Defining parameters
| Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 384.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 20 \) | ||
| Sturm bound: | \(512\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(384))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 464 | 56 | 408 |
| Cusp forms | 432 | 56 | 376 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(120\) | \(15\) | \(105\) | \(112\) | \(15\) | \(97\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(116\) | \(13\) | \(103\) | \(108\) | \(13\) | \(95\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(112\) | \(13\) | \(99\) | \(104\) | \(13\) | \(91\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(116\) | \(15\) | \(101\) | \(108\) | \(15\) | \(93\) | \(8\) | \(0\) | \(8\) | |||
| Plus space | \(+\) | \(236\) | \(30\) | \(206\) | \(220\) | \(30\) | \(190\) | \(16\) | \(0\) | \(16\) | ||||
| Minus space | \(-\) | \(228\) | \(26\) | \(202\) | \(212\) | \(26\) | \(186\) | \(16\) | \(0\) | \(16\) | ||||
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(384))\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(384))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(384)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 14}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 2}\)