Defining parameters
Level: | \( N \) | \(=\) | \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3900.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(1680\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3900))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 876 | 38 | 838 |
Cusp forms | 805 | 38 | 767 |
Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(48\) | \(0\) | \(48\) | \(43\) | \(0\) | \(43\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(60\) | \(0\) | \(60\) | \(54\) | \(0\) | \(54\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(59\) | \(0\) | \(59\) | \(53\) | \(0\) | \(53\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(55\) | \(0\) | \(55\) | \(49\) | \(0\) | \(49\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(63\) | \(0\) | \(63\) | \(57\) | \(0\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(51\) | \(0\) | \(51\) | \(45\) | \(0\) | \(45\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(52\) | \(0\) | \(52\) | \(46\) | \(0\) | \(46\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(56\) | \(0\) | \(56\) | \(50\) | \(0\) | \(50\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(51\) | \(3\) | \(48\) | \(48\) | \(3\) | \(45\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(57\) | \(6\) | \(51\) | \(54\) | \(6\) | \(48\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(55\) | \(6\) | \(49\) | \(52\) | \(6\) | \(46\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(53\) | \(4\) | \(49\) | \(50\) | \(4\) | \(46\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(57\) | \(3\) | \(54\) | \(54\) | \(3\) | \(51\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(51\) | \(6\) | \(45\) | \(48\) | \(6\) | \(42\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(53\) | \(6\) | \(47\) | \(50\) | \(6\) | \(44\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(55\) | \(4\) | \(51\) | \(52\) | \(4\) | \(48\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(430\) | \(19\) | \(411\) | \(395\) | \(19\) | \(376\) | \(35\) | \(0\) | \(35\) | ||||||
Minus space | \(-\) | \(446\) | \(19\) | \(427\) | \(410\) | \(19\) | \(391\) | \(36\) | \(0\) | \(36\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3900))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3900))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(975))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1950))\)\(^{\oplus 2}\)