Learn more about

Refine search


Results (1-50 of 252 matches)

Next   Download to        
Label Dim. \(A\) Field CM Traces Fricke sign $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
390.2.a.a \(1\) \(3.114\) \(\Q\) None \(-1\) \(-1\) \(-1\) \(0\) \(+\) \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\)
390.2.a.b \(1\) \(3.114\) \(\Q\) None \(-1\) \(-1\) \(1\) \(-2\) \(-\) \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-2q^{7}+\cdots\)
390.2.a.c \(1\) \(3.114\) \(\Q\) None \(-1\) \(1\) \(-1\) \(4\) \(-\) \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+4q^{7}+\cdots\)
390.2.a.d \(1\) \(3.114\) \(\Q\) None \(-1\) \(1\) \(1\) \(2\) \(-\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+2q^{7}+\cdots\)
390.2.a.e \(1\) \(3.114\) \(\Q\) None \(1\) \(-1\) \(-1\) \(2\) \(-\) \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+2q^{7}+\cdots\)
390.2.a.f \(1\) \(3.114\) \(\Q\) None \(1\) \(-1\) \(1\) \(0\) \(-\) \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\)
390.2.a.g \(1\) \(3.114\) \(\Q\) None \(1\) \(1\) \(-1\) \(2\) \(-\) \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+2q^{7}+\cdots\)
390.2.a.h \(2\) \(3.114\) \(\Q(\sqrt{2}) \) None \(2\) \(2\) \(2\) \(0\) \(-\) \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+\beta q^{7}+\cdots\)
390.2.b.a \(2\) \(3.114\) \(\Q(\sqrt{-1}) \) None \(0\) \(-2\) \(0\) \(0\) \(q-iq^{2}-q^{3}-q^{4}+iq^{5}+iq^{6}+iq^{8}+\cdots\)
390.2.b.b \(2\) \(3.114\) \(\Q(\sqrt{-1}) \) None \(0\) \(-2\) \(0\) \(0\) \(q-iq^{2}-q^{3}-q^{4}+iq^{5}+iq^{6}+iq^{8}+\cdots\)
390.2.b.c \(4\) \(3.114\) \(\Q(i, \sqrt{13})\) None \(0\) \(-4\) \(0\) \(0\) \(q+\beta _{1}q^{2}-q^{3}-q^{4}+\beta _{1}q^{5}-\beta _{1}q^{6}+\cdots\)
390.2.b.d \(4\) \(3.114\) \(\Q(i, \sqrt{17})\) None \(0\) \(4\) \(0\) \(0\) \(q-\beta _{1}q^{2}+q^{3}-q^{4}+\beta _{1}q^{5}-\beta _{1}q^{6}+\cdots\)
390.2.e.a \(2\) \(3.114\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) \(q+iq^{2}+iq^{3}-q^{4}+(-2-i)q^{5}+\cdots\)
390.2.e.b \(2\) \(3.114\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(4\) \(0\) \(q+iq^{2}+iq^{3}-q^{4}+(2-i)q^{5}-q^{6}+\cdots\)
390.2.e.c \(2\) \(3.114\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(4\) \(0\) \(q+iq^{2}-iq^{3}-q^{4}+(2+i)q^{5}+q^{6}+\cdots\)
390.2.e.d \(2\) \(3.114\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(4\) \(0\) \(q+iq^{2}-iq^{3}-q^{4}+(2-i)q^{5}+q^{6}+\cdots\)
390.2.e.e \(4\) \(3.114\) \(\Q(i, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{1}q^{2}+\beta _{1}q^{3}-q^{4}-\beta _{2}q^{5}-q^{6}+\cdots\)
390.2.f.a \(6\) \(3.114\) 6.0.350464.1 None \(-6\) \(0\) \(-2\) \(4\) \(q-q^{2}-\beta _{4}q^{3}+q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\)
390.2.f.b \(6\) \(3.114\) 6.0.350464.1 None \(6\) \(0\) \(2\) \(-4\) \(q+q^{2}+\beta _{4}q^{3}+q^{4}+(-\beta _{1}-\beta _{5})q^{5}+\cdots\)
390.2.i.a \(2\) \(3.114\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(-2\) \(-2\) \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
390.2.i.b \(2\) \(3.114\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(2\) \(3\) \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
390.2.i.c \(2\) \(3.114\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(-2\) \(-2\) \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
390.2.i.d \(2\) \(3.114\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(-2\) \(5\) \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
390.2.i.e \(2\) \(3.114\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(-2\) \(-3\) \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
390.2.i.f \(2\) \(3.114\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(2\) \(2\) \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
390.2.i.g \(4\) \(3.114\) \(\Q(\sqrt{-3}, \sqrt{17})\) None \(-2\) \(-2\) \(4\) \(-3\) \(q+(-1+\beta _{2})q^{2}+(-1+\beta _{2})q^{3}-\beta _{2}q^{4}+\cdots\)
390.2.j.a \(12\) \(3.114\) \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None \(-12\) \(0\) \(0\) \(0\) \(q-q^{2}-\beta _{2}q^{3}+q^{4}+(\beta _{1}-\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\)
390.2.j.b \(16\) \(3.114\) \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(16\) \(0\) \(0\) \(0\) \(q+q^{2}+\beta _{8}q^{3}+q^{4}+\beta _{14}q^{5}+\beta _{8}q^{6}+\cdots\)
390.2.l.a \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(8\) \(q+\zeta_{8}q^{2}+(\zeta_{8}+\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.l.b \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(4\) \(0\) \(8\) \(q+\zeta_{8}q^{2}+(1-\zeta_{8}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.l.c \(20\) \(3.114\) \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(0\) \(0\) \(-4\) \(q+\beta _{9}q^{2}+\beta _{1}q^{3}-\beta _{11}q^{4}+(\beta _{2}+\beta _{4}+\cdots)q^{5}+\cdots\)
390.2.l.d \(20\) \(3.114\) \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(4\) \(0\) \(-4\) \(q+\beta _{4}q^{2}+\beta _{12}q^{3}+\beta _{11}q^{4}+(-\beta _{5}+\cdots)q^{5}+\cdots\)
390.2.n.a \(56\) \(3.114\) None \(0\) \(0\) \(0\) \(0\)
390.2.p.a \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(-4\) \(0\) \(12\) \(q+\zeta_{8}q^{2}+(-1+\zeta_{8}+\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.b \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(-4\) \(0\) \(-12\) \(q+\zeta_{8}q^{2}+(-1-\zeta_{8}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.c \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(-4\) \(0\) \(8\) \(q+\zeta_{8}q^{2}+(-1-\zeta_{8}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.d \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(4\) \(0\) \(0\) \(q+\zeta_{8}q^{2}+(1+\zeta_{8}+\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.e \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(4\) \(0\) \(8\) \(q+\zeta_{8}q^{2}+(1+\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.f \(4\) \(3.114\) \(\Q(\zeta_{8})\) None \(0\) \(4\) \(0\) \(8\) \(q+\zeta_{8}q^{2}+(1+\zeta_{8}-\zeta_{8}^{2})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.g \(8\) \(3.114\) 8.0.40960000.1 None \(0\) \(0\) \(0\) \(0\) \(q-\beta _{7}q^{2}-\beta _{6}q^{3}-\beta _{2}q^{4}-\beta _{7}q^{5}+\cdots\)
390.2.s.a \(8\) \(3.114\) 8.0.40960000.1 None \(0\) \(4\) \(0\) \(0\) \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{3}+\beta _{2}q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\)
390.2.s.b \(24\) \(3.114\) None \(0\) \(-8\) \(0\) \(0\)
390.2.s.c \(24\) \(3.114\) None \(0\) \(4\) \(0\) \(0\)
390.2.t.a \(12\) \(3.114\) \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None \(0\) \(0\) \(-4\) \(0\) \(q-\beta _{4}q^{2}-\beta _{7}q^{3}-q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)
390.2.t.b \(16\) \(3.114\) \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{4}q^{2}+\beta _{8}q^{3}-q^{4}-\beta _{10}q^{5}+\beta _{5}q^{6}+\cdots\)
390.2.x.a \(12\) \(3.114\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-6\) \(0\) \(-2\) \(-2\) \(q+(-1-\beta _{6})q^{2}+\beta _{4}q^{3}+\beta _{6}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
390.2.x.b \(12\) \(3.114\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(6\) \(0\) \(2\) \(2\) \(q+(1+\beta _{6})q^{2}-\beta _{4}q^{3}+\beta _{6}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
390.2.y.a \(4\) \(3.114\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-4\) \(0\) \(q+\zeta_{12}q^{2}-\zeta_{12}q^{3}+\zeta_{12}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
390.2.y.b \(4\) \(3.114\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(-6\) \(q+\zeta_{12}q^{2}-\zeta_{12}q^{3}+\zeta_{12}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
390.2.y.c \(4\) \(3.114\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(6\) \(q+\zeta_{12}q^{2}-\zeta_{12}q^{3}+\zeta_{12}^{2}q^{4}+(2\zeta_{12}+\cdots)q^{5}+\cdots\)
Next   Download to