Properties

Label 384.8.a
Level $384$
Weight $8$
Character orbit 384.a
Rep. character $\chi_{384}(1,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $20$
Sturm bound $512$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 384.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(512\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(384))\).

Total New Old
Modular forms 464 56 408
Cusp forms 432 56 376
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(120\)\(15\)\(105\)\(112\)\(15\)\(97\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(-\)\(116\)\(13\)\(103\)\(108\)\(13\)\(95\)\(8\)\(0\)\(8\)
\(-\)\(+\)\(-\)\(112\)\(13\)\(99\)\(104\)\(13\)\(91\)\(8\)\(0\)\(8\)
\(-\)\(-\)\(+\)\(116\)\(15\)\(101\)\(108\)\(15\)\(93\)\(8\)\(0\)\(8\)
Plus space\(+\)\(236\)\(30\)\(206\)\(220\)\(30\)\(190\)\(16\)\(0\)\(16\)
Minus space\(-\)\(228\)\(26\)\(202\)\(212\)\(26\)\(186\)\(16\)\(0\)\(16\)

Trace form

\( 56 q + 40824 q^{9} + 11632 q^{17} + 939496 q^{25} - 1765136 q^{41} + 8632536 q^{49} - 6204384 q^{57} + 4374304 q^{65} - 21180080 q^{73} + 29760696 q^{81} - 28686288 q^{89} + 15808112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(384))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
384.8.a.a 384.a 1.a $1$ $119.956$ \(\Q\) None 384.8.a.a \(0\) \(-27\) \(-160\) \(-974\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-160q^{5}-974q^{7}+3^{6}q^{9}+\cdots\)
384.8.a.b 384.a 1.a $1$ $119.956$ \(\Q\) None 384.8.a.a \(0\) \(-27\) \(160\) \(974\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+160q^{5}+974q^{7}+3^{6}q^{9}+\cdots\)
384.8.a.c 384.a 1.a $1$ $119.956$ \(\Q\) None 384.8.a.a \(0\) \(27\) \(-160\) \(974\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-160q^{5}+974q^{7}+3^{6}q^{9}+\cdots\)
384.8.a.d 384.a 1.a $1$ $119.956$ \(\Q\) None 384.8.a.a \(0\) \(27\) \(160\) \(-974\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+160q^{5}-974q^{7}+3^{6}q^{9}+\cdots\)
384.8.a.e 384.a 1.a $2$ $119.956$ \(\Q(\sqrt{366}) \) None 384.8.a.e \(0\) \(-54\) \(-176\) \(980\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-88+\beta )q^{5}+(490-5\beta )q^{7}+\cdots\)
384.8.a.f 384.a 1.a $2$ $119.956$ \(\Q(\sqrt{366}) \) None 384.8.a.e \(0\) \(-54\) \(176\) \(-980\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(88+\beta )q^{5}+(-490-5\beta )q^{7}+\cdots\)
384.8.a.g 384.a 1.a $2$ $119.956$ \(\Q(\sqrt{366}) \) None 384.8.a.e \(0\) \(54\) \(-176\) \(-980\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-88+\beta )q^{5}+(-490+5\beta )q^{7}+\cdots\)
384.8.a.h 384.a 1.a $2$ $119.956$ \(\Q(\sqrt{366}) \) None 384.8.a.e \(0\) \(54\) \(176\) \(980\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(88+\beta )q^{5}+(490+5\beta )q^{7}+\cdots\)
384.8.a.i 384.a 1.a $3$ $119.956$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 384.8.a.i \(0\) \(-81\) \(-308\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-103-\beta _{1})q^{5}+(2+\beta _{2})q^{7}+\cdots\)
384.8.a.j 384.a 1.a $3$ $119.956$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 384.8.a.i \(0\) \(-81\) \(308\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(103+\beta _{1})q^{5}+(-2-\beta _{2})q^{7}+\cdots\)
384.8.a.k 384.a 1.a $3$ $119.956$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 384.8.a.i \(0\) \(81\) \(-308\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-103-\beta _{1})q^{5}+(-2-\beta _{2})q^{7}+\cdots\)
384.8.a.l 384.a 1.a $3$ $119.956$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 384.8.a.i \(0\) \(81\) \(308\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(103+\beta _{1})q^{5}+(2+\beta _{2})q^{7}+\cdots\)
384.8.a.m 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.m \(0\) \(-108\) \(-336\) \(-680\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-84+\beta _{2})q^{5}+(-170+\cdots)q^{7}+\cdots\)
384.8.a.n 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.n \(0\) \(-108\) \(-192\) \(680\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-48-\beta _{2})q^{5}+(170+\beta _{3})q^{7}+\cdots\)
384.8.a.o 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.n \(0\) \(-108\) \(192\) \(-680\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(48+\beta _{2})q^{5}+(-170-\beta _{3})q^{7}+\cdots\)
384.8.a.p 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.m \(0\) \(-108\) \(336\) \(680\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(84-\beta _{2})q^{5}+(170+\beta _{3})q^{7}+\cdots\)
384.8.a.q 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.m \(0\) \(108\) \(-336\) \(680\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-84+\beta _{2})q^{5}+(170+\beta _{3})q^{7}+\cdots\)
384.8.a.r 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.n \(0\) \(108\) \(-192\) \(-680\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-48-\beta _{2})q^{5}+(-170+\cdots)q^{7}+\cdots\)
384.8.a.s 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.n \(0\) \(108\) \(192\) \(680\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(48+\beta _{2})q^{5}+(170+\beta _{3})q^{7}+\cdots\)
384.8.a.t 384.a 1.a $4$ $119.956$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 384.8.a.m \(0\) \(108\) \(336\) \(-680\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(84-\beta _{2})q^{5}+(-170-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(384))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(384)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 14}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 2}\)