Properties

Label 390.10.a.e
Level $390$
Weight $10$
Character orbit 390.a
Self dual yes
Analytic conductor $200.864$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,10,Mod(1,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 390.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,324,1024,2500] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(200.863976104\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 103194x^{2} + 6753414x - 65794500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} + 81 q^{3} + 256 q^{4} + 625 q^{5} - 1296 q^{6} + ( - \beta_{3} - 579) q^{7} - 4096 q^{8} + 6561 q^{9} - 10000 q^{10} + (3 \beta_{3} + 7 \beta_{2} + \cdots - 2635) q^{11} + 20736 q^{12} - 28561 q^{13}+ \cdots + (19683 \beta_{3} + 45927 \beta_{2} + \cdots - 17288235) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} + 324 q^{3} + 1024 q^{4} + 2500 q^{5} - 5184 q^{6} - 2318 q^{7} - 16384 q^{8} + 26244 q^{9} - 40000 q^{10} - 10508 q^{11} + 82944 q^{12} - 114244 q^{13} + 37088 q^{14} + 202500 q^{15} + 262144 q^{16}+ \cdots - 68942988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 103194x^{2} + 6753414x - 65794500 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 49\nu^{3} - 2413\nu^{2} - 2613312\nu + 369456608 ) / 192914 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 221\nu^{3} + 12739\nu^{2} - 21345656\nu + 450312956 ) / 192914 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 605\nu^{3} + 1703\nu^{2} - 65589344\nu + 2946160850 ) / 192914 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -3\beta_{3} + 4\beta_{2} + 19\beta _1 + 91 ) / 320 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -607\beta_{3} + 2116\beta_{2} - 2049\beta _1 + 8254839 ) / 160 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -109891\beta_{3} + 210868\beta_{2} + 1035683\beta _1 - 797453573 ) / 160 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
11.9055
−350.233
55.6173
283.710
−16.0000 81.0000 256.000 625.000 −1296.00 −11809.6 −4096.00 6561.00 −10000.0
1.2 −16.0000 81.0000 256.000 625.000 −1296.00 −1281.24 −4096.00 6561.00 −10000.0
1.3 −16.0000 81.0000 256.000 625.000 −1296.00 2491.76 −4096.00 6561.00 −10000.0
1.4 −16.0000 81.0000 256.000 625.000 −1296.00 8281.12 −4096.00 6561.00 −10000.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 390.10.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.10.a.e 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 2318T_{7}^{3} - 105260859T_{7}^{2} + 107120277040T_{7} + 312219392439500 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(390))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{4} \) Copy content Toggle raw display
$3$ \( (T - 81)^{4} \) Copy content Toggle raw display
$5$ \( (T - 625)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 312219392439500 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 29\!\cdots\!24 \) Copy content Toggle raw display
$13$ \( (T + 28561)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 17\!\cdots\!60 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 59\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 10\!\cdots\!48 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 45\!\cdots\!92 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 72\!\cdots\!32 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 64\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 17\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 74\!\cdots\!20 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 12\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 24\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 85\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 40\!\cdots\!92 \) Copy content Toggle raw display
show more
show less