Properties

Label 384.8.a.f
Level $384$
Weight $8$
Character orbit 384.a
Self dual yes
Analytic conductor $119.956$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [384,8,Mod(1,384)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("384.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(384, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 384.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-54,0,176] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.955849786\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{366}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 366 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 8\sqrt{366}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + (\beta + 88) q^{5} + ( - 5 \beta - 490) q^{7} + 729 q^{9} + (26 \beta - 1564) q^{11} + ( - 60 \beta - 4226) q^{13} + ( - 27 \beta - 2376) q^{15} + (150 \beta + 2614) q^{17} + ( - 34 \beta + 43984) q^{19}+ \cdots + (18954 \beta - 1140156) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} + 176 q^{5} - 980 q^{7} + 1458 q^{9} - 3128 q^{11} - 8452 q^{13} - 4752 q^{15} + 5228 q^{17} + 87968 q^{19} + 26460 q^{21} + 104792 q^{23} - 93914 q^{25} - 39366 q^{27} - 98760 q^{29} - 1860 q^{31}+ \cdots - 2280312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−19.1311
19.1311
0 −27.0000 0 −65.0490 0 275.245 0 729.000 0
1.2 0 −27.0000 0 241.049 0 −1255.25 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 384.8.a.f yes 2
4.b odd 2 1 384.8.a.h yes 2
8.b even 2 1 384.8.a.g yes 2
8.d odd 2 1 384.8.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.8.a.e 2 8.d odd 2 1
384.8.a.f yes 2 1.a even 1 1 trivial
384.8.a.g yes 2 8.b even 2 1
384.8.a.h yes 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(384))\):

\( T_{5}^{2} - 176T_{5} - 15680 \) Copy content Toggle raw display
\( T_{7}^{2} + 980T_{7} - 345500 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 176T - 15680 \) Copy content Toggle raw display
$7$ \( T^{2} + 980T - 345500 \) Copy content Toggle raw display
$11$ \( T^{2} + 3128 T - 13388528 \) Copy content Toggle raw display
$13$ \( T^{2} + 8452 T - 66467324 \) Copy content Toggle raw display
$17$ \( T^{2} - 5228 T - 520207004 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 1907514112 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 2737751440 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 30676616304 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 61397210364 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 47078447716 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 253607336700 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 160477844928 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 316723044848 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1495948838160 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 257899165040 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1272521461540 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1646886470768 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 540610016400 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 446446535516 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 13803646540220 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 15941282454384 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 10139019891652 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 76333350144092 \) Copy content Toggle raw display
show more
show less