Properties

Label 390.10.a.e.1.4
Level $390$
Weight $10$
Character 390.1
Self dual yes
Analytic conductor $200.864$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,10,Mod(1,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 390.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,324,1024,2500] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(200.863976104\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 103194x^{2} + 6753414x - 65794500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(283.710\) of defining polynomial
Character \(\chi\) \(=\) 390.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +81.0000 q^{3} +256.000 q^{4} +625.000 q^{5} -1296.00 q^{6} +8281.12 q^{7} -4096.00 q^{8} +6561.00 q^{9} -10000.0 q^{10} -49538.4 q^{11} +20736.0 q^{12} -28561.0 q^{13} -132498. q^{14} +50625.0 q^{15} +65536.0 q^{16} -329640. q^{17} -104976. q^{18} +36208.1 q^{19} +160000. q^{20} +670771. q^{21} +792615. q^{22} +2.51963e6 q^{23} -331776. q^{24} +390625. q^{25} +456976. q^{26} +531441. q^{27} +2.11997e6 q^{28} -3.51653e6 q^{29} -810000. q^{30} -888912. q^{31} -1.04858e6 q^{32} -4.01261e6 q^{33} +5.27425e6 q^{34} +5.17570e6 q^{35} +1.67962e6 q^{36} -1.44301e7 q^{37} -579329. q^{38} -2.31344e6 q^{39} -2.56000e6 q^{40} +1.01908e6 q^{41} -1.07323e7 q^{42} -4.20289e7 q^{43} -1.26818e7 q^{44} +4.10062e6 q^{45} -4.03140e7 q^{46} +1.60359e7 q^{47} +5.30842e6 q^{48} +2.82233e7 q^{49} -6.25000e6 q^{50} -2.67009e7 q^{51} -7.31162e6 q^{52} +1.40657e7 q^{53} -8.50306e6 q^{54} -3.09615e7 q^{55} -3.39195e7 q^{56} +2.93286e6 q^{57} +5.62645e7 q^{58} +2.63443e7 q^{59} +1.29600e7 q^{60} -4.43687e7 q^{61} +1.42226e7 q^{62} +5.43324e7 q^{63} +1.67772e7 q^{64} -1.78506e7 q^{65} +6.42018e7 q^{66} -1.54850e8 q^{67} -8.43880e7 q^{68} +2.04090e8 q^{69} -8.28112e7 q^{70} -1.78522e8 q^{71} -2.68739e7 q^{72} -3.02736e8 q^{73} +2.30882e8 q^{74} +3.16406e7 q^{75} +9.26927e6 q^{76} -4.10234e8 q^{77} +3.70151e7 q^{78} -4.12405e8 q^{79} +4.09600e7 q^{80} +4.30467e7 q^{81} -1.63052e7 q^{82} +9.57570e6 q^{83} +1.71717e8 q^{84} -2.06025e8 q^{85} +6.72462e8 q^{86} -2.84839e8 q^{87} +2.02909e8 q^{88} +7.95208e8 q^{89} -6.56100e7 q^{90} -2.36517e8 q^{91} +6.45024e8 q^{92} -7.20019e7 q^{93} -2.56574e8 q^{94} +2.26301e7 q^{95} -8.49347e7 q^{96} +1.08678e9 q^{97} -4.51573e8 q^{98} -3.25022e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} + 324 q^{3} + 1024 q^{4} + 2500 q^{5} - 5184 q^{6} - 2318 q^{7} - 16384 q^{8} + 26244 q^{9} - 40000 q^{10} - 10508 q^{11} + 82944 q^{12} - 114244 q^{13} + 37088 q^{14} + 202500 q^{15} + 262144 q^{16}+ \cdots - 68942988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 81.0000 0.577350
\(4\) 256.000 0.500000
\(5\) 625.000 0.447214
\(6\) −1296.00 −0.408248
\(7\) 8281.12 1.30361 0.651805 0.758386i \(-0.274012\pi\)
0.651805 + 0.758386i \(0.274012\pi\)
\(8\) −4096.00 −0.353553
\(9\) 6561.00 0.333333
\(10\) −10000.0 −0.316228
\(11\) −49538.4 −1.02018 −0.510088 0.860122i \(-0.670387\pi\)
−0.510088 + 0.860122i \(0.670387\pi\)
\(12\) 20736.0 0.288675
\(13\) −28561.0 −0.277350
\(14\) −132498. −0.921792
\(15\) 50625.0 0.258199
\(16\) 65536.0 0.250000
\(17\) −329640. −0.957239 −0.478619 0.878022i \(-0.658863\pi\)
−0.478619 + 0.878022i \(0.658863\pi\)
\(18\) −104976. −0.235702
\(19\) 36208.1 0.0637403 0.0318702 0.999492i \(-0.489854\pi\)
0.0318702 + 0.999492i \(0.489854\pi\)
\(20\) 160000. 0.223607
\(21\) 670771. 0.752640
\(22\) 792615. 0.721374
\(23\) 2.51963e6 1.87742 0.938708 0.344712i \(-0.112024\pi\)
0.938708 + 0.344712i \(0.112024\pi\)
\(24\) −331776. −0.204124
\(25\) 390625. 0.200000
\(26\) 456976. 0.196116
\(27\) 531441. 0.192450
\(28\) 2.11997e6 0.651805
\(29\) −3.51653e6 −0.923258 −0.461629 0.887073i \(-0.652735\pi\)
−0.461629 + 0.887073i \(0.652735\pi\)
\(30\) −810000. −0.182574
\(31\) −888912. −0.172875 −0.0864373 0.996257i \(-0.527548\pi\)
−0.0864373 + 0.996257i \(0.527548\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −4.01261e6 −0.588999
\(34\) 5.27425e6 0.676870
\(35\) 5.17570e6 0.582992
\(36\) 1.67962e6 0.166667
\(37\) −1.44301e7 −1.26579 −0.632897 0.774236i \(-0.718134\pi\)
−0.632897 + 0.774236i \(0.718134\pi\)
\(38\) −579329. −0.0450712
\(39\) −2.31344e6 −0.160128
\(40\) −2.56000e6 −0.158114
\(41\) 1.01908e6 0.0563222 0.0281611 0.999603i \(-0.491035\pi\)
0.0281611 + 0.999603i \(0.491035\pi\)
\(42\) −1.07323e7 −0.532197
\(43\) −4.20289e7 −1.87473 −0.937367 0.348343i \(-0.886744\pi\)
−0.937367 + 0.348343i \(0.886744\pi\)
\(44\) −1.26818e7 −0.510088
\(45\) 4.10062e6 0.149071
\(46\) −4.03140e7 −1.32753
\(47\) 1.60359e7 0.479350 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(48\) 5.30842e6 0.144338
\(49\) 2.82233e7 0.699400
\(50\) −6.25000e6 −0.141421
\(51\) −2.67009e7 −0.552662
\(52\) −7.31162e6 −0.138675
\(53\) 1.40657e7 0.244860 0.122430 0.992477i \(-0.460931\pi\)
0.122430 + 0.992477i \(0.460931\pi\)
\(54\) −8.50306e6 −0.136083
\(55\) −3.09615e7 −0.456237
\(56\) −3.39195e7 −0.460896
\(57\) 2.93286e6 0.0368005
\(58\) 5.62645e7 0.652842
\(59\) 2.63443e7 0.283043 0.141522 0.989935i \(-0.454800\pi\)
0.141522 + 0.989935i \(0.454800\pi\)
\(60\) 1.29600e7 0.129099
\(61\) −4.43687e7 −0.410291 −0.205146 0.978731i \(-0.565767\pi\)
−0.205146 + 0.978731i \(0.565767\pi\)
\(62\) 1.42226e7 0.122241
\(63\) 5.43324e7 0.434537
\(64\) 1.67772e7 0.125000
\(65\) −1.78506e7 −0.124035
\(66\) 6.42018e7 0.416485
\(67\) −1.54850e8 −0.938802 −0.469401 0.882985i \(-0.655530\pi\)
−0.469401 + 0.882985i \(0.655530\pi\)
\(68\) −8.43880e7 −0.478619
\(69\) 2.04090e8 1.08393
\(70\) −8.28112e7 −0.412238
\(71\) −1.78522e8 −0.833739 −0.416869 0.908966i \(-0.636873\pi\)
−0.416869 + 0.908966i \(0.636873\pi\)
\(72\) −2.68739e7 −0.117851
\(73\) −3.02736e8 −1.24770 −0.623851 0.781544i \(-0.714433\pi\)
−0.623851 + 0.781544i \(0.714433\pi\)
\(74\) 2.30882e8 0.895051
\(75\) 3.16406e7 0.115470
\(76\) 9.26927e6 0.0318702
\(77\) −4.10234e8 −1.32991
\(78\) 3.70151e7 0.113228
\(79\) −4.12405e8 −1.19125 −0.595624 0.803263i \(-0.703095\pi\)
−0.595624 + 0.803263i \(0.703095\pi\)
\(80\) 4.09600e7 0.111803
\(81\) 4.30467e7 0.111111
\(82\) −1.63052e7 −0.0398258
\(83\) 9.57570e6 0.0221472 0.0110736 0.999939i \(-0.496475\pi\)
0.0110736 + 0.999939i \(0.496475\pi\)
\(84\) 1.71717e8 0.376320
\(85\) −2.06025e8 −0.428090
\(86\) 6.72462e8 1.32564
\(87\) −2.84839e8 −0.533043
\(88\) 2.02909e8 0.360687
\(89\) 7.95208e8 1.34346 0.671732 0.740794i \(-0.265551\pi\)
0.671732 + 0.740794i \(0.265551\pi\)
\(90\) −6.56100e7 −0.105409
\(91\) −2.36517e8 −0.361556
\(92\) 6.45024e8 0.938708
\(93\) −7.20019e7 −0.0998092
\(94\) −2.56574e8 −0.338952
\(95\) 2.26301e7 0.0285055
\(96\) −8.49347e7 −0.102062
\(97\) 1.08678e9 1.24643 0.623217 0.782049i \(-0.285825\pi\)
0.623217 + 0.782049i \(0.285825\pi\)
\(98\) −4.51573e8 −0.494550
\(99\) −3.25022e8 −0.340059
\(100\) 1.00000e8 0.100000
\(101\) 8.94198e8 0.855042 0.427521 0.904005i \(-0.359387\pi\)
0.427521 + 0.904005i \(0.359387\pi\)
\(102\) 4.27214e8 0.390791
\(103\) −1.25207e9 −1.09612 −0.548062 0.836438i \(-0.684634\pi\)
−0.548062 + 0.836438i \(0.684634\pi\)
\(104\) 1.16986e8 0.0980581
\(105\) 4.19232e8 0.336591
\(106\) −2.25051e8 −0.173143
\(107\) −2.23799e9 −1.65056 −0.825281 0.564723i \(-0.808983\pi\)
−0.825281 + 0.564723i \(0.808983\pi\)
\(108\) 1.36049e8 0.0962250
\(109\) −1.79015e9 −1.21471 −0.607353 0.794432i \(-0.707769\pi\)
−0.607353 + 0.794432i \(0.707769\pi\)
\(110\) 4.95384e8 0.322608
\(111\) −1.16884e9 −0.730806
\(112\) 5.42711e8 0.325903
\(113\) 1.36821e9 0.789407 0.394703 0.918809i \(-0.370847\pi\)
0.394703 + 0.918809i \(0.370847\pi\)
\(114\) −4.69257e7 −0.0260219
\(115\) 1.57477e9 0.839606
\(116\) −9.00231e8 −0.461629
\(117\) −1.87389e8 −0.0924500
\(118\) −4.21509e8 −0.200142
\(119\) −2.72979e9 −1.24787
\(120\) −2.07360e8 −0.0912871
\(121\) 9.61093e7 0.0407597
\(122\) 7.09899e8 0.290120
\(123\) 8.25453e7 0.0325177
\(124\) −2.27562e8 −0.0864373
\(125\) 2.44141e8 0.0894427
\(126\) −8.69319e8 −0.307264
\(127\) 4.36568e9 1.48914 0.744569 0.667545i \(-0.232655\pi\)
0.744569 + 0.667545i \(0.232655\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −3.40434e9 −1.08238
\(130\) 2.85610e8 0.0877058
\(131\) 1.81953e9 0.539808 0.269904 0.962887i \(-0.413008\pi\)
0.269904 + 0.962887i \(0.413008\pi\)
\(132\) −1.02723e9 −0.294500
\(133\) 2.99843e8 0.0830926
\(134\) 2.47760e9 0.663833
\(135\) 3.32151e8 0.0860663
\(136\) 1.35021e9 0.338435
\(137\) −2.78946e9 −0.676516 −0.338258 0.941053i \(-0.609838\pi\)
−0.338258 + 0.941053i \(0.609838\pi\)
\(138\) −3.26543e9 −0.766452
\(139\) −2.24854e9 −0.510897 −0.255449 0.966823i \(-0.582223\pi\)
−0.255449 + 0.966823i \(0.582223\pi\)
\(140\) 1.32498e9 0.291496
\(141\) 1.29891e9 0.276753
\(142\) 2.85636e9 0.589542
\(143\) 1.41487e9 0.282946
\(144\) 4.29982e8 0.0833333
\(145\) −2.19783e9 −0.412894
\(146\) 4.84377e9 0.882258
\(147\) 2.28609e9 0.403799
\(148\) −3.69412e9 −0.632897
\(149\) 2.41914e9 0.402089 0.201045 0.979582i \(-0.435566\pi\)
0.201045 + 0.979582i \(0.435566\pi\)
\(150\) −5.06250e8 −0.0816497
\(151\) 5.38655e9 0.843168 0.421584 0.906789i \(-0.361474\pi\)
0.421584 + 0.906789i \(0.361474\pi\)
\(152\) −1.48308e8 −0.0225356
\(153\) −2.16277e9 −0.319080
\(154\) 6.56374e9 0.940390
\(155\) −5.55570e8 −0.0773119
\(156\) −5.92241e8 −0.0800641
\(157\) −5.59233e9 −0.734589 −0.367295 0.930105i \(-0.619716\pi\)
−0.367295 + 0.930105i \(0.619716\pi\)
\(158\) 6.59849e9 0.842340
\(159\) 1.13932e9 0.141370
\(160\) −6.55360e8 −0.0790569
\(161\) 2.08653e10 2.44742
\(162\) −6.88748e8 −0.0785674
\(163\) −1.73725e9 −0.192760 −0.0963802 0.995345i \(-0.530726\pi\)
−0.0963802 + 0.995345i \(0.530726\pi\)
\(164\) 2.60884e8 0.0281611
\(165\) −2.50788e9 −0.263408
\(166\) −1.53211e8 −0.0156604
\(167\) −7.21585e8 −0.0717899 −0.0358949 0.999356i \(-0.511428\pi\)
−0.0358949 + 0.999356i \(0.511428\pi\)
\(168\) −2.74748e9 −0.266098
\(169\) 8.15731e8 0.0769231
\(170\) 3.29640e9 0.302706
\(171\) 2.37561e8 0.0212468
\(172\) −1.07594e10 −0.937367
\(173\) −5.90812e9 −0.501467 −0.250733 0.968056i \(-0.580672\pi\)
−0.250733 + 0.968056i \(0.580672\pi\)
\(174\) 4.55742e9 0.376919
\(175\) 3.23481e9 0.260722
\(176\) −3.24655e9 −0.255044
\(177\) 2.13389e9 0.163415
\(178\) −1.27233e10 −0.949972
\(179\) −2.39638e9 −0.174469 −0.0872343 0.996188i \(-0.527803\pi\)
−0.0872343 + 0.996188i \(0.527803\pi\)
\(180\) 1.04976e9 0.0745356
\(181\) 1.38875e10 0.961770 0.480885 0.876784i \(-0.340315\pi\)
0.480885 + 0.876784i \(0.340315\pi\)
\(182\) 3.78427e9 0.255659
\(183\) −3.59386e9 −0.236882
\(184\) −1.03204e10 −0.663767
\(185\) −9.01884e9 −0.566080
\(186\) 1.15203e9 0.0705758
\(187\) 1.63299e10 0.976553
\(188\) 4.10519e9 0.239675
\(189\) 4.40093e9 0.250880
\(190\) −3.62081e8 −0.0201565
\(191\) 3.37062e10 1.83256 0.916282 0.400534i \(-0.131175\pi\)
0.916282 + 0.400534i \(0.131175\pi\)
\(192\) 1.35895e9 0.0721688
\(193\) −2.98580e9 −0.154900 −0.0774502 0.996996i \(-0.524678\pi\)
−0.0774502 + 0.996996i \(0.524678\pi\)
\(194\) −1.73885e10 −0.881362
\(195\) −1.44590e9 −0.0716115
\(196\) 7.22516e9 0.349700
\(197\) 2.02654e9 0.0958643 0.0479321 0.998851i \(-0.484737\pi\)
0.0479321 + 0.998851i \(0.484737\pi\)
\(198\) 5.20035e9 0.240458
\(199\) −1.90479e9 −0.0861011 −0.0430505 0.999073i \(-0.513708\pi\)
−0.0430505 + 0.999073i \(0.513708\pi\)
\(200\) −1.60000e9 −0.0707107
\(201\) −1.25428e10 −0.542017
\(202\) −1.43072e10 −0.604606
\(203\) −2.91208e10 −1.20357
\(204\) −6.83542e9 −0.276331
\(205\) 6.36924e8 0.0251881
\(206\) 2.00331e10 0.775077
\(207\) 1.65313e10 0.625806
\(208\) −1.87177e9 −0.0693375
\(209\) −1.79369e9 −0.0650264
\(210\) −6.70771e9 −0.238006
\(211\) −6.94235e9 −0.241121 −0.120561 0.992706i \(-0.538469\pi\)
−0.120561 + 0.992706i \(0.538469\pi\)
\(212\) 3.60081e9 0.122430
\(213\) −1.44603e10 −0.481359
\(214\) 3.58079e10 1.16712
\(215\) −2.62680e10 −0.838407
\(216\) −2.17678e9 −0.0680414
\(217\) −7.36119e9 −0.225361
\(218\) 2.86425e10 0.858927
\(219\) −2.45216e10 −0.720361
\(220\) −7.92615e9 −0.228118
\(221\) 9.41486e9 0.265490
\(222\) 1.87015e10 0.516758
\(223\) 1.33484e10 0.361457 0.180729 0.983533i \(-0.442154\pi\)
0.180729 + 0.983533i \(0.442154\pi\)
\(224\) −8.68338e9 −0.230448
\(225\) 2.56289e9 0.0666667
\(226\) −2.18914e10 −0.558195
\(227\) −6.43112e10 −1.60757 −0.803785 0.594919i \(-0.797184\pi\)
−0.803785 + 0.594919i \(0.797184\pi\)
\(228\) 7.50811e8 0.0184003
\(229\) −1.90507e8 −0.00457774 −0.00228887 0.999997i \(-0.500729\pi\)
−0.00228887 + 0.999997i \(0.500729\pi\)
\(230\) −2.51963e10 −0.593691
\(231\) −3.32289e10 −0.767825
\(232\) 1.44037e10 0.326421
\(233\) −3.34339e10 −0.743165 −0.371583 0.928400i \(-0.621185\pi\)
−0.371583 + 0.928400i \(0.621185\pi\)
\(234\) 2.99822e9 0.0653720
\(235\) 1.00224e10 0.214372
\(236\) 6.74415e9 0.141522
\(237\) −3.34048e10 −0.687768
\(238\) 4.36767e10 0.882375
\(239\) −4.09559e10 −0.811943 −0.405971 0.913886i \(-0.633067\pi\)
−0.405971 + 0.913886i \(0.633067\pi\)
\(240\) 3.31776e9 0.0645497
\(241\) −4.20239e10 −0.802452 −0.401226 0.915979i \(-0.631416\pi\)
−0.401226 + 0.915979i \(0.631416\pi\)
\(242\) −1.53775e9 −0.0288215
\(243\) 3.48678e9 0.0641500
\(244\) −1.13584e10 −0.205146
\(245\) 1.76396e10 0.312781
\(246\) −1.32072e9 −0.0229935
\(247\) −1.03414e9 −0.0176784
\(248\) 3.64098e9 0.0611204
\(249\) 7.75631e8 0.0127867
\(250\) −3.90625e9 −0.0632456
\(251\) −3.96698e10 −0.630853 −0.315426 0.948950i \(-0.602148\pi\)
−0.315426 + 0.948950i \(0.602148\pi\)
\(252\) 1.39091e10 0.217268
\(253\) −1.24818e11 −1.91530
\(254\) −6.98509e10 −1.05298
\(255\) −1.66880e10 −0.247158
\(256\) 4.29497e9 0.0625000
\(257\) −8.50279e8 −0.0121580 −0.00607900 0.999982i \(-0.501935\pi\)
−0.00607900 + 0.999982i \(0.501935\pi\)
\(258\) 5.44694e10 0.765357
\(259\) −1.19498e11 −1.65010
\(260\) −4.56976e9 −0.0620174
\(261\) −2.30719e10 −0.307753
\(262\) −2.91125e10 −0.381702
\(263\) 1.74825e10 0.225321 0.112661 0.993634i \(-0.464063\pi\)
0.112661 + 0.993634i \(0.464063\pi\)
\(264\) 1.64357e10 0.208243
\(265\) 8.79104e9 0.109505
\(266\) −4.79749e9 −0.0587553
\(267\) 6.44119e10 0.775649
\(268\) −3.96415e10 −0.469401
\(269\) −3.63692e10 −0.423495 −0.211747 0.977324i \(-0.567915\pi\)
−0.211747 + 0.977324i \(0.567915\pi\)
\(270\) −5.31441e9 −0.0608581
\(271\) 1.85293e10 0.208688 0.104344 0.994541i \(-0.466726\pi\)
0.104344 + 0.994541i \(0.466726\pi\)
\(272\) −2.16033e10 −0.239310
\(273\) −1.91579e10 −0.208745
\(274\) 4.46314e10 0.478369
\(275\) −1.93510e10 −0.204035
\(276\) 5.22469e10 0.541964
\(277\) 7.12972e10 0.727635 0.363817 0.931470i \(-0.381473\pi\)
0.363817 + 0.931470i \(0.381473\pi\)
\(278\) 3.59766e10 0.361259
\(279\) −5.83215e9 −0.0576249
\(280\) −2.11997e10 −0.206119
\(281\) 4.55473e10 0.435797 0.217898 0.975971i \(-0.430080\pi\)
0.217898 + 0.975971i \(0.430080\pi\)
\(282\) −2.07825e10 −0.195694
\(283\) −9.23008e10 −0.855395 −0.427697 0.903922i \(-0.640675\pi\)
−0.427697 + 0.903922i \(0.640675\pi\)
\(284\) −4.57017e10 −0.416869
\(285\) 1.83303e9 0.0164577
\(286\) −2.26379e10 −0.200073
\(287\) 8.43910e9 0.0734223
\(288\) −6.87971e9 −0.0589256
\(289\) −9.92504e9 −0.0836936
\(290\) 3.51653e10 0.291960
\(291\) 8.80293e10 0.719629
\(292\) −7.75003e10 −0.623851
\(293\) −7.63388e10 −0.605120 −0.302560 0.953130i \(-0.597841\pi\)
−0.302560 + 0.953130i \(0.597841\pi\)
\(294\) −3.65774e10 −0.285529
\(295\) 1.64652e10 0.126581
\(296\) 5.91059e10 0.447526
\(297\) −2.63268e10 −0.196333
\(298\) −3.87062e10 −0.284320
\(299\) −7.19630e10 −0.520702
\(300\) 8.10000e9 0.0577350
\(301\) −3.48046e11 −2.44392
\(302\) −8.61847e10 −0.596210
\(303\) 7.24300e10 0.493659
\(304\) 2.37293e9 0.0159351
\(305\) −2.77304e10 −0.183488
\(306\) 3.46043e10 0.225623
\(307\) −7.35495e10 −0.472560 −0.236280 0.971685i \(-0.575928\pi\)
−0.236280 + 0.971685i \(0.575928\pi\)
\(308\) −1.05020e11 −0.664956
\(309\) −1.01417e11 −0.632847
\(310\) 8.88912e9 0.0546678
\(311\) −1.68470e11 −1.02118 −0.510588 0.859826i \(-0.670572\pi\)
−0.510588 + 0.859826i \(0.670572\pi\)
\(312\) 9.47585e9 0.0566139
\(313\) −5.08633e10 −0.299540 −0.149770 0.988721i \(-0.547853\pi\)
−0.149770 + 0.988721i \(0.547853\pi\)
\(314\) 8.94773e10 0.519433
\(315\) 3.39578e10 0.194331
\(316\) −1.05576e11 −0.595624
\(317\) 1.66288e10 0.0924898 0.0462449 0.998930i \(-0.485275\pi\)
0.0462449 + 0.998930i \(0.485275\pi\)
\(318\) −1.82291e10 −0.0999639
\(319\) 1.74203e11 0.941886
\(320\) 1.04858e10 0.0559017
\(321\) −1.81277e11 −0.952952
\(322\) −3.33845e11 −1.73059
\(323\) −1.19357e10 −0.0610147
\(324\) 1.10200e10 0.0555556
\(325\) −1.11566e10 −0.0554700
\(326\) 2.77960e10 0.136302
\(327\) −1.45003e11 −0.701311
\(328\) −4.17414e9 −0.0199129
\(329\) 1.32795e11 0.624886
\(330\) 4.01261e10 0.186258
\(331\) −1.21761e11 −0.557546 −0.278773 0.960357i \(-0.589928\pi\)
−0.278773 + 0.960357i \(0.589928\pi\)
\(332\) 2.45138e9 0.0110736
\(333\) −9.46761e10 −0.421931
\(334\) 1.15454e10 0.0507631
\(335\) −9.67811e10 −0.419845
\(336\) 4.39596e10 0.188160
\(337\) 3.49189e11 1.47477 0.737387 0.675470i \(-0.236059\pi\)
0.737387 + 0.675470i \(0.236059\pi\)
\(338\) −1.30517e10 −0.0543928
\(339\) 1.10825e11 0.455764
\(340\) −5.27425e10 −0.214045
\(341\) 4.40353e10 0.176363
\(342\) −3.80098e9 −0.0150237
\(343\) −1.00452e11 −0.391866
\(344\) 1.72150e11 0.662819
\(345\) 1.27556e11 0.484747
\(346\) 9.45300e10 0.354590
\(347\) −2.97630e11 −1.10203 −0.551016 0.834495i \(-0.685760\pi\)
−0.551016 + 0.834495i \(0.685760\pi\)
\(348\) −7.29187e10 −0.266522
\(349\) −2.22052e11 −0.801199 −0.400599 0.916253i \(-0.631198\pi\)
−0.400599 + 0.916253i \(0.631198\pi\)
\(350\) −5.17570e10 −0.184358
\(351\) −1.51785e10 −0.0533761
\(352\) 5.19448e10 0.180343
\(353\) −7.40921e10 −0.253972 −0.126986 0.991905i \(-0.540530\pi\)
−0.126986 + 0.991905i \(0.540530\pi\)
\(354\) −3.41423e10 −0.115552
\(355\) −1.11576e11 −0.372859
\(356\) 2.03573e11 0.671732
\(357\) −2.21113e11 −0.720456
\(358\) 3.83421e10 0.123368
\(359\) −2.29579e11 −0.729469 −0.364735 0.931111i \(-0.618840\pi\)
−0.364735 + 0.931111i \(0.618840\pi\)
\(360\) −1.67962e10 −0.0527046
\(361\) −3.21377e11 −0.995937
\(362\) −2.22200e11 −0.680074
\(363\) 7.78486e9 0.0235326
\(364\) −6.05484e10 −0.180778
\(365\) −1.89210e11 −0.557989
\(366\) 5.75018e10 0.167501
\(367\) −3.82139e11 −1.09957 −0.549787 0.835305i \(-0.685291\pi\)
−0.549787 + 0.835305i \(0.685291\pi\)
\(368\) 1.65126e11 0.469354
\(369\) 6.68617e9 0.0187741
\(370\) 1.44301e11 0.400279
\(371\) 1.16479e11 0.319203
\(372\) −1.84325e10 −0.0499046
\(373\) 3.17543e11 0.849402 0.424701 0.905334i \(-0.360379\pi\)
0.424701 + 0.905334i \(0.360379\pi\)
\(374\) −2.61278e11 −0.690527
\(375\) 1.97754e10 0.0516398
\(376\) −6.56830e10 −0.169476
\(377\) 1.00436e11 0.256066
\(378\) −7.04148e10 −0.177399
\(379\) −3.98518e11 −0.992136 −0.496068 0.868284i \(-0.665223\pi\)
−0.496068 + 0.868284i \(0.665223\pi\)
\(380\) 5.79329e9 0.0142528
\(381\) 3.53620e11 0.859755
\(382\) −5.39299e11 −1.29582
\(383\) 3.31940e11 0.788253 0.394126 0.919056i \(-0.371047\pi\)
0.394126 + 0.919056i \(0.371047\pi\)
\(384\) −2.17433e10 −0.0510310
\(385\) −2.56396e11 −0.594755
\(386\) 4.77728e10 0.109531
\(387\) −2.75751e11 −0.624911
\(388\) 2.78216e11 0.623217
\(389\) 7.10223e11 1.57261 0.786306 0.617837i \(-0.211991\pi\)
0.786306 + 0.617837i \(0.211991\pi\)
\(390\) 2.31344e10 0.0506370
\(391\) −8.30570e11 −1.79714
\(392\) −1.15603e11 −0.247275
\(393\) 1.47382e11 0.311658
\(394\) −3.24246e10 −0.0677863
\(395\) −2.57753e11 −0.532743
\(396\) −8.32056e10 −0.170029
\(397\) −1.94348e11 −0.392665 −0.196332 0.980537i \(-0.562903\pi\)
−0.196332 + 0.980537i \(0.562903\pi\)
\(398\) 3.04767e10 0.0608827
\(399\) 2.42873e10 0.0479735
\(400\) 2.56000e10 0.0500000
\(401\) −7.04900e10 −0.136137 −0.0680687 0.997681i \(-0.521684\pi\)
−0.0680687 + 0.997681i \(0.521684\pi\)
\(402\) 2.00685e11 0.383264
\(403\) 2.53882e10 0.0479468
\(404\) 2.28915e11 0.427521
\(405\) 2.69042e10 0.0496904
\(406\) 4.65933e11 0.851052
\(407\) 7.14847e11 1.29133
\(408\) 1.09367e11 0.195396
\(409\) −6.69143e11 −1.18240 −0.591199 0.806526i \(-0.701345\pi\)
−0.591199 + 0.806526i \(0.701345\pi\)
\(410\) −1.01908e10 −0.0178107
\(411\) −2.25946e11 −0.390586
\(412\) −3.20529e11 −0.548062
\(413\) 2.18160e11 0.368978
\(414\) −2.64500e11 −0.442511
\(415\) 5.98481e9 0.00990453
\(416\) 2.99484e10 0.0490290
\(417\) −1.82132e11 −0.294967
\(418\) 2.86991e10 0.0459806
\(419\) −9.18824e10 −0.145636 −0.0728181 0.997345i \(-0.523199\pi\)
−0.0728181 + 0.997345i \(0.523199\pi\)
\(420\) 1.07323e11 0.168295
\(421\) 1.03742e12 1.60949 0.804743 0.593624i \(-0.202303\pi\)
0.804743 + 0.593624i \(0.202303\pi\)
\(422\) 1.11078e11 0.170499
\(423\) 1.05211e11 0.159783
\(424\) −5.76129e10 −0.0865713
\(425\) −1.28766e11 −0.191448
\(426\) 2.31365e11 0.340372
\(427\) −3.67422e11 −0.534860
\(428\) −5.72926e11 −0.825281
\(429\) 1.14604e11 0.163359
\(430\) 4.20289e11 0.592843
\(431\) −5.94936e11 −0.830468 −0.415234 0.909715i \(-0.636300\pi\)
−0.415234 + 0.909715i \(0.636300\pi\)
\(432\) 3.48285e10 0.0481125
\(433\) −1.07947e12 −1.47575 −0.737876 0.674936i \(-0.764171\pi\)
−0.737876 + 0.674936i \(0.764171\pi\)
\(434\) 1.17779e11 0.159354
\(435\) −1.78024e11 −0.238384
\(436\) −4.58280e11 −0.607353
\(437\) 9.12308e10 0.119667
\(438\) 3.92345e11 0.509372
\(439\) −5.14665e11 −0.661354 −0.330677 0.943744i \(-0.607277\pi\)
−0.330677 + 0.943744i \(0.607277\pi\)
\(440\) 1.26818e11 0.161304
\(441\) 1.85173e11 0.233133
\(442\) −1.50638e11 −0.187730
\(443\) 7.59528e11 0.936973 0.468487 0.883471i \(-0.344799\pi\)
0.468487 + 0.883471i \(0.344799\pi\)
\(444\) −2.99223e11 −0.365403
\(445\) 4.97005e11 0.600815
\(446\) −2.13574e11 −0.255589
\(447\) 1.95950e11 0.232146
\(448\) 1.38934e11 0.162951
\(449\) 7.62298e11 0.885149 0.442574 0.896732i \(-0.354065\pi\)
0.442574 + 0.896732i \(0.354065\pi\)
\(450\) −4.10062e10 −0.0471405
\(451\) −5.04835e10 −0.0574586
\(452\) 3.50263e11 0.394703
\(453\) 4.36310e11 0.486803
\(454\) 1.02898e12 1.13672
\(455\) −1.47823e11 −0.161693
\(456\) −1.20130e10 −0.0130109
\(457\) −8.56426e11 −0.918474 −0.459237 0.888314i \(-0.651877\pi\)
−0.459237 + 0.888314i \(0.651877\pi\)
\(458\) 3.04811e9 0.00323695
\(459\) −1.75184e11 −0.184221
\(460\) 4.03140e11 0.419803
\(461\) 1.07100e12 1.10443 0.552213 0.833703i \(-0.313784\pi\)
0.552213 + 0.833703i \(0.313784\pi\)
\(462\) 5.31663e11 0.542934
\(463\) 1.67431e12 1.69325 0.846626 0.532188i \(-0.178630\pi\)
0.846626 + 0.532188i \(0.178630\pi\)
\(464\) −2.30459e11 −0.230815
\(465\) −4.50012e10 −0.0446360
\(466\) 5.34942e11 0.525497
\(467\) 2.41867e11 0.235315 0.117658 0.993054i \(-0.462461\pi\)
0.117658 + 0.993054i \(0.462461\pi\)
\(468\) −4.79715e10 −0.0462250
\(469\) −1.28233e12 −1.22383
\(470\) −1.60359e11 −0.151584
\(471\) −4.52979e11 −0.424115
\(472\) −1.07906e11 −0.100071
\(473\) 2.08205e12 1.91256
\(474\) 5.34477e11 0.486325
\(475\) 1.41438e10 0.0127481
\(476\) −6.98827e11 −0.623933
\(477\) 9.22848e10 0.0816202
\(478\) 6.55294e11 0.574130
\(479\) 8.06204e11 0.699738 0.349869 0.936799i \(-0.386226\pi\)
0.349869 + 0.936799i \(0.386226\pi\)
\(480\) −5.30842e10 −0.0456435
\(481\) 4.12139e11 0.351068
\(482\) 6.72382e11 0.567420
\(483\) 1.69009e12 1.41302
\(484\) 2.46040e10 0.0203799
\(485\) 6.79238e11 0.557422
\(486\) −5.57886e10 −0.0453609
\(487\) 1.20604e12 0.971585 0.485793 0.874074i \(-0.338531\pi\)
0.485793 + 0.874074i \(0.338531\pi\)
\(488\) 1.81734e11 0.145060
\(489\) −1.40717e11 −0.111290
\(490\) −2.82233e11 −0.221170
\(491\) −1.37912e12 −1.07087 −0.535434 0.844577i \(-0.679852\pi\)
−0.535434 + 0.844577i \(0.679852\pi\)
\(492\) 2.11316e10 0.0162588
\(493\) 1.15919e12 0.883779
\(494\) 1.65462e10 0.0125005
\(495\) −2.03139e11 −0.152079
\(496\) −5.82557e10 −0.0432187
\(497\) −1.47836e12 −1.08687
\(498\) −1.24101e10 −0.00904156
\(499\) 3.13593e11 0.226419 0.113210 0.993571i \(-0.463887\pi\)
0.113210 + 0.993571i \(0.463887\pi\)
\(500\) 6.25000e10 0.0447214
\(501\) −5.84484e10 −0.0414479
\(502\) 6.34717e11 0.446080
\(503\) 1.23508e12 0.860281 0.430141 0.902762i \(-0.358464\pi\)
0.430141 + 0.902762i \(0.358464\pi\)
\(504\) −2.22546e11 −0.153632
\(505\) 5.58874e11 0.382386
\(506\) 1.99709e12 1.35432
\(507\) 6.60742e10 0.0444116
\(508\) 1.11761e12 0.744569
\(509\) 3.88359e11 0.256450 0.128225 0.991745i \(-0.459072\pi\)
0.128225 + 0.991745i \(0.459072\pi\)
\(510\) 2.67009e11 0.174767
\(511\) −2.50699e12 −1.62652
\(512\) −6.87195e10 −0.0441942
\(513\) 1.92425e10 0.0122668
\(514\) 1.36045e10 0.00859700
\(515\) −7.82541e11 −0.490202
\(516\) −8.71511e11 −0.541189
\(517\) −7.94393e11 −0.489022
\(518\) 1.91196e12 1.16680
\(519\) −4.78558e11 −0.289522
\(520\) 7.31162e10 0.0438529
\(521\) −1.44737e12 −0.860619 −0.430309 0.902681i \(-0.641596\pi\)
−0.430309 + 0.902681i \(0.641596\pi\)
\(522\) 3.69151e11 0.217614
\(523\) −1.26856e12 −0.741400 −0.370700 0.928753i \(-0.620882\pi\)
−0.370700 + 0.928753i \(0.620882\pi\)
\(524\) 4.65801e11 0.269904
\(525\) 2.62020e11 0.150528
\(526\) −2.79720e11 −0.159326
\(527\) 2.93021e11 0.165482
\(528\) −2.62971e11 −0.147250
\(529\) 4.54736e12 2.52469
\(530\) −1.40657e11 −0.0774317
\(531\) 1.72845e11 0.0943478
\(532\) 7.67599e10 0.0415463
\(533\) −2.91059e10 −0.0156210
\(534\) −1.03059e12 −0.548467
\(535\) −1.39875e12 −0.738153
\(536\) 6.34264e11 0.331916
\(537\) −1.94107e11 −0.100730
\(538\) 5.81907e11 0.299456
\(539\) −1.39814e12 −0.713511
\(540\) 8.50306e10 0.0430331
\(541\) −2.20856e12 −1.10846 −0.554232 0.832362i \(-0.686988\pi\)
−0.554232 + 0.832362i \(0.686988\pi\)
\(542\) −2.96469e11 −0.147565
\(543\) 1.12489e12 0.555278
\(544\) 3.45653e11 0.169218
\(545\) −1.11885e12 −0.543233
\(546\) 3.06526e11 0.147605
\(547\) −3.20992e12 −1.53303 −0.766516 0.642225i \(-0.778012\pi\)
−0.766516 + 0.642225i \(0.778012\pi\)
\(548\) −7.14102e11 −0.338258
\(549\) −2.91103e11 −0.136764
\(550\) 3.09615e11 0.144275
\(551\) −1.27327e11 −0.0588488
\(552\) −8.35951e11 −0.383226
\(553\) −3.41518e12 −1.55292
\(554\) −1.14076e12 −0.514516
\(555\) −7.30526e11 −0.326826
\(556\) −5.75626e11 −0.255449
\(557\) −2.88331e12 −1.26924 −0.634618 0.772826i \(-0.718843\pi\)
−0.634618 + 0.772826i \(0.718843\pi\)
\(558\) 9.33144e10 0.0407469
\(559\) 1.20039e12 0.519958
\(560\) 3.39195e11 0.145748
\(561\) 1.32272e12 0.563813
\(562\) −7.28757e11 −0.308155
\(563\) −3.40237e11 −0.142723 −0.0713615 0.997451i \(-0.522734\pi\)
−0.0713615 + 0.997451i \(0.522734\pi\)
\(564\) 3.32520e11 0.138376
\(565\) 8.55133e11 0.353033
\(566\) 1.47681e12 0.604855
\(567\) 3.56475e11 0.144846
\(568\) 7.31227e11 0.294771
\(569\) −4.43850e12 −1.77513 −0.887567 0.460678i \(-0.847606\pi\)
−0.887567 + 0.460678i \(0.847606\pi\)
\(570\) −2.93286e10 −0.0116373
\(571\) −3.88184e12 −1.52818 −0.764091 0.645109i \(-0.776812\pi\)
−0.764091 + 0.645109i \(0.776812\pi\)
\(572\) 3.62206e11 0.141473
\(573\) 2.73020e12 1.05803
\(574\) −1.35026e11 −0.0519174
\(575\) 9.84229e11 0.375483
\(576\) 1.10075e11 0.0416667
\(577\) 3.36545e12 1.26401 0.632007 0.774963i \(-0.282231\pi\)
0.632007 + 0.774963i \(0.282231\pi\)
\(578\) 1.58801e11 0.0591803
\(579\) −2.41850e11 −0.0894318
\(580\) −5.62645e11 −0.206447
\(581\) 7.92975e10 0.0288713
\(582\) −1.40847e12 −0.508854
\(583\) −6.96791e11 −0.249801
\(584\) 1.24000e12 0.441129
\(585\) −1.17118e11 −0.0413449
\(586\) 1.22142e12 0.427884
\(587\) 4.57992e11 0.159216 0.0796080 0.996826i \(-0.474633\pi\)
0.0796080 + 0.996826i \(0.474633\pi\)
\(588\) 5.85238e11 0.201899
\(589\) −3.21858e10 −0.0110191
\(590\) −2.63443e11 −0.0895062
\(591\) 1.64150e11 0.0553473
\(592\) −9.45694e11 −0.316448
\(593\) −3.18932e12 −1.05914 −0.529569 0.848267i \(-0.677646\pi\)
−0.529569 + 0.848267i \(0.677646\pi\)
\(594\) 4.21228e11 0.138828
\(595\) −1.70612e12 −0.558063
\(596\) 6.19299e11 0.201045
\(597\) −1.54288e11 −0.0497105
\(598\) 1.15141e12 0.368192
\(599\) 4.90163e12 1.55568 0.777839 0.628463i \(-0.216316\pi\)
0.777839 + 0.628463i \(0.216316\pi\)
\(600\) −1.29600e11 −0.0408248
\(601\) 3.34904e12 1.04709 0.523546 0.851997i \(-0.324609\pi\)
0.523546 + 0.851997i \(0.324609\pi\)
\(602\) 5.56874e12 1.72811
\(603\) −1.01597e12 −0.312934
\(604\) 1.37896e12 0.421584
\(605\) 6.00683e10 0.0182283
\(606\) −1.15888e12 −0.349069
\(607\) 6.04390e12 1.80704 0.903520 0.428546i \(-0.140974\pi\)
0.903520 + 0.428546i \(0.140974\pi\)
\(608\) −3.79669e10 −0.0112678
\(609\) −2.35878e12 −0.694881
\(610\) 4.43687e11 0.129745
\(611\) −4.58001e11 −0.132948
\(612\) −5.53669e11 −0.159540
\(613\) −1.22849e12 −0.351397 −0.175698 0.984444i \(-0.556218\pi\)
−0.175698 + 0.984444i \(0.556218\pi\)
\(614\) 1.17679e12 0.334150
\(615\) 5.15908e10 0.0145423
\(616\) 1.68032e12 0.470195
\(617\) 1.47331e12 0.409271 0.204635 0.978838i \(-0.434399\pi\)
0.204635 + 0.978838i \(0.434399\pi\)
\(618\) 1.62268e12 0.447491
\(619\) 6.79566e12 1.86047 0.930237 0.366958i \(-0.119601\pi\)
0.930237 + 0.366958i \(0.119601\pi\)
\(620\) −1.42226e11 −0.0386559
\(621\) 1.33903e12 0.361309
\(622\) 2.69552e12 0.722080
\(623\) 6.58521e12 1.75135
\(624\) −1.51614e11 −0.0400320
\(625\) 1.52588e11 0.0400000
\(626\) 8.13812e11 0.211807
\(627\) −1.45289e11 −0.0375430
\(628\) −1.43164e12 −0.367295
\(629\) 4.75676e12 1.21167
\(630\) −5.43324e11 −0.137413
\(631\) −7.14295e12 −1.79368 −0.896842 0.442352i \(-0.854144\pi\)
−0.896842 + 0.442352i \(0.854144\pi\)
\(632\) 1.68921e12 0.421170
\(633\) −5.62331e11 −0.139211
\(634\) −2.66061e11 −0.0654002
\(635\) 2.72855e12 0.665963
\(636\) 2.91666e11 0.0706851
\(637\) −8.06086e11 −0.193979
\(638\) −2.78725e12 −0.666014
\(639\) −1.17128e12 −0.277913
\(640\) −1.67772e11 −0.0395285
\(641\) −2.65068e12 −0.620149 −0.310075 0.950712i \(-0.600354\pi\)
−0.310075 + 0.950712i \(0.600354\pi\)
\(642\) 2.90044e12 0.673839
\(643\) −4.68493e12 −1.08082 −0.540411 0.841401i \(-0.681731\pi\)
−0.540411 + 0.841401i \(0.681731\pi\)
\(644\) 5.34152e12 1.22371
\(645\) −2.12771e12 −0.484054
\(646\) 1.90970e11 0.0431439
\(647\) −3.58806e9 −0.000804990 0 −0.000402495 1.00000i \(-0.500128\pi\)
−0.000402495 1.00000i \(0.500128\pi\)
\(648\) −1.76319e11 −0.0392837
\(649\) −1.30506e12 −0.288754
\(650\) 1.78506e11 0.0392232
\(651\) −5.96256e11 −0.130112
\(652\) −4.44736e11 −0.0963802
\(653\) −2.11573e12 −0.455355 −0.227678 0.973737i \(-0.573113\pi\)
−0.227678 + 0.973737i \(0.573113\pi\)
\(654\) 2.32004e12 0.495902
\(655\) 1.13721e12 0.241409
\(656\) 6.67863e10 0.0140806
\(657\) −1.98625e12 −0.415900
\(658\) −2.12472e12 −0.441861
\(659\) 2.69360e12 0.556352 0.278176 0.960530i \(-0.410270\pi\)
0.278176 + 0.960530i \(0.410270\pi\)
\(660\) −6.42018e11 −0.131704
\(661\) 3.73186e12 0.760360 0.380180 0.924913i \(-0.375862\pi\)
0.380180 + 0.924913i \(0.375862\pi\)
\(662\) 1.94817e12 0.394245
\(663\) 7.62604e11 0.153281
\(664\) −3.92221e10 −0.00783022
\(665\) 1.87402e11 0.0371601
\(666\) 1.51482e12 0.298350
\(667\) −8.86033e12 −1.73334
\(668\) −1.84726e11 −0.0358949
\(669\) 1.08122e12 0.208688
\(670\) 1.54850e12 0.296875
\(671\) 2.19796e12 0.418569
\(672\) −7.03354e11 −0.133049
\(673\) −6.76030e11 −0.127028 −0.0635138 0.997981i \(-0.520231\pi\)
−0.0635138 + 0.997981i \(0.520231\pi\)
\(674\) −5.58702e12 −1.04282
\(675\) 2.07594e11 0.0384900
\(676\) 2.08827e11 0.0384615
\(677\) −5.01995e11 −0.0918440 −0.0459220 0.998945i \(-0.514623\pi\)
−0.0459220 + 0.998945i \(0.514623\pi\)
\(678\) −1.77320e12 −0.322274
\(679\) 8.99976e12 1.62486
\(680\) 8.43880e11 0.151353
\(681\) −5.20920e12 −0.928131
\(682\) −7.04565e11 −0.124707
\(683\) 7.04293e12 1.23840 0.619199 0.785234i \(-0.287458\pi\)
0.619199 + 0.785234i \(0.287458\pi\)
\(684\) 6.08157e10 0.0106234
\(685\) −1.74341e12 −0.302547
\(686\) 1.60724e12 0.277091
\(687\) −1.54311e10 −0.00264296
\(688\) −2.75440e12 −0.468684
\(689\) −4.01729e11 −0.0679121
\(690\) −2.04090e12 −0.342768
\(691\) −3.48508e12 −0.581517 −0.290758 0.956797i \(-0.593908\pi\)
−0.290758 + 0.956797i \(0.593908\pi\)
\(692\) −1.51248e12 −0.250733
\(693\) −2.69154e12 −0.443304
\(694\) 4.76208e12 0.779254
\(695\) −1.40534e12 −0.228480
\(696\) 1.16670e12 0.188459
\(697\) −3.35929e11 −0.0539138
\(698\) 3.55283e12 0.566533
\(699\) −2.70815e12 −0.429067
\(700\) 8.28112e11 0.130361
\(701\) 8.64945e12 1.35287 0.676437 0.736500i \(-0.263523\pi\)
0.676437 + 0.736500i \(0.263523\pi\)
\(702\) 2.42856e11 0.0377426
\(703\) −5.22488e11 −0.0806821
\(704\) −8.31117e11 −0.127522
\(705\) 8.11817e11 0.123768
\(706\) 1.18547e12 0.179585
\(707\) 7.40496e12 1.11464
\(708\) 5.46276e11 0.0817076
\(709\) −9.51182e12 −1.41369 −0.706847 0.707366i \(-0.749883\pi\)
−0.706847 + 0.707366i \(0.749883\pi\)
\(710\) 1.78522e12 0.263651
\(711\) −2.70579e12 −0.397083
\(712\) −3.25717e12 −0.474986
\(713\) −2.23973e12 −0.324558
\(714\) 3.53781e12 0.509439
\(715\) 8.84292e11 0.126537
\(716\) −6.13474e11 −0.0872343
\(717\) −3.31742e12 −0.468775
\(718\) 3.67326e12 0.515813
\(719\) −9.70581e12 −1.35441 −0.677207 0.735792i \(-0.736810\pi\)
−0.677207 + 0.735792i \(0.736810\pi\)
\(720\) 2.68739e11 0.0372678
\(721\) −1.03685e13 −1.42892
\(722\) 5.14203e12 0.704234
\(723\) −3.40393e12 −0.463296
\(724\) 3.55521e12 0.480885
\(725\) −1.37364e12 −0.184652
\(726\) −1.24558e11 −0.0166401
\(727\) −5.39248e12 −0.715952 −0.357976 0.933731i \(-0.616533\pi\)
−0.357976 + 0.933731i \(0.616533\pi\)
\(728\) 9.68774e11 0.127830
\(729\) 2.82430e11 0.0370370
\(730\) 3.02736e12 0.394558
\(731\) 1.38544e13 1.79457
\(732\) −9.20029e11 −0.118441
\(733\) −1.74066e12 −0.222713 −0.111356 0.993781i \(-0.535519\pi\)
−0.111356 + 0.993781i \(0.535519\pi\)
\(734\) 6.11423e12 0.777516
\(735\) 1.42880e12 0.180584
\(736\) −2.64202e12 −0.331884
\(737\) 7.67101e12 0.957743
\(738\) −1.06979e11 −0.0132753
\(739\) −1.23665e13 −1.52527 −0.762634 0.646830i \(-0.776094\pi\)
−0.762634 + 0.646830i \(0.776094\pi\)
\(740\) −2.30882e12 −0.283040
\(741\) −8.37653e10 −0.0102066
\(742\) −1.86367e12 −0.225710
\(743\) 1.46418e13 1.76257 0.881283 0.472588i \(-0.156680\pi\)
0.881283 + 0.472588i \(0.156680\pi\)
\(744\) 2.94920e11 0.0352879
\(745\) 1.51196e12 0.179820
\(746\) −5.08069e12 −0.600618
\(747\) 6.28261e10 0.00738240
\(748\) 4.18045e12 0.488276
\(749\) −1.85331e13 −2.15169
\(750\) −3.16406e11 −0.0365148
\(751\) 3.89123e12 0.446382 0.223191 0.974775i \(-0.428353\pi\)
0.223191 + 0.974775i \(0.428353\pi\)
\(752\) 1.05093e12 0.119838
\(753\) −3.21325e12 −0.364223
\(754\) −1.60697e12 −0.181066
\(755\) 3.36659e12 0.377076
\(756\) 1.12664e12 0.125440
\(757\) −1.24174e13 −1.37436 −0.687180 0.726487i \(-0.741152\pi\)
−0.687180 + 0.726487i \(0.741152\pi\)
\(758\) 6.37629e12 0.701546
\(759\) −1.01103e13 −1.10580
\(760\) −9.26927e10 −0.0100782
\(761\) −9.16764e12 −0.990892 −0.495446 0.868639i \(-0.664995\pi\)
−0.495446 + 0.868639i \(0.664995\pi\)
\(762\) −5.65792e12 −0.607938
\(763\) −1.48245e13 −1.58350
\(764\) 8.62878e12 0.916282
\(765\) −1.35173e12 −0.142697
\(766\) −5.31104e12 −0.557379
\(767\) −7.52420e11 −0.0785021
\(768\) 3.47892e11 0.0360844
\(769\) 1.23370e13 1.27216 0.636078 0.771625i \(-0.280556\pi\)
0.636078 + 0.771625i \(0.280556\pi\)
\(770\) 4.10234e12 0.420555
\(771\) −6.88726e10 −0.00701942
\(772\) −7.64365e11 −0.0774502
\(773\) 1.04157e13 1.04925 0.524627 0.851332i \(-0.324205\pi\)
0.524627 + 0.851332i \(0.324205\pi\)
\(774\) 4.41202e12 0.441879
\(775\) −3.47231e11 −0.0345749
\(776\) −4.45145e12 −0.440681
\(777\) −9.67931e12 −0.952686
\(778\) −1.13636e13 −1.11200
\(779\) 3.68989e10 0.00359000
\(780\) −3.70151e11 −0.0358057
\(781\) 8.84372e12 0.850560
\(782\) 1.32891e13 1.27077
\(783\) −1.86883e12 −0.177681
\(784\) 1.84964e12 0.174850
\(785\) −3.49521e12 −0.328518
\(786\) −2.35812e12 −0.220376
\(787\) 1.20846e13 1.12291 0.561454 0.827508i \(-0.310242\pi\)
0.561454 + 0.827508i \(0.310242\pi\)
\(788\) 5.18794e11 0.0479321
\(789\) 1.41608e12 0.130089
\(790\) 4.12405e12 0.376706
\(791\) 1.13303e13 1.02908
\(792\) 1.33129e12 0.120229
\(793\) 1.26721e12 0.113794
\(794\) 3.10956e12 0.277656
\(795\) 7.12074e11 0.0632227
\(796\) −4.87627e11 −0.0430505
\(797\) −4.84006e12 −0.424901 −0.212451 0.977172i \(-0.568145\pi\)
−0.212451 + 0.977172i \(0.568145\pi\)
\(798\) −3.88597e11 −0.0339224
\(799\) −5.28608e12 −0.458853
\(800\) −4.09600e11 −0.0353553
\(801\) 5.21736e12 0.447821
\(802\) 1.12784e12 0.0962637
\(803\) 1.49970e13 1.27288
\(804\) −3.21096e12 −0.271009
\(805\) 1.30408e13 1.09452
\(806\) −4.06212e11 −0.0339035
\(807\) −2.94590e12 −0.244505
\(808\) −3.66263e12 −0.302303
\(809\) 2.24825e13 1.84534 0.922671 0.385589i \(-0.126002\pi\)
0.922671 + 0.385589i \(0.126002\pi\)
\(810\) −4.30467e11 −0.0351364
\(811\) −9.66490e12 −0.784519 −0.392260 0.919855i \(-0.628307\pi\)
−0.392260 + 0.919855i \(0.628307\pi\)
\(812\) −7.45492e12 −0.601784
\(813\) 1.50087e12 0.120486
\(814\) −1.14375e13 −0.913110
\(815\) −1.08578e12 −0.0862051
\(816\) −1.74987e12 −0.138166
\(817\) −1.52179e12 −0.119496
\(818\) 1.07063e13 0.836082
\(819\) −1.55179e12 −0.120519
\(820\) 1.63052e11 0.0125940
\(821\) −2.57042e13 −1.97451 −0.987257 0.159133i \(-0.949130\pi\)
−0.987257 + 0.159133i \(0.949130\pi\)
\(822\) 3.61514e12 0.276186
\(823\) 1.95771e13 1.48747 0.743737 0.668472i \(-0.233051\pi\)
0.743737 + 0.668472i \(0.233051\pi\)
\(824\) 5.12846e12 0.387538
\(825\) −1.56743e12 −0.117800
\(826\) −3.49057e12 −0.260907
\(827\) −1.30998e13 −0.973846 −0.486923 0.873445i \(-0.661881\pi\)
−0.486923 + 0.873445i \(0.661881\pi\)
\(828\) 4.23200e12 0.312903
\(829\) 1.64795e13 1.21185 0.605923 0.795523i \(-0.292804\pi\)
0.605923 + 0.795523i \(0.292804\pi\)
\(830\) −9.57570e10 −0.00700356
\(831\) 5.77507e12 0.420100
\(832\) −4.79174e11 −0.0346688
\(833\) −9.30354e12 −0.669493
\(834\) 2.91411e12 0.208573
\(835\) −4.50990e11 −0.0321054
\(836\) −4.59185e11 −0.0325132
\(837\) −4.72404e11 −0.0332697
\(838\) 1.47012e12 0.102980
\(839\) −2.07057e13 −1.44265 −0.721326 0.692595i \(-0.756467\pi\)
−0.721326 + 0.692595i \(0.756467\pi\)
\(840\) −1.71717e12 −0.119003
\(841\) −2.14117e12 −0.147594
\(842\) −1.65988e13 −1.13808
\(843\) 3.68933e12 0.251607
\(844\) −1.77724e12 −0.120561
\(845\) 5.09832e11 0.0344010
\(846\) −1.68338e12 −0.112984
\(847\) 7.95893e11 0.0531348
\(848\) 9.21807e11 0.0612151
\(849\) −7.47637e12 −0.493862
\(850\) 2.06025e12 0.135374
\(851\) −3.63585e13 −2.37642
\(852\) −3.70184e12 −0.240680
\(853\) 1.27933e13 0.827393 0.413696 0.910415i \(-0.364237\pi\)
0.413696 + 0.910415i \(0.364237\pi\)
\(854\) 5.87876e12 0.378203
\(855\) 1.48476e11 0.00950185
\(856\) 9.16682e12 0.583561
\(857\) 6.17404e12 0.390981 0.195490 0.980706i \(-0.437370\pi\)
0.195490 + 0.980706i \(0.437370\pi\)
\(858\) −1.83367e12 −0.115512
\(859\) −8.60456e12 −0.539212 −0.269606 0.962971i \(-0.586893\pi\)
−0.269606 + 0.962971i \(0.586893\pi\)
\(860\) −6.72462e12 −0.419203
\(861\) 6.83567e11 0.0423904
\(862\) 9.51898e12 0.587229
\(863\) 2.30286e13 1.41325 0.706624 0.707589i \(-0.250217\pi\)
0.706624 + 0.707589i \(0.250217\pi\)
\(864\) −5.57256e11 −0.0340207
\(865\) −3.69258e12 −0.224263
\(866\) 1.72715e13 1.04351
\(867\) −8.03928e11 −0.0483205
\(868\) −1.88446e12 −0.112681
\(869\) 2.04299e13 1.21528
\(870\) 2.84839e12 0.168563
\(871\) 4.42266e12 0.260377
\(872\) 7.33247e12 0.429464
\(873\) 7.13037e12 0.415478
\(874\) −1.45969e12 −0.0846175
\(875\) 2.02176e12 0.116598
\(876\) −6.27752e12 −0.360180
\(877\) 1.30376e13 0.744217 0.372109 0.928189i \(-0.378635\pi\)
0.372109 + 0.928189i \(0.378635\pi\)
\(878\) 8.23464e12 0.467648
\(879\) −6.18344e12 −0.349366
\(880\) −2.02909e12 −0.114059
\(881\) 1.25438e13 0.701515 0.350758 0.936466i \(-0.385924\pi\)
0.350758 + 0.936466i \(0.385924\pi\)
\(882\) −2.96277e12 −0.164850
\(883\) −7.07621e12 −0.391722 −0.195861 0.980632i \(-0.562750\pi\)
−0.195861 + 0.980632i \(0.562750\pi\)
\(884\) 2.41020e12 0.132745
\(885\) 1.33368e12 0.0730815
\(886\) −1.21525e13 −0.662540
\(887\) −2.29362e13 −1.24413 −0.622064 0.782967i \(-0.713706\pi\)
−0.622064 + 0.782967i \(0.713706\pi\)
\(888\) 4.78757e12 0.258379
\(889\) 3.61527e13 1.94126
\(890\) −7.95208e12 −0.424841
\(891\) −2.13247e12 −0.113353
\(892\) 3.41719e12 0.180729
\(893\) 5.80629e11 0.0305539
\(894\) −3.13520e12 −0.164152
\(895\) −1.49774e12 −0.0780248
\(896\) −2.22295e12 −0.115224
\(897\) −5.82900e12 −0.300627
\(898\) −1.21968e13 −0.625895
\(899\) 3.12589e12 0.159608
\(900\) 6.56100e11 0.0333333
\(901\) −4.63661e12 −0.234390
\(902\) 8.07736e11 0.0406294
\(903\) −2.81917e13 −1.41100
\(904\) −5.60420e12 −0.279097
\(905\) 8.67970e12 0.430117
\(906\) −6.98096e12 −0.344222
\(907\) 8.50011e11 0.0417054 0.0208527 0.999783i \(-0.493362\pi\)
0.0208527 + 0.999783i \(0.493362\pi\)
\(908\) −1.64637e13 −0.803785
\(909\) 5.86683e12 0.285014
\(910\) 2.36517e12 0.114334
\(911\) −3.10008e13 −1.49121 −0.745606 0.666387i \(-0.767840\pi\)
−0.745606 + 0.666387i \(0.767840\pi\)
\(912\) 1.92208e11 0.00920013
\(913\) −4.74365e11 −0.0225941
\(914\) 1.37028e13 0.649459
\(915\) −2.24616e12 −0.105937
\(916\) −4.87697e10 −0.00228887
\(917\) 1.50678e13 0.703699
\(918\) 2.80295e12 0.130264
\(919\) −1.64339e13 −0.760014 −0.380007 0.924984i \(-0.624078\pi\)
−0.380007 + 0.924984i \(0.624078\pi\)
\(920\) −6.45024e12 −0.296846
\(921\) −5.95751e12 −0.272833
\(922\) −1.71360e13 −0.780947
\(923\) 5.09878e12 0.231238
\(924\) −8.50660e12 −0.383913
\(925\) −5.63677e12 −0.253159
\(926\) −2.67890e13 −1.19731
\(927\) −8.21480e12 −0.365375
\(928\) 3.68735e12 0.163211
\(929\) 7.42321e12 0.326980 0.163490 0.986545i \(-0.447725\pi\)
0.163490 + 0.986545i \(0.447725\pi\)
\(930\) 7.20019e11 0.0315624
\(931\) 1.02191e12 0.0445800
\(932\) −8.55908e12 −0.371583
\(933\) −1.36461e13 −0.589576
\(934\) −3.86987e12 −0.166393
\(935\) 1.02062e13 0.436728
\(936\) 7.67544e11 0.0326860
\(937\) −1.99236e13 −0.844382 −0.422191 0.906507i \(-0.638739\pi\)
−0.422191 + 0.906507i \(0.638739\pi\)
\(938\) 2.05173e13 0.865379
\(939\) −4.11992e12 −0.172939
\(940\) 2.56574e12 0.107186
\(941\) −1.05676e13 −0.439361 −0.219681 0.975572i \(-0.570502\pi\)
−0.219681 + 0.975572i \(0.570502\pi\)
\(942\) 7.24766e12 0.299895
\(943\) 2.56769e12 0.105740
\(944\) 1.72650e12 0.0707609
\(945\) 2.75058e12 0.112197
\(946\) −3.33127e13 −1.35238
\(947\) −3.32359e12 −0.134286 −0.0671432 0.997743i \(-0.521388\pi\)
−0.0671432 + 0.997743i \(0.521388\pi\)
\(948\) −8.55164e12 −0.343884
\(949\) 8.64643e12 0.346050
\(950\) −2.26301e11 −0.00901425
\(951\) 1.34693e12 0.0533990
\(952\) 1.11812e13 0.441187
\(953\) 2.19837e13 0.863342 0.431671 0.902031i \(-0.357924\pi\)
0.431671 + 0.902031i \(0.357924\pi\)
\(954\) −1.47656e12 −0.0577142
\(955\) 2.10663e13 0.819547
\(956\) −1.04847e13 −0.405971
\(957\) 1.41105e13 0.543798
\(958\) −1.28993e13 −0.494789
\(959\) −2.30999e13 −0.881913
\(960\) 8.49347e11 0.0322749
\(961\) −2.56495e13 −0.970114
\(962\) −6.59423e12 −0.248242
\(963\) −1.46835e13 −0.550187
\(964\) −1.07581e13 −0.401226
\(965\) −1.86612e12 −0.0692736
\(966\) −2.70414e13 −0.999155
\(967\) 3.11713e13 1.14640 0.573200 0.819416i \(-0.305702\pi\)
0.573200 + 0.819416i \(0.305702\pi\)
\(968\) −3.93664e11 −0.0144107
\(969\) −9.66788e11 −0.0352269
\(970\) −1.08678e13 −0.394157
\(971\) −4.82856e13 −1.74313 −0.871567 0.490276i \(-0.836896\pi\)
−0.871567 + 0.490276i \(0.836896\pi\)
\(972\) 8.92617e11 0.0320750
\(973\) −1.86204e13 −0.666011
\(974\) −1.92966e13 −0.687015
\(975\) −9.03688e11 −0.0320256
\(976\) −2.90775e12 −0.102573
\(977\) 1.58992e13 0.558276 0.279138 0.960251i \(-0.409951\pi\)
0.279138 + 0.960251i \(0.409951\pi\)
\(978\) 2.25148e12 0.0786941
\(979\) −3.93934e13 −1.37057
\(980\) 4.51573e12 0.156391
\(981\) −1.17452e13 −0.404902
\(982\) 2.20659e13 0.757218
\(983\) 4.89700e13 1.67278 0.836391 0.548133i \(-0.184661\pi\)
0.836391 + 0.548133i \(0.184661\pi\)
\(984\) −3.38106e11 −0.0114967
\(985\) 1.26659e12 0.0428718
\(986\) −1.85470e13 −0.624926
\(987\) 1.07564e13 0.360778
\(988\) −2.64740e11 −0.00883920
\(989\) −1.05897e14 −3.51966
\(990\) 3.25022e12 0.107536
\(991\) −3.20643e13 −1.05606 −0.528032 0.849224i \(-0.677070\pi\)
−0.528032 + 0.849224i \(0.677070\pi\)
\(992\) 9.32092e11 0.0305602
\(993\) −9.86261e12 −0.321900
\(994\) 2.36538e13 0.768533
\(995\) −1.19049e12 −0.0385056
\(996\) 1.98562e11 0.00639335
\(997\) 5.33293e13 1.70938 0.854689 0.519141i \(-0.173748\pi\)
0.854689 + 0.519141i \(0.173748\pi\)
\(998\) −5.01748e12 −0.160103
\(999\) −7.66877e12 −0.243602
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.10.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.10.a.e.1.4 4 1.1 even 1 trivial