Properties

Label 384.8
Level 384
Weight 8
Dimension 12048
Nonzero newspaces 10
Sturm bound 65536
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(65536\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(384))\).

Total New Old
Modular forms 28992 12144 16848
Cusp forms 28352 12048 16304
Eisenstein series 640 96 544

Trace form

\( 12048 q - 12 q^{3} - 32 q^{4} - 16 q^{6} - 24 q^{7} - 20 q^{9} - 32 q^{10} - 16 q^{12} - 32 q^{13} - 8 q^{15} - 32 q^{16} - 16 q^{18} - 24 q^{19} + 8732 q^{21} - 32 q^{22} - 286832 q^{23} - 16 q^{24} + 128952 q^{25}+ \cdots + 9729716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(384))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
384.8.a \(\chi_{384}(1, \cdot)\) 384.8.a.a 1 1
384.8.a.b 1
384.8.a.c 1
384.8.a.d 1
384.8.a.e 2
384.8.a.f 2
384.8.a.g 2
384.8.a.h 2
384.8.a.i 3
384.8.a.j 3
384.8.a.k 3
384.8.a.l 3
384.8.a.m 4
384.8.a.n 4
384.8.a.o 4
384.8.a.p 4
384.8.a.q 4
384.8.a.r 4
384.8.a.s 4
384.8.a.t 4
384.8.c \(\chi_{384}(383, \cdot)\) n/a 112 1
384.8.d \(\chi_{384}(193, \cdot)\) 384.8.d.a 6 1
384.8.d.b 6
384.8.d.c 8
384.8.d.d 8
384.8.d.e 12
384.8.d.f 16
384.8.f \(\chi_{384}(191, \cdot)\) n/a 112 1
384.8.j \(\chi_{384}(97, \cdot)\) n/a 112 2
384.8.k \(\chi_{384}(95, \cdot)\) n/a 216 2
384.8.n \(\chi_{384}(49, \cdot)\) n/a 224 4
384.8.o \(\chi_{384}(47, \cdot)\) n/a 440 4
384.8.r \(\chi_{384}(25, \cdot)\) None 0 8
384.8.s \(\chi_{384}(23, \cdot)\) None 0 8
384.8.v \(\chi_{384}(13, \cdot)\) n/a 3584 16
384.8.w \(\chi_{384}(11, \cdot)\) n/a 7136 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(384))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(384)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 14}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 2}\)