Properties

Label 2-3120-5.4-c1-0-25
Degree $2$
Conductor $3120$
Sign $-0.100 - 0.994i$
Analytic cond. $24.9133$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + (0.224 + 2.22i)5-s − 2i·7-s − 9-s + 0.449·11-s + i·13-s + (−2.22 + 0.224i)15-s + 2i·17-s + 6.89·19-s + 2·21-s − 4.89i·23-s + (−4.89 + i)25-s i·27-s + 2·29-s + 2.89·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + (0.100 + 0.994i)5-s − 0.755i·7-s − 0.333·9-s + 0.135·11-s + 0.277i·13-s + (−0.574 + 0.0580i)15-s + 0.485i·17-s + 1.58·19-s + 0.436·21-s − 1.02i·23-s + (−0.979 + 0.200i)25-s − 0.192i·27-s + 0.371·29-s + 0.520·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3120\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.100 - 0.994i$
Analytic conductor: \(24.9133\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3120} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3120,\ (\ :1/2),\ -0.100 - 0.994i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.801131397\)
\(L(\frac12)\) \(\approx\) \(1.801131397\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + (-0.224 - 2.22i)T \)
13 \( 1 - iT \)
good7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 - 0.449T + 11T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 - 6.89T + 19T^{2} \)
23 \( 1 + 4.89iT - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 2.89T + 31T^{2} \)
37 \( 1 - 10.8iT - 37T^{2} \)
41 \( 1 - 3.55T + 41T^{2} \)
43 \( 1 - 7.79iT - 43T^{2} \)
47 \( 1 + 5.34iT - 47T^{2} \)
53 \( 1 - 2.89iT - 53T^{2} \)
59 \( 1 + 4.44T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 - 7.79iT - 67T^{2} \)
71 \( 1 + 14.2T + 71T^{2} \)
73 \( 1 - 7.79iT - 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 + 8.44iT - 83T^{2} \)
89 \( 1 + 1.34T + 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.961879681283150504652634844964, −8.071774924502760771661133839708, −7.36663940513635388512388801454, −6.61895950687381683992209047757, −5.99045524116270797365540861354, −4.92224071957982395158452888152, −4.15739122884206301328219970749, −3.32272431879932632767879708477, −2.60147321404295083242761006832, −1.14710442091577692404417370568, 0.64181600834108421300333854403, 1.66316355125805489254068672149, 2.68446211774007186100054018362, 3.68469653693722745154837121901, 4.84084025883655593655450620913, 5.53234845833296926118454898014, 5.98120079727834080983431412515, 7.20229843498933223527432197503, 7.70852292287552622266676095373, 8.512681950782854349269963668454

Graph of the $Z$-function along the critical line