) 0 0
\(55\) 0.101021 + 1.00000i 0.0136216 + 0.134840i
\(56\) 0 0
\(57\) 6.89898i 0.913792i
\(58\) 0 0
\(59\) −4.44949 −0.579274 −0.289637 0.957137i \(-0.593535\pi\)
−0.289637 + 0.957137i \(0.593535\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) −2.22474 + 0.224745i −0.275946 + 0.0278762i
\(66\) 0 0
\(67\) 7.79796i 0.952672i 0.879263 + 0.476336i \(0.158035\pi\)
−0.879263 + 0.476336i \(0.841965\pi\)
\(68\) 0 0
\(69\) 4.89898 0.589768
\(70\) 0 0
\(71\) −14.2474 −1.69086 −0.845431 0.534085i \(-0.820656\pi\)
−0.845431 + 0.534085i \(0.820656\pi\)
\(72\) 0 0
\(73\) 7.79796i 0.912682i 0.889805 + 0.456341i \(0.150840\pi\)
−0.889805 + 0.456341i \(0.849160\pi\)
\(74\) 0 0
\(75\) −1.00000 4.89898i −0.115470 0.565685i
\(76\) 0 0
\(77\) 0.898979i 0.102448i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.44949i 0.927452i −0.885979 0.463726i \(-0.846512\pi\)
0.885979 0.463726i \(-0.153488\pi\)
\(84\) 0 0
\(85\) −4.44949 + 0.449490i −0.482615 + 0.0487540i
\(86\) 0 0
\(87\) 2.00000i 0.214423i
\(88\) 0 0
\(89\) −1.34847 −0.142937 −0.0714687 0.997443i \(-0.522769\pi\)
−0.0714687 + 0.997443i \(0.522769\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 2.89898i 0.300610i
\(94\) 0 0
\(95\) 1.55051 + 15.3485i 0.159079 + 1.57472i
\(96\) 0 0
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 0 0
\(99\) −0.449490 −0.0451754
\(100\) 0 0
\(101\) 14.8990 1.48250 0.741252 0.671227i \(-0.234232\pi\)
0.741252 + 0.671227i \(0.234232\pi\)
\(102\) 0 0
\(103\) 3.79796i 0.374224i 0.982339 + 0.187112i \(0.0599127\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(104\) 0 0
\(105\) 0.449490 + 4.44949i 0.0438657 + 0.434226i
\(106\) 0 0
\(107\) 13.7980i 1.33390i 0.745103 + 0.666950i \(0.232400\pi\)
−0.745103 + 0.666950i \(0.767600\pi\)
\(108\) 0 0
\(109\) −10.8990 −1.04393 −0.521966 0.852966i \(-0.674801\pi\)
−0.521966 + 0.852966i \(0.674801\pi\)
\(110\) 0 0
\(111\) −10.8990 −1.03449
\(112\) 0 0
\(113\) 8.69694i 0.818139i −0.912503 0.409070i \(-0.865853\pi\)
0.912503 0.409070i \(-0.134147\pi\)
\(114\) 0 0
\(115\) 10.8990 1.10102i 1.01634 0.102671i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −10.7980 −0.981633
\(122\) 0 0
\(123\) 3.55051i 0.320139i
\(124\) 0 0
\(125\) −3.32577 10.6742i −0.297465 0.954733i
\(126\) 0 0
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) 0 0
\(129\) −7.79796 −0.686572
\(130\) 0 0
\(131\) 4.89898 0.428026 0.214013 0.976831i \(-0.431347\pi\)
0.214013 + 0.976831i \(0.431347\pi\)
\(132\) 0 0
\(133\) 13.7980i 1.19643i
\(134\) 0 0
\(135\) 2.22474 0.224745i 0.191476 0.0193430i
\(136\) 0 0
\(137\) 10.2474i 0.875499i 0.899097 + 0.437749i \(0.144224\pi\)
−0.899097 + 0.437749i \(0.855776\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 5.34847 0.450422
\(142\) 0 0
\(143\) 0.449490i 0.0375882i
\(144\) 0 0
\(145\) 0.449490 + 4.44949i 0.0373281 + 0.369510i
\(146\) 0 0
\(147\) 3.00000i 0.247436i
\(148\) 0 0
\(149\) 6.24745 0.511811 0.255905 0.966702i \(-0.417626\pi\)
0.255905 + 0.966702i \(0.417626\pi\)
\(150\) 0 0
\(151\) −18.8990 −1.53798 −0.768989 0.639263i \(-0.779240\pi\)
−0.768989 + 0.639263i \(0.779240\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0.651531 + 6.44949i 0.0523322 + 0.518035i
\(156\) 0 0
\(157\) 5.79796i 0.462728i −0.972867 0.231364i \(-0.925681\pi\)
0.972867 0.231364i \(-0.0743187\pi\)
\(158\) 0 0
\(159\) −2.89898 −0.229904
\(160\) 0 0
\(161\) −9.79796 −0.772187
\(162\) 0 0
\(163\) 6.89898i 0.540370i −0.962808 0.270185i \(-0.912915\pi\)
0.962808 0.270185i \(-0.0870848\pi\)
\(164\) 0 0
\(165\) −1.00000 + 0.101021i −0.0778499 + 0.00786444i
\(166\) 0 0
\(167\) 3.55051i 0.274747i 0.990519 + 0.137373i \(0.0438660\pi\)
−0.990519 + 0.137373i \(0.956134\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −6.89898 −0.527578
\(172\) 0 0
\(173\) 2.00000i 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 2.00000 + 9.79796i 0.151186 + 0.740656i
\(176\) 0 0
\(177\) 4.44949i 0.334444i
\(178\) 0 0
\(179\) −19.5959 −1.46467 −0.732334 0.680946i \(-0.761569\pi\)
−0.732334 + 0.680946i \(0.761569\pi\)
\(180\) 0 0
\(181\) −3.79796 −0.282300 −0.141150 0.989988i \(-0.545080\pi\)
−0.141150 + 0.989988i \(0.545080\pi\)
\(182\) 0 0
\(183\) 4.00000i 0.295689i
\(184\) 0 0
\(185\) −24.2474 + 2.44949i −1.78271 + 0.180090i
\(186\) 0 0
\(187\) 0.898979i 0.0657399i
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −16.8990 −1.22277 −0.611384 0.791334i \(-0.709387\pi\)
−0.611384 + 0.791334i \(0.709387\pi\)
\(192\) 0 0
\(193\) 1.10102i 0.0792532i −0.999215 0.0396266i \(-0.987383\pi\)
0.999215 0.0396266i \(-0.0126168\pi\)
\(194\) 0 0
\(195\) −0.224745 2.22474i −0.0160943 0.159317i
\(196\) 0 0
\(197\) 11.5505i 0.822940i −0.911423 0.411470i \(-0.865016\pi\)
0.911423 0.411470i \(-0.134984\pi\)
\(198\) 0 0
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) −7.79796 −0.550026
\(202\) 0 0
\(203\) 4.00000i 0.280745i
\(204\) 0 0
\(205\) 0.797959 + 7.89898i 0.0557319 + 0.551689i
\(206\) 0 0
\(207\) 4.89898i 0.340503i
\(208\) 0 0
\(209\) 3.10102 0.214502
\(210\) 0 0
\(211\) −11.7980 −0.812205 −0.406102 0.913828i \(-0.633112\pi\)
−0.406102 + 0.913828i \(0.633112\pi\)
\(212\) 0 0
\(213\) 14.2474i 0.976219i
\(214\) 0 0
\(215\) −17.3485 + 1.75255i −1.18316 + 0.119523i
\(216\) 0 0
\(217\) 5.79796i 0.393591i
\(218\) 0 0
\(219\) −7.79796 −0.526937
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 14.8990i 0.997709i 0.866686 + 0.498855i \(0.166246\pi\)
−0.866686 + 0.498855i \(0.833754\pi\)
\(224\) 0 0
\(225\) 4.89898 1.00000i 0.326599 0.0666667i
\(226\) 0 0
\(227\) 20.4495i 1.35728i 0.734471 + 0.678640i \(0.237430\pi\)
−0.734471 + 0.678640i \(0.762570\pi\)
\(228\) 0 0
\(229\) 24.6969 1.63202 0.816010 0.578038i \(-0.196181\pi\)
0.816010 + 0.578038i \(0.196181\pi\)
\(230\) 0 0
\(231\) 0.898979 0.0591485
\(232\) 0 0
\(233\) 26.0000i 1.70332i 0.524097 + 0.851658i \(0.324403\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 11.8990 1.20204i 0.776204 0.0784125i
\(236\) 0 0
\(237\) 10.0000i 0.649570i
\(238\) 0 0
\(239\) 20.4495 1.32277 0.661384 0.750048i \(-0.269969\pi\)
0.661384 + 0.750048i \(0.269969\pi\)
\(240\) 0 0
\(241\) 10.8990 0.702065 0.351032 0.936363i \(-0.385831\pi\)
0.351032 + 0.936363i \(0.385831\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0.674235 + 6.67423i 0.0430753 + 0.426401i
\(246\) 0 0
\(247\) 6.89898i 0.438972i
\(248\) 0 0
\(249\) 8.44949 0.535465
\(250\) 0 0
\(251\) −19.5959 −1.23688 −0.618442 0.785831i \(-0.712236\pi\)
−0.618442 + 0.785831i \(0.712236\pi\)
\(252\) 0 0
\(253\) 2.20204i 0.138441i
\(254\) 0 0
\(255\) −0.449490 4.44949i −0.0281481 0.278638i
\(256\) 0 0
\(257\) 3.79796i 0.236910i 0.992959 + 0.118455i \(0.0377942\pi\)
−0.992959 + 0.118455i \(0.962206\pi\)
\(258\) 0 0
\(259\) 21.7980 1.35446
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 17.7980i 1.09747i −0.835997 0.548735i \(-0.815110\pi\)
0.835997 0.548735i \(-0.184890\pi\)
\(264\) 0 0
\(265\) −6.44949 + 0.651531i −0.396189 + 0.0400232i
\(266\) 0 0
\(267\) 1.34847i 0.0825250i
\(268\) 0 0
\(269\) −31.7980 −1.93876 −0.969378 0.245574i \(-0.921024\pi\)
−0.969378 + 0.245574i \(0.921024\pi\)
\(270\) 0 0
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 0 0
\(273\) 2.00000i 0.121046i
\(274\) 0 0
\(275\) −2.20204 + 0.449490i −0.132788 + 0.0271053i
\(276\) 0 0
\(277\) 13.7980i 0.829039i 0.910040 + 0.414520i \(0.136050\pi\)
−0.910040 + 0.414520i \(0.863950\pi\)
\(278\) 0 0
\(279\) −2.89898 −0.173557
\(280\) 0 0
\(281\) 30.2474 1.80441 0.902206 0.431306i \(-0.141947\pi\)
0.902206 + 0.431306i \(0.141947\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) 0 0
\(285\) −15.3485 + 1.55051i −0.909165 + 0.0918443i
\(286\) 0 0
\(287\) 7.10102i 0.419160i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) 0 0
\(293\) 7.55051i 0.441106i 0.975375 + 0.220553i \(0.0707861\pi\)
−0.975375 + 0.220553i \(0.929214\pi\)
\(294\) 0 0
\(295\) −1.00000 9.89898i −0.0582223 0.576341i
\(296\) 0 0
\(297\) 0.449490i 0.0260820i
\(298\) 0 0
\(299\) 4.89898 0.283315
\(300\) 0 0
\(301\) 15.5959 0.898934
\(302\) 0 0
\(303\) 14.8990i 0.855924i
\(304\) 0 0
\(305\) 0.898979 + 8.89898i 0.0514754 + 0.509554i
\(306\) 0 0
\(307\) 9.59592i 0.547668i −0.961777 0.273834i \(-0.911708\pi\)
0.961777 0.273834i \(-0.0882919\pi\)
\(308\) 0 0
\(309\) −3.79796 −0.216058
\(310\) 0 0
\(311\) 23.5959 1.33800 0.669001 0.743262i \(-0.266722\pi\)
0.669001 + 0.743262i \(0.266722\pi\)
\(312\) 0 0
\(313\) 12.2020i 0.689700i −0.938658 0.344850i \(-0.887930\pi\)
0.938658 0.344850i \(-0.112070\pi\)
\(314\) 0 0
\(315\) −4.44949 + 0.449490i −0.250700 + 0.0253259i
\(316\) 0 0
\(317\) 23.1464i 1.30003i −0.759920 0.650016i \(-0.774762\pi\)
0.759920 0.650016i \(-0.225238\pi\)
\(318\) 0 0
\(319\) 0.898979 0.0503332
\(320\) 0 0
\(321\) −13.7980 −0.770127
\(322\) 0 0
\(323\) 13.7980i 0.767739i
\(324\) 0 0
\(325\) −1.00000 4.89898i −0.0554700 0.271746i
\(326\) 0 0
\(327\) 10.8990i 0.602715i
\(328\) 0 0
\(329\) −10.6969 −0.589741
\(330\) 0 0
\(331\) 25.5959 1.40688 0.703439 0.710755i \(-0.251647\pi\)
0.703439 + 0.710755i \(0.251647\pi\)
\(332\) 0 0
\(333\) 10.8990i 0.597260i
\(334\) 0 0
\(335\) −17.3485 + 1.75255i −0.947848 + 0.0957521i
\(336\) 0 0
\(337\) 2.00000i 0.108947i 0.998515 + 0.0544735i \(0.0173480\pi\)
−0.998515 + 0.0544735i \(0.982652\pi\)
\(338\) 0 0
\(339\) 8.69694 0.472353
\(340\) 0 0
\(341\) 1.30306 0.0705647
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 1.10102 + 10.8990i 0.0592770 + 0.586781i
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 12.2020 0.653160 0.326580 0.945170i \(-0.394104\pi\)
0.326580 + 0.945170i \(0.394104\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) 36.9444i 1.96635i 0.182663 + 0.983176i \(0.441528\pi\)
−0.182663 + 0.983176i \(0.558472\pi\)
\(354\) 0 0
\(355\) −3.20204 31.6969i −0.169947 1.68230i
\(356\) 0 0
\(357\) 4.00000i 0.211702i
\(358\) 0 0
\(359\) 9.34847 0.493393 0.246697 0.969093i \(-0.420655\pi\)
0.246697 + 0.969093i \(0.420655\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) 0 0
\(363\) 10.7980i 0.566746i
\(364\) 0 0
\(365\) −17.3485 + 1.75255i −0.908060 + 0.0917327i
\(366\) 0 0
\(367\) 11.7980i 0.615848i −0.951411 0.307924i \(-0.900366\pi\)
0.951411 0.307924i \(-0.0996343\pi\)
\(368\) 0 0
\(369\) −3.55051 −0.184832
\(370\) 0 0
\(371\) 5.79796 0.301015
\(372\) 0 0
\(373\) 23.7980i 1.23221i −0.787663 0.616106i \(-0.788709\pi\)
0.787663 0.616106i \(-0.211291\pi\)
\(374\) 0 0
\(375\) 10.6742 3.32577i 0.551215 0.171742i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) −0.696938 −0.0357993 −0.0178997 0.999840i \(-0.505698\pi\)
−0.0178997 + 0.999840i \(0.505698\pi\)
\(380\) 0 0
\(381\) −12.0000 −0.614779
\(382\) 0 0
\(383\) 27.5505i 1.40777i −0.710316 0.703883i \(-0.751448\pi\)
0.710316 0.703883i \(-0.248552\pi\)
\(384\) 0 0
\(385\) 2.00000 0.202041i 0.101929 0.0102970i
\(386\) 0 0
\(387\) 7.79796i 0.396393i
\(388\) 0 0
\(389\) 6.89898 0.349792 0.174896 0.984587i \(-0.444041\pi\)
0.174896 + 0.984587i \(0.444041\pi\)
\(390\) 0 0
\(391\) 9.79796 0.495504
\(392\) 0 0
\(393\) 4.89898i 0.247121i
\(394\) 0 0
\(395\) 2.24745 + 22.2474i 0.113081 + 1.11939i
\(396\) 0 0
\(397\) 1.10102i 0.0552586i −0.999618 0.0276293i \(-0.991204\pi\)
0.999618 0.0276293i \(-0.00879580\pi\)
\(398\) 0 0
\(399\) 13.7980 0.690762
\(400\) 0 0
\(401\) −35.1464 −1.75513 −0.877564 0.479459i \(-0.840833\pi\)
−0.877564 + 0.479459i \(0.840833\pi\)
\(402\) 0 0
\(403\) 2.89898i 0.144408i
\(404\) 0 0
\(405\) 0.224745 + 2.22474i 0.0111677 + 0.110548i
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 0 0
\(409\) 21.1010 1.04338 0.521689 0.853136i \(-0.325302\pi\)
0.521689 + 0.853136i \(0.325302\pi\)
\(410\) 0 0
\(411\) −10.2474 −0.505469
\(412\) 0 0
\(413\) 8.89898i 0.437890i
\(414\) 0 0
\(415\) 18.7980 1.89898i 0.922756 0.0932172i
\(416\) 0 0
\(417\) 16.0000i 0.783523i
\(418\) 0 0
\(419\) 18.6969 0.913405 0.456703 0.889619i \(-0.349030\pi\)
0.456703 + 0.889619i \(0.349030\pi\)
\(420\) 0 0
\(421\) 0.696938 0.0339667 0.0169834 0.999856i \(-0.494594\pi\)
0.0169834 + 0.999856i \(0.494594\pi\)
\(422\) 0 0
\(423\) 5.34847i 0.260051i
\(424\) 0 0
\(425\) −2.00000 9.79796i −0.0970143 0.475271i
\(426\) 0 0
\(427\) 8.00000i 0.387147i
\(428\) 0 0
\(429\) −0.449490 −0.0217016
\(430\) 0 0
\(431\) 19.1464 0.922251 0.461125 0.887335i \(-0.347446\pi\)
0.461125 + 0.887335i \(0.347446\pi\)
\(432\) 0 0
\(433\) 37.5959i 1.80674i 0.428857 + 0.903372i \(0.358916\pi\)
−0.428857 + 0.903372i \(0.641084\pi\)
\(434\) 0 0
\(435\) −4.44949 + 0.449490i −0.213337 + 0.0215514i
\(436\) 0 0
\(437\) 33.7980i 1.61678i
\(438\) 0 0
\(439\) −35.5959 −1.69890 −0.849450 0.527669i \(-0.823066\pi\)
−0.849450 + 0.527669i \(0.823066\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 11.5959i 0.550939i 0.961310 + 0.275469i \(0.0888333\pi\)
−0.961310 + 0.275469i \(0.911167\pi\)
\(444\) 0 0
\(445\) −0.303062 3.00000i −0.0143665 0.142214i
\(446\) 0 0
\(447\) 6.24745i 0.295494i
\(448\) 0 0
\(449\) 35.1464 1.65866 0.829331 0.558757i \(-0.188722\pi\)
0.829331 + 0.558757i \(0.188722\pi\)
\(450\) 0 0
\(451\) 1.59592 0.0751488
\(452\) 0 0
\(453\) 18.8990i 0.887952i
\(454\) 0 0
\(455\) 0.449490 + 4.44949i 0.0210724 + 0.208595i
\(456\) 0 0
\(457\) 19.3939i 0.907207i 0.891204 + 0.453604i \(0.149862\pi\)
−0.891204 + 0.453604i \(0.850138\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 19.1464 0.891738 0.445869 0.895098i \(-0.352895\pi\)
0.445869 + 0.895098i \(0.352895\pi\)
\(462\) 0 0
\(463\) 25.5959i 1.18954i −0.803895 0.594772i \(-0.797242\pi\)
0.803895 0.594772i \(-0.202758\pi\)
\(464\) 0 0
\(465\) −6.44949 + 0.651531i −0.299088 + 0.0302140i
\(466\) 0 0
\(467\) 8.89898i 0.411796i −0.978573 0.205898i \(-0.933989\pi\)
0.978573 0.205898i \(-0.0660115\pi\)
\(468\) 0 0
\(469\) 15.5959 0.720153
\(470\) 0 0
\(471\) 5.79796 0.267156
\(472\) 0 0
\(473\) 3.50510i 0.161165i
\(474\) 0 0
\(475\) −33.7980 + 6.89898i −1.55076 + 0.316547i
\(476\) 0 0
\(477\) 2.89898i 0.132735i
\(478\) 0 0
\(479\) 0.853572 0.0390007 0.0195003 0.999810i \(-0.493792\pi\)
0.0195003 + 0.999810i \(0.493792\pi\)
\(480\) 0 0
\(481\) −10.8990 −0.496951
\(482\) 0 0
\(483\) 9.79796i 0.445823i
\(484\) 0 0
\(485\) −13.3485 + 1.34847i −0.606123 + 0.0612308i
\(486\) 0 0
\(487\) 5.10102i 0.231149i −0.993299 0.115575i \(-0.963129\pi\)
0.993299 0.115575i \(-0.0368710\pi\)
\(488\) 0 0
\(489\) 6.89898 0.311983
\(490\) 0 0
\(491\) −37.3939 −1.68756 −0.843781 0.536688i \(-0.819675\pi\)
−0.843781 + 0.536688i \(0.819675\pi\)
\(492\) 0 0
\(493\) 4.00000i 0.180151i
\(494\) 0 0
\(495\) −0.101021 1.00000i −0.00454053 0.0449467i
\(496\) 0 0
\(497\) 28.4949i 1.27817i
\(498\) 0 0
\(499\) 23.3939 1.04725 0.523627 0.851948i \(-0.324579\pi\)
0.523627 + 0.851948i \(0.324579\pi\)
\(500\) 0 0
\(501\) −3.55051 −0.158625
\(502\) 0 0
\(503\) 19.5959i 0.873739i −0.899525 0.436869i \(-0.856087\pi\)
0.899525 0.436869i \(-0.143913\pi\)
\(504\) 0 0
\(505\) 3.34847 + 33.1464i 0.149005 + 1.47500i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) −9.34847 −0.414364 −0.207182 0.978302i \(-0.566429\pi\)
−0.207182 + 0.978302i \(0.566429\pi\)
\(510\) 0 0
\(511\) 15.5959 0.689923
\(512\) 0 0
\(513\) 6.89898i 0.304597i
\(514\) 0 0
\(515\) −8.44949 + 0.853572i −0.372329 + 0.0376129i
\(516\) 0 0
\(517\) 2.40408i 0.105731i
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 0.202041i 0.00883464i 0.999990 + 0.00441732i \(0.00140608\pi\)
−0.999990 + 0.00441732i \(0.998594\pi\)
\(524\) 0 0
\(525\) −9.79796 + 2.00000i −0.427618 + 0.0872872i
\(526\) 0 0
\(527\) 5.79796i 0.252563i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 4.44949 0.193091
\(532\) 0 0
\(533\) 3.55051i 0.153790i
\(534\) 0 0
\(535\) −30.6969 + 3.10102i −1.32714 + 0.134069i
\(536\) 0 0
\(537\) 19.5959i 0.845626i
\(538\) 0 0
\(539\) 1.34847 0.0580827
\(540\) 0 0
\(541\) 29.1010 1.25115 0.625575 0.780164i \(-0.284864\pi\)
0.625575 + 0.780164i \(0.284864\pi\)
\(542\) 0 0
\(543\) 3.79796i 0.162986i
\(544\) 0 0
\(545\) −2.44949 24.2474i −0.104925 1.03865i
\(546\) 0 0
\(547\) 2.40408i 0.102791i −0.998678 0.0513956i \(-0.983633\pi\)
0.998678 0.0513956i \(-0.0163669\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) 13.7980 0.587813
\(552\) 0 0
\(553\) 20.0000i 0.850487i
\(554\) 0 0
\(555\) −2.44949 24.2474i −0.103975 1.02925i
\(556\) 0 0
\(557\) 28.9444i 1.22641i −0.789923 0.613207i \(-0.789879\pi\)
0.789923 0.613207i \(-0.210121\pi\)
\(558\) 0 0
\(559\) −7.79796 −0.329819
\(560\) 0 0
\(561\) −0.898979 −0.0379549
\(562\) 0 0
\(563\) 3.10102i 0.130692i −0.997863 0.0653462i \(-0.979185\pi\)
0.997863 0.0653462i \(-0.0208152\pi\)
\(564\) 0 0
\(565\) 19.3485 1.95459i 0.813996 0.0822303i
\(566\) 0 0
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) 13.1010 0.549223 0.274612 0.961555i \(-0.411451\pi\)
0.274612 + 0.961555i \(0.411451\pi\)
\(570\) 0 0
\(571\) −1.59592 −0.0667871 −0.0333935 0.999442i \(-0.510631\pi\)
−0.0333935 + 0.999442i \(0.510631\pi\)
\(572\) 0 0
\(573\) 16.8990i 0.705965i
\(574\) 0 0
\(575\) 4.89898 + 24.0000i 0.204302 + 1.00087i
\(576\) 0 0
\(577\) 28.6969i 1.19467i −0.801992 0.597335i \(-0.796226\pi\)
0.801992 0.597335i \(-0.203774\pi\)
\(578\) 0 0
\(579\) 1.10102 0.0457569
\(580\) 0 0
\(581\) −16.8990 −0.701088
\(582\) 0 0
\(583\) 1.30306i 0.0539673i
\(584\) 0 0
\(585\) 2.22474 0.224745i 0.0919819 0.00929206i
\(586\) 0 0
\(587\) 18.2474i 0.753153i −0.926386 0.376576i \(-0.877101\pi\)
0.926386 0.376576i \(-0.122899\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) 0 0
\(591\) 11.5505 0.475125
\(592\) 0 0
\(593\) 21.3485i 0.876677i 0.898810 + 0.438338i \(0.144433\pi\)
−0.898810 + 0.438338i \(0.855567\pi\)
\(594\) 0 0
\(595\) 0.898979 + 8.89898i 0.0368546 + 0.364823i
\(596\) 0 0
\(597\) 6.00000i 0.245564i
\(598\) 0 0
\(599\) 22.6969 0.927372 0.463686 0.886000i \(-0.346527\pi\)
0.463686 + 0.886000i \(0.346527\pi\)
\(600\) 0 0
\(601\) −6.20204 −0.252987 −0.126493 0.991967i \(-0.540372\pi\)
−0.126493 + 0.991967i \(0.540372\pi\)
\(602\) 0 0
\(603\) 7.79796i 0.317557i
\(604\) 0 0
\(605\) −2.42679 24.0227i −0.0986629 0.976662i
\(606\) 0 0
\(607\) 25.5959i 1.03891i −0.854499 0.519453i \(-0.826136\pi\)
0.854499 0.519453i \(-0.173864\pi\)
\(608\) 0 0
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) 5.34847 0.216376
\(612\) 0 0
\(613\) 46.4949i 1.87791i −0.344038 0.938956i \(-0.611795\pi\)
0.344038 0.938956i \(-0.388205\pi\)
\(614\) 0 0
\(615\) −7.89898 + 0.797959i −0.318518 + 0.0321768i
\(616\) 0 0
\(617\) 16.4495i 0.662232i −0.943590 0.331116i \(-0.892575\pi\)
0.943590 0.331116i \(-0.107425\pi\)
\(618\) 0 0
\(619\) −1.59592 −0.0641454 −0.0320727 0.999486i \(-0.510211\pi\)
−0.0320727 + 0.999486i \(0.510211\pi\)
\(620\) 0 0
\(621\) −4.89898 −0.196589
\(622\) 0 0
\(623\) 2.69694i 0.108051i
\(624\) 0 0
\(625\) 23.0000 9.79796i 0.920000 0.391918i
\(626\) 0 0
\(627\) 3.10102i 0.123843i
\(628\) 0 0
\(629\) −21.7980 −0.869142
\(630\) 0 0
\(631\) −20.2929 −0.807846 −0.403923 0.914793i \(-0.632354\pi\)
−0.403923 + 0.914793i \(0.632354\pi\)
\(632\) 0 0
\(633\) 11.7980i 0.468927i
\(634\) 0 0
\(635\) −26.6969 + 2.69694i −1.05944 + 0.107025i
\(636\) 0 0
\(637\) 3.00000i 0.118864i
\(638\) 0 0
\(639\) 14.2474 0.563620
\(640\) 0 0
\(641\) −33.1010 −1.30741 −0.653706 0.756749i \(-0.726787\pi\)
−0.653706 + 0.756749i \(0.726787\pi\)
\(642\) 0 0
\(643\) 34.0000i 1.34083i −0.741987 0.670415i \(-0.766116\pi\)
0.741987 0.670415i \(-0.233884\pi\)
\(644\) 0 0
\(645\) −1.75255 17.3485i −0.0690066 0.683095i
\(646\) 0 0
\(647\) 48.4949i 1.90653i −0.302134 0.953266i \(-0.597699\pi\)
0.302134 0.953266i \(-0.402301\pi\)
\(648\) 0 0
\(649\) −2.00000 −0.0785069
\(650\) 0 0
\(651\) 5.79796 0.227240
\(652\) 0 0
\(653\) 2.49490i 0.0976329i −0.998808 0.0488164i \(-0.984455\pi\)
0.998808 0.0488164i \(-0.0155449\pi\)
\(654\) 0 0
\(655\) 1.10102 + 10.8990i 0.0430204 + 0.425858i
\(656\) 0 0
\(657\) 7.79796i 0.304227i
\(658\) 0 0
\(659\) −10.6969 −0.416694 −0.208347 0.978055i \(-0.566808\pi\)
−0.208347 + 0.978055i \(0.566808\pi\)
\(660\) 0 0
\(661\) −15.7980 −0.614469 −0.307235 0.951634i \(-0.599404\pi\)
−0.307235 + 0.951634i \(0.599404\pi\)
\(662\) 0 0
\(663\) 2.00000i 0.0776736i
\(664\) 0 0
\(665\) 30.6969 3.10102i 1.19038 0.120252i
\(666\) 0 0
\(667\) 9.79796i 0.379378i
\(668\) 0 0
\(669\) −14.8990 −0.576028
\(670\) 0 0
\(671\) 1.79796 0.0694094
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) 0 0
\(675\) 1.00000 + 4.89898i 0.0384900 + 0.188562i
\(676\) 0 0
\(677\) 19.3031i 0.741877i −0.928657 0.370938i \(-0.879036\pi\)
0.928657 0.370938i \(-0.120964\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) −20.4495 −0.783626
\(682\) 0 0
\(683\) 0.853572i 0.0326610i 0.999867 + 0.0163305i \(0.00519839\pi\)
−0.999867 + 0.0163305i \(0.994802\pi\)
\(684\) 0 0
\(685\) −22.7980 + 2.30306i −0.871065 + 0.0879955i
\(686\) 0 0
\(687\) 24.6969i 0.942247i
\(688\) 0 0
\(689\) −2.89898 −0.110442
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 0 0
\(693\) 0.898979i 0.0341494i
\(694\) 0 0
\(695\) 3.59592 + 35.5959i 0.136401 + 1.35023i
\(696\) 0 0
\(697\) 7.10102i 0.268970i
\(698\) 0 0
\(699\) −26.0000 −0.983410
\(700\) 0 0
\(701\) −34.8990 −1.31812 −0.659058 0.752092i \(-0.729045\pi\)
−0.659058 + 0.752092i \(0.729045\pi\)
\(702\) 0 0
\(703\) 75.1918i 2.83591i
\(704\) 0 0
\(705\) 1.20204 + 11.8990i 0.0452715 + 0.448141i
\(706\) 0 0
\(707\) 29.7980i 1.12067i
\(708\) 0 0
\(709\) 14.4949 0.544367 0.272184 0.962245i \(-0.412254\pi\)
0.272184 + 0.962245i \(0.412254\pi\)
\(710\) 0 0
\(711\) −10.0000 −0.375029
\(712\) 0 0
\(713\) 14.2020i 0.531871i
\(714\) 0 0
\(715\) −1.00000 + 0.101021i −0.0373979 + 0.00377795i
\(716\) 0 0
\(717\) 20.4495i 0.763700i
\(718\) 0 0
\(719\) −9.79796 −0.365402 −0.182701 0.983169i \(-0.558484\pi\)
−0.182701 + 0.983169i \(0.558484\pi\)
\(720\) 0 0
\(721\) 7.59592 0.282887
\(722\) 0 0
\(723\) 10.8990i 0.405337i
\(724\) 0 0
\(725\) −9.79796 + 2.00000i −0.363887 + 0.0742781i
\(726\) 0 0
\(727\) 25.3939i 0.941807i 0.882185 + 0.470903i \(0.156072\pi\)
−0.882185 + 0.470903i \(0.843928\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −15.5959 −0.576836
\(732\) 0 0
\(733\) 11.7980i 0.435768i −0.975975 0.217884i \(-0.930085\pi\)
0.975975 0.217884i \(-0.0699154\pi\)
\(734\) 0 0
\(735\) −6.67423 + 0.674235i −0.246183 + 0.0248695i
\(736\) 0 0
\(737\) 3.50510i 0.129112i
\(738\) 0 0
\(739\) 15.3939 0.566273 0.283136 0.959080i \(-0.408625\pi\)
0.283136 + 0.959080i \(0.408625\pi\)
\(740\) 0 0
\(741\) −6.89898 −0.253440
\(742\) 0 0
\(743\) 6.65153i 0.244021i −0.992529 0.122010i \(-0.961066\pi\)
0.992529 0.122010i \(-0.0389342\pi\)
\(744\) 0 0
\(745\) 1.40408 + 13.8990i 0.0514416 + 0.509219i
\(746\) 0 0
\(747\) 8.44949i 0.309151i
\(748\) 0 0
\(749\) 27.5959 1.00833
\(750\) 0 0
\(751\) 4.40408 0.160707 0.0803536 0.996766i \(-0.474395\pi\)
0.0803536 + 0.996766i \(0.474395\pi\)
\(752\) 0 0
\(753\) 19.5959i 0.714115i
\(754\) 0 0
\(755\) −4.24745 42.0454i −0.154580 1.53019i
\(756\) 0 0
\(757\) 53.1918i 1.93329i −0.256120 0.966645i \(-0.582444\pi\)
0.256120 0.966645i \(-0.417556\pi\)
\(758\) 0 0
\(759\) 2.20204 0.0799290
\(760\) 0 0
\(761\) −43.5505 −1.57870 −0.789352 0.613940i \(-0.789584\pi\)
−0.789352 + 0.613940i \(0.789584\pi\)
\(762\) 0 0
\(763\) 21.7980i 0.789139i
\(764\) 0 0
\(765\) 4.44949 0.449490i 0.160872 0.0162513i
\(766\) 0 0
\(767\) 4.44949i 0.160662i
\(768\) 0 0
\(769\) 39.3939 1.42058 0.710290 0.703909i \(-0.248564\pi\)
0.710290 + 0.703909i \(0.248564\pi\)
\(770\) 0 0
\(771\) −3.79796 −0.136780
\(772\) 0 0
\(773\) 26.2474i 0.944055i 0.881584 + 0.472028i \(0.156478\pi\)
−0.881584 + 0.472028i \(0.843522\pi\)
\(774\) 0 0
\(775\) −14.2020 + 2.89898i −0.510152 + 0.104134i
\(776\) 0 0
\(777\) 21.7980i 0.781997i
\(778\) 0 0
\(779\) 24.4949 0.877621
\(780\) 0 0
\(781\) −6.40408 −0.229156
\(782\) 0 0
\(783\) 2.00000i 0.0714742i
\(784\) 0 0
\(785\) 12.8990 1.30306i 0.460384 0.0465083i
\(786\) 0 0
\(787\) 16.2020i 0.577540i 0.957398 + 0.288770i \(0.0932464\pi\)
−0.957398 + 0.288770i \(0.906754\pi\)
\(788\) 0 0
\(789\) 17.7980 0.633624
\(790\) 0 0
\(791\) −17.3939 −0.618455
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) −0.651531 6.44949i −0.0231074 0.228740i
\(796\) 0 0
\(797\) 27.3939i 0.970341i −0.874420 0.485170i \(-0.838758\pi\)
0.874420 0.485170i \(-0.161242\pi\)
\(798\) 0 0
\(799\) 10.6969 0.378430
\(800\) 0 0
\(801\) 1.34847 0.0476458
\(802\) 0 0
\(803\) 3.50510i 0.123692i
\(804\) 0 0
\(805\) −2.20204 21.7980i −0.0776117 0.768277i
\(806\) 0 0
\(807\) 31.7980i 1.11934i
\(808\) 0 0
\(809\) 53.5959 1.88433 0.942166 0.335146i \(-0.108786\pi\)
0.942166 + 0.335146i \(0.108786\pi\)
\(810\) 0 0
\(811\) 16.6969 0.586309 0.293154 0.956065i \(-0.405295\pi\)
0.293154 + 0.956065i \(0.405295\pi\)
\(812\) 0 0
\(813\) 10.0000i 0.350715i
\(814\) 0 0
\(815\) 15.3485 1.55051i 0.537633 0.0543120i
\(816\) 0 0
\(817\) 53.7980i 1.88215i
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 16.0454 0.559989 0.279994 0.960002i \(-0.409667\pi\)
0.279994 + 0.960002i \(0.409667\pi\)
\(822\) 0 0
\(823\) 7.39388i 0.257734i −0.991662 0.128867i \(-0.958866\pi\)
0.991662 0.128867i \(-0.0411341\pi\)
\(824\) 0 0
\(825\) −0.449490 2.20204i −0.0156492 0.0766652i
\(826\) 0 0
\(827\) 44.4495i 1.54566i 0.634613 + 0.772830i \(0.281160\pi\)
−0.634613 + 0.772830i \(0.718840\pi\)
\(828\) 0 0
\(829\) 17.3939 0.604114 0.302057 0.953290i \(-0.402327\pi\)
0.302057 + 0.953290i \(0.402327\pi\)
\(830\) 0 0
\(831\) −13.7980 −0.478646
\(832\) 0 0
\(833\) 6.00000i 0.207888i
\(834\) 0 0
\(835\) −7.89898 + 0.797959i −0.273355 + 0.0276145i
\(836\) 0 0
\(837\) 2.89898i 0.100203i
\(838\) 0 0
\(839\) −45.3485 −1.56560 −0.782802 0.622271i \(-0.786210\pi\)
−0.782802 + 0.622271i \(0.786210\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 30.2474i 1.04178i
\(844\) 0 0
\(845\) −0.224745 2.22474i −0.00773146 0.0765336i
\(846\) 0 0
\(847\) 21.5959i 0.742045i
\(848\) 0 0
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) 53.3939 1.83032
\(852\) 0 0
\(853\) 44.6969i 1.53039i 0.643796 + 0.765197i \(0.277358\pi\)
−0.643796 + 0.765197i \(0.722642\pi\)
\(854\) 0 0
\(855\) −1.55051 15.3485i −0.0530263 0.524907i
\(856\) 0 0
\(857\) 57.5959i 1.96744i −0.179711 0.983720i \(-0.557516\pi\)
0.179711 0.983720i \(-0.442484\pi\)
\(858\) 0 0
\(859\) 47.7980 1.63085 0.815423 0.578866i \(-0.196505\pi\)
0.815423 + 0.578866i \(0.196505\pi\)
\(860\) 0 0
\(861\) 7.10102 0.242002
\(862\) 0 0
\(863\) 0.853572i 0.0290559i −0.999894 0.0145280i \(-0.995375\pi\)
0.999894 0.0145280i \(-0.00462456\pi\)
\(864\) 0 0
\(865\) 4.44949 0.449490i 0.151287 0.0152831i
\(866\) 0 0
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) 4.49490 0.152479
\(870\) 0 0
\(871\) −7.79796 −0.264224
\(872\) 0 0
\(873\) 6.00000i 0.203069i
\(874\) 0 0
\(875\) −21.3485 + 6.65153i −0.721710 + 0.224863i
\(876\) 0 0
\(877\) 38.0908i 1.28624i 0.765767 + 0.643118i \(0.222359\pi\)
−0.765767 + 0.643118i \(0.777641\pi\)
\(878\) 0 0
\(879\) −7.55051 −0.254672
\(880\) 0 0
\(881\) −32.2929 −1.08797 −0.543987 0.839094i \(-0.683086\pi\)
−0.543987 + 0.839094i \(0.683086\pi\)
\(882\) 0 0
\(883\) 5.39388i 0.181518i 0.995873 + 0.0907592i \(0.0289294\pi\)
−0.995873 + 0.0907592i \(0.971071\pi\)
\(884\) 0 0
\(885\) 9.89898 1.00000i 0.332751 0.0336146i
\(886\) 0 0
\(887\) 24.0000i 0.805841i −0.915235 0.402921i \(-0.867995\pi\)
0.915235 0.402921i \(-0.132005\pi\)
\(888\) 0 0
\(889\) 24.0000 0.804934
\(890\) 0 0
\(891\) 0.449490 0.0150585
\(892\) 0 0
\(893\) 36.8990i 1.23478i
\(894\) 0 0
\(895\) −4.40408 43.5959i −0.147212 1.45725i
\(896\) 0 0
\(897\) 4.89898i 0.163572i
\(898\) 0 0
\(899\) 5.79796 0.193373
\(900\) 0 0
\(901\) −5.79796 −0.193158
\(902\) 0 0
\(903\) 15.5959i 0.519000i
\(904\) 0 0
\(905\) −0.853572 8.44949i −0.0283737 0.280871i
\(906\) 0 0
\(907\) 31.1918i 1.03571i 0.855469 + 0.517854i \(0.173269\pi\)
−0.855469 + 0.517854i \(0.826731\pi\)
\(908\) 0 0
\(909\) −14.8990 −0.494168
\(910\) 0 0
\(911\) 15.1010 0.500319 0.250160 0.968205i \(-0.419517\pi\)
0.250160 + 0.968205i \(0.419517\pi\)
\(912\) 0 0
\(913\) 3.79796i 0.125694i
\(914\) 0 0
\(915\) −8.89898 + 0.898979i −0.294191 + 0.0297193i
\(916\) 0 0
\(917\) 9.79796i 0.323557i
\(918\) 0 0
\(919\) 13.5959 0.448488 0.224244 0.974533i \(-0.428009\pi\)
0.224244 + 0.974533i \(0.428009\pi\)
\(920\) 0 0
\(921\) 9.59592 0.316196
\(922\) 0 0
\(923\) 14.2474i 0.468960i
\(924\) 0 0
\(925\) −10.8990 53.3939i −0.358356 1.75558i
\(926\) 0 0
\(927\) 3.79796i 0.124741i
\(928\) 0 0
\(929\) 21.3485 0.700421 0.350210 0.936671i \(-0.386110\pi\)
0.350210 + 0.936671i \(0.386110\pi\)
\(930\) 0 0
\(931\) 20.6969 0.678315
\(932\) 0 0
\(933\) 23.5959i 0.772496i
\(934\) 0 0
\(935\) −2.00000 + 0.202041i −0.0654070 + 0.00660745i
\(936\) 0 0
\(937\) 31.3939i 1.02559i 0.858510 + 0.512797i \(0.171391\pi\)
−0.858510 + 0.512797i \(0.828609\pi\)
\(938\) 0 0
\(939\) 12.2020 0.398199
\(940\) 0 0
\(941\) −4.44949 −0.145049 −0.0725246 0.997367i \(-0.523106\pi\)
−0.0725246 + 0.997367i \(0.523106\pi\)
\(942\) 0 0
\(943\) 17.3939i 0.566423i
\(944\) 0 0
\(945\) −0.449490 4.44949i −0.0146219 0.144742i
\(946\) 0 0
\(947\) 18.2474i 0.592962i −0.955039 0.296481i \(-0.904187\pi\)
0.955039 0.296481i \(-0.0958132\pi\)
\(948\) 0 0
\(949\) −7.79796 −0.253132
\(950\) 0 0
\(951\) 23.1464 0.750574
\(952\) 0 0
\(953\) 35.3939i 1.14652i −0.819373 0.573260i \(-0.805678\pi\)
0.819373 0.573260i \(-0.194322\pi\)
\(954\) 0 0
\(955\) −3.79796 37.5959i −0.122899 1.21658i
\(956\) 0 0
\(957\) 0.898979i 0.0290599i
\(958\) 0 0
\(959\) 20.4949 0.661815
\(960\) 0 0
\(961\) −22.5959 −0.728901
\(962\) 0 0
\(963\) 13.7980i 0.444633i
\(964\) 0 0
\(965\) 2.44949 0.247449i 0.0788519 0.00796566i
\(966\) 0 0
\(967\) 12.6969i 0.408306i −0.978939 0.204153i \(-0.934556\pi\)
0.978939 0.204153i \(-0.0654440\pi\)
\(968\) 0 0
\(969\) −13.7980 −0.443254
\(970\) 0 0
\(971\) −27.1010 −0.869713 −0.434857 0.900500i \(-0.643201\pi\)
−0.434857 + 0.900500i \(0.643201\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 0 0
\(975\) 4.89898 1.00000i 0.156893 0.0320256i
\(976\) 0 0
\(977\) 27.5505i 0.881419i −0.897650 0.440709i \(-0.854727\pi\)
0.897650 0.440709i \(-0.145273\pi\)
\(978\) 0 0
\(979\) −0.606123 −0.0193718
\(980\) 0 0
\(981\) 10.8990 0.347978
\(982\) 0 0
\(983\) 48.4495i 1.54530i −0.634833 0.772649i \(-0.718931\pi\)
0.634833 0.772649i \(-0.281069\pi\)
\(984\) 0 0
\(985\) 25.6969 2.59592i 0.818773 0.0827128i
\(986\) 0 0
\(987\) 10.6969i 0.340487i
\(988\) 0 0
\(989\) 38.2020 1.21475
\(990\) 0 0
\(991\) −0.404082 −0.0128361 −0.00641804 0.999979i \(-0.502043\pi\)
−0.00641804 + 0.999979i \(0.502043\pi\)
\(992\) 0 0
\(993\) 25.5959i 0.812262i
\(994\) 0 0
\(995\) 1.34847 + 13.3485i 0.0427493 + 0.423175i
\(996\) 0 0
\(997\) 8.40408i 0.266160i 0.991105 + 0.133080i \(0.0424867\pi\)
−0.991105 + 0.133080i \(0.957513\pi\)
\(998\) 0 0
\(999\) 10.8990 0.344828
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3120.2.l.j.1249.4 4
4.3 odd 2 780.2.h.c.469.2 4
5.4 even 2 inner 3120.2.l.j.1249.2 4
12.11 even 2 2340.2.h.d.469.1 4
20.3 even 4 3900.2.a.t.1.1 2
20.7 even 4 3900.2.a.o.1.1 2
20.19 odd 2 780.2.h.c.469.4 yes 4
60.59 even 2 2340.2.h.d.469.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.h.c.469.2 4 4.3 odd 2
780.2.h.c.469.4 yes 4 20.19 odd 2
2340.2.h.d.469.1 4 12.11 even 2
2340.2.h.d.469.2 4 60.59 even 2
3120.2.l.j.1249.2 4 5.4 even 2 inner
3120.2.l.j.1249.4 4 1.1 even 1 trivial
3900.2.a.o.1.1 2 20.7 even 4
3900.2.a.t.1.1 2 20.3 even 4