Properties

Label 384.4.k.b.95.6
Level $384$
Weight $4$
Character 384.95
Analytic conductor $22.657$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [384,4,Mod(95,384)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("384.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(384, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 95.6
Character \(\chi\) \(=\) 384.95
Dual form 384.4.k.b.287.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.76578 - 3.58035i) q^{3} +(-4.71515 - 4.71515i) q^{5} +4.67595 q^{7} +(1.36225 + 26.9656i) q^{9} +(29.7408 - 29.7408i) q^{11} +(-36.9803 - 36.9803i) q^{13} +(0.874367 + 34.6381i) q^{15} -109.986i q^{17} +(-28.6283 + 28.6283i) q^{19} +(-17.6086 - 16.7415i) q^{21} +0.193203i q^{23} -80.5347i q^{25} +(91.4163 - 106.424i) q^{27} +(-162.554 + 162.554i) q^{29} +179.457i q^{31} +(-218.480 + 5.51507i) q^{33} +(-22.0478 - 22.0478i) q^{35} +(-194.940 + 194.940i) q^{37} +(6.85755 + 271.662i) q^{39} +49.2056 q^{41} +(336.318 + 336.318i) q^{43} +(120.724 - 133.570i) q^{45} -187.268 q^{47} -321.136 q^{49} +(-393.787 + 414.182i) q^{51} +(195.182 + 195.182i) q^{53} -280.465 q^{55} +(210.307 - 5.30877i) q^{57} +(-302.622 + 302.622i) q^{59} +(-501.230 - 501.230i) q^{61} +(6.36981 + 126.090i) q^{63} +348.736i q^{65} +(36.4798 - 36.4798i) q^{67} +(0.691733 - 0.727560i) q^{69} -637.743i q^{71} +90.3903i q^{73} +(-288.342 + 303.276i) q^{75} +(139.067 - 139.067i) q^{77} +1171.61i q^{79} +(-725.289 + 73.4678i) q^{81} +(-256.872 - 256.872i) q^{83} +(-518.599 + 518.599i) q^{85} +(1194.14 - 30.1437i) q^{87} -818.864 q^{89} +(-172.918 - 172.918i) q^{91} +(642.519 - 675.797i) q^{93} +269.973 q^{95} +667.747 q^{97} +(842.494 + 761.465i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} - 8 q^{7} + 4 q^{13} - 20 q^{19} + 56 q^{21} + 134 q^{27} - 4 q^{33} + 4 q^{37} + 596 q^{39} + 436 q^{43} + 252 q^{45} + 972 q^{49} + 648 q^{51} + 280 q^{55} + 916 q^{61} + 1636 q^{67} - 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.76578 3.58035i −0.724725 0.689038i
\(4\) 0 0
\(5\) −4.71515 4.71515i −0.421736 0.421736i 0.464065 0.885801i \(-0.346390\pi\)
−0.885801 + 0.464065i \(0.846390\pi\)
\(6\) 0 0
\(7\) 4.67595 0.252477 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(8\) 0 0
\(9\) 1.36225 + 26.9656i 0.0504537 + 0.998726i
\(10\) 0 0
\(11\) 29.7408 29.7408i 0.815200 0.815200i −0.170208 0.985408i \(-0.554444\pi\)
0.985408 + 0.170208i \(0.0544440\pi\)
\(12\) 0 0
\(13\) −36.9803 36.9803i −0.788961 0.788961i 0.192363 0.981324i \(-0.438385\pi\)
−0.981324 + 0.192363i \(0.938385\pi\)
\(14\) 0 0
\(15\) 0.874367 + 34.6381i 0.0150507 + 0.596235i
\(16\) 0 0
\(17\) 109.986i 1.56914i −0.620037 0.784572i \(-0.712883\pi\)
0.620037 0.784572i \(-0.287117\pi\)
\(18\) 0 0
\(19\) −28.6283 + 28.6283i −0.345673 + 0.345673i −0.858495 0.512822i \(-0.828600\pi\)
0.512822 + 0.858495i \(0.328600\pi\)
\(20\) 0 0
\(21\) −17.6086 16.7415i −0.182977 0.173967i
\(22\) 0 0
\(23\) 0.193203i 0.00175155i 1.00000 0.000875773i \(0.000278767\pi\)
−1.00000 0.000875773i \(0.999721\pi\)
\(24\) 0 0
\(25\) 80.5347i 0.644277i
\(26\) 0 0
\(27\) 91.4163 106.424i 0.651595 0.758567i
\(28\) 0 0
\(29\) −162.554 + 162.554i −1.04088 + 1.04088i −0.0417521 + 0.999128i \(0.513294\pi\)
−0.999128 + 0.0417521i \(0.986706\pi\)
\(30\) 0 0
\(31\) 179.457i 1.03973i 0.854250 + 0.519863i \(0.174017\pi\)
−0.854250 + 0.519863i \(0.825983\pi\)
\(32\) 0 0
\(33\) −218.480 + 5.51507i −1.15250 + 0.0290925i
\(34\) 0 0
\(35\) −22.0478 22.0478i −0.106479 0.106479i
\(36\) 0 0
\(37\) −194.940 + 194.940i −0.866160 + 0.866160i −0.992045 0.125885i \(-0.959823\pi\)
0.125885 + 0.992045i \(0.459823\pi\)
\(38\) 0 0
\(39\) 6.85755 + 271.662i 0.0281561 + 1.11540i
\(40\) 0 0
\(41\) 49.2056 0.187430 0.0937149 0.995599i \(-0.470126\pi\)
0.0937149 + 0.995599i \(0.470126\pi\)
\(42\) 0 0
\(43\) 336.318 + 336.318i 1.19274 + 1.19274i 0.976294 + 0.216450i \(0.0694480\pi\)
0.216450 + 0.976294i \(0.430552\pi\)
\(44\) 0 0
\(45\) 120.724 133.570i 0.399921 0.442477i
\(46\) 0 0
\(47\) −187.268 −0.581188 −0.290594 0.956846i \(-0.593853\pi\)
−0.290594 + 0.956846i \(0.593853\pi\)
\(48\) 0 0
\(49\) −321.136 −0.936255
\(50\) 0 0
\(51\) −393.787 + 414.182i −1.08120 + 1.13720i
\(52\) 0 0
\(53\) 195.182 + 195.182i 0.505855 + 0.505855i 0.913252 0.407396i \(-0.133563\pi\)
−0.407396 + 0.913252i \(0.633563\pi\)
\(54\) 0 0
\(55\) −280.465 −0.687598
\(56\) 0 0
\(57\) 210.307 5.30877i 0.488699 0.0123362i
\(58\) 0 0
\(59\) −302.622 + 302.622i −0.667763 + 0.667763i −0.957198 0.289435i \(-0.906533\pi\)
0.289435 + 0.957198i \(0.406533\pi\)
\(60\) 0 0
\(61\) −501.230 501.230i −1.05207 1.05207i −0.998568 0.0534972i \(-0.982963\pi\)
−0.0534972 0.998568i \(-0.517037\pi\)
\(62\) 0 0
\(63\) 6.36981 + 126.090i 0.0127384 + 0.252156i
\(64\) 0 0
\(65\) 348.736i 0.665467i
\(66\) 0 0
\(67\) 36.4798 36.4798i 0.0665183 0.0665183i −0.673065 0.739583i \(-0.735023\pi\)
0.739583 + 0.673065i \(0.235023\pi\)
\(68\) 0 0
\(69\) 0.691733 0.727560i 0.00120688 0.00126939i
\(70\) 0 0
\(71\) 637.743i 1.06600i −0.846114 0.533001i \(-0.821064\pi\)
0.846114 0.533001i \(-0.178936\pi\)
\(72\) 0 0
\(73\) 90.3903i 0.144923i 0.997371 + 0.0724615i \(0.0230855\pi\)
−0.997371 + 0.0724615i \(0.976915\pi\)
\(74\) 0 0
\(75\) −288.342 + 303.276i −0.443932 + 0.466924i
\(76\) 0 0
\(77\) 139.067 139.067i 0.205820 0.205820i
\(78\) 0 0
\(79\) 1171.61i 1.66856i 0.551341 + 0.834280i \(0.314116\pi\)
−0.551341 + 0.834280i \(0.685884\pi\)
\(80\) 0 0
\(81\) −725.289 + 73.4678i −0.994909 + 0.100779i
\(82\) 0 0
\(83\) −256.872 256.872i −0.339703 0.339703i 0.516553 0.856256i \(-0.327215\pi\)
−0.856256 + 0.516553i \(0.827215\pi\)
\(84\) 0 0
\(85\) −518.599 + 518.599i −0.661765 + 0.661765i
\(86\) 0 0
\(87\) 1194.14 30.1437i 1.47156 0.0371464i
\(88\) 0 0
\(89\) −818.864 −0.975274 −0.487637 0.873047i \(-0.662141\pi\)
−0.487637 + 0.873047i \(0.662141\pi\)
\(90\) 0 0
\(91\) −172.918 172.918i −0.199195 0.199195i
\(92\) 0 0
\(93\) 642.519 675.797i 0.716410 0.753515i
\(94\) 0 0
\(95\) 269.973 0.291565
\(96\) 0 0
\(97\) 667.747 0.698964 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(98\) 0 0
\(99\) 842.494 + 761.465i 0.855292 + 0.773032i
\(100\) 0 0
\(101\) −794.088 794.088i −0.782324 0.782324i 0.197899 0.980222i \(-0.436588\pi\)
−0.980222 + 0.197899i \(0.936588\pi\)
\(102\) 0 0
\(103\) −1086.33 −1.03921 −0.519607 0.854405i \(-0.673922\pi\)
−0.519607 + 0.854405i \(0.673922\pi\)
\(104\) 0 0
\(105\) 4.08850 + 161.966i 0.00379997 + 0.150536i
\(106\) 0 0
\(107\) 488.119 488.119i 0.441011 0.441011i −0.451341 0.892352i \(-0.649054\pi\)
0.892352 + 0.451341i \(0.149054\pi\)
\(108\) 0 0
\(109\) 131.638 + 131.638i 0.115675 + 0.115675i 0.762575 0.646900i \(-0.223935\pi\)
−0.646900 + 0.762575i \(0.723935\pi\)
\(110\) 0 0
\(111\) 1432.05 36.1492i 1.22455 0.0309111i
\(112\) 0 0
\(113\) 1202.65i 1.00120i 0.865678 + 0.500601i \(0.166887\pi\)
−0.865678 + 0.500601i \(0.833113\pi\)
\(114\) 0 0
\(115\) 0.910981 0.910981i 0.000738690 0.000738690i
\(116\) 0 0
\(117\) 946.821 1047.57i 0.748151 0.827763i
\(118\) 0 0
\(119\) 514.288i 0.396174i
\(120\) 0 0
\(121\) 438.035i 0.329102i
\(122\) 0 0
\(123\) −185.298 176.173i −0.135835 0.129146i
\(124\) 0 0
\(125\) −969.127 + 969.127i −0.693451 + 0.693451i
\(126\) 0 0
\(127\) 2564.42i 1.79178i −0.444281 0.895888i \(-0.646541\pi\)
0.444281 0.895888i \(-0.353459\pi\)
\(128\) 0 0
\(129\) −62.3660 2470.63i −0.0425661 1.68626i
\(130\) 0 0
\(131\) −1241.94 1241.94i −0.828309 0.828309i 0.158974 0.987283i \(-0.449181\pi\)
−0.987283 + 0.158974i \(0.949181\pi\)
\(132\) 0 0
\(133\) −133.864 + 133.864i −0.0872746 + 0.0872746i
\(134\) 0 0
\(135\) −932.847 + 70.7636i −0.594716 + 0.0451138i
\(136\) 0 0
\(137\) −1381.99 −0.861835 −0.430917 0.902391i \(-0.641810\pi\)
−0.430917 + 0.902391i \(0.641810\pi\)
\(138\) 0 0
\(139\) 643.732 + 643.732i 0.392810 + 0.392810i 0.875688 0.482877i \(-0.160408\pi\)
−0.482877 + 0.875688i \(0.660408\pi\)
\(140\) 0 0
\(141\) 705.210 + 670.484i 0.421201 + 0.400460i
\(142\) 0 0
\(143\) −2199.65 −1.28632
\(144\) 0 0
\(145\) 1532.93 0.877953
\(146\) 0 0
\(147\) 1209.33 + 1149.78i 0.678528 + 0.645115i
\(148\) 0 0
\(149\) 604.581 + 604.581i 0.332411 + 0.332411i 0.853501 0.521091i \(-0.174475\pi\)
−0.521091 + 0.853501i \(0.674475\pi\)
\(150\) 0 0
\(151\) 1368.69 0.737631 0.368815 0.929503i \(-0.379763\pi\)
0.368815 + 0.929503i \(0.379763\pi\)
\(152\) 0 0
\(153\) 2965.83 149.828i 1.56715 0.0791691i
\(154\) 0 0
\(155\) 846.168 846.168i 0.438490 0.438490i
\(156\) 0 0
\(157\) 1561.01 + 1561.01i 0.793516 + 0.793516i 0.982064 0.188548i \(-0.0603780\pi\)
−0.188548 + 0.982064i \(0.560378\pi\)
\(158\) 0 0
\(159\) −36.1941 1433.83i −0.0180527 0.715160i
\(160\) 0 0
\(161\) 0.903406i 0.000442226i
\(162\) 0 0
\(163\) 2034.33 2034.33i 0.977554 0.977554i −0.0221997 0.999754i \(-0.507067\pi\)
0.999754 + 0.0221997i \(0.00706698\pi\)
\(164\) 0 0
\(165\) 1056.17 + 1004.16i 0.498320 + 0.473781i
\(166\) 0 0
\(167\) 1459.42i 0.676249i 0.941101 + 0.338125i \(0.109793\pi\)
−0.941101 + 0.338125i \(0.890207\pi\)
\(168\) 0 0
\(169\) 538.090i 0.244920i
\(170\) 0 0
\(171\) −810.978 732.980i −0.362673 0.327792i
\(172\) 0 0
\(173\) −867.517 + 867.517i −0.381249 + 0.381249i −0.871552 0.490303i \(-0.836886\pi\)
0.490303 + 0.871552i \(0.336886\pi\)
\(174\) 0 0
\(175\) 376.576i 0.162666i
\(176\) 0 0
\(177\) 2223.10 56.1175i 0.944058 0.0238308i
\(178\) 0 0
\(179\) −1628.54 1628.54i −0.680017 0.680017i 0.279987 0.960004i \(-0.409670\pi\)
−0.960004 + 0.279987i \(0.909670\pi\)
\(180\) 0 0
\(181\) 2209.08 2209.08i 0.907181 0.907181i −0.0888632 0.996044i \(-0.528323\pi\)
0.996044 + 0.0888632i \(0.0283234\pi\)
\(182\) 0 0
\(183\) 92.9470 + 3682.10i 0.0375456 + 1.48737i
\(184\) 0 0
\(185\) 1838.34 0.730582
\(186\) 0 0
\(187\) −3271.07 3271.07i −1.27917 1.27917i
\(188\) 0 0
\(189\) 427.458 497.633i 0.164513 0.191521i
\(190\) 0 0
\(191\) −1746.47 −0.661623 −0.330812 0.943697i \(-0.607322\pi\)
−0.330812 + 0.943697i \(0.607322\pi\)
\(192\) 0 0
\(193\) 1250.64 0.466441 0.233220 0.972424i \(-0.425074\pi\)
0.233220 + 0.972424i \(0.425074\pi\)
\(194\) 0 0
\(195\) 1248.59 1313.26i 0.458532 0.482281i
\(196\) 0 0
\(197\) 31.6458 + 31.6458i 0.0114450 + 0.0114450i 0.712806 0.701361i \(-0.247424\pi\)
−0.701361 + 0.712806i \(0.747424\pi\)
\(198\) 0 0
\(199\) 268.802 0.0957530 0.0478765 0.998853i \(-0.484755\pi\)
0.0478765 + 0.998853i \(0.484755\pi\)
\(200\) 0 0
\(201\) −267.986 + 6.76474i −0.0940411 + 0.00237387i
\(202\) 0 0
\(203\) −760.094 + 760.094i −0.262799 + 0.262799i
\(204\) 0 0
\(205\) −232.012 232.012i −0.0790459 0.0790459i
\(206\) 0 0
\(207\) −5.20983 + 0.263190i −0.00174932 + 8.83720e-5i
\(208\) 0 0
\(209\) 1702.86i 0.563585i
\(210\) 0 0
\(211\) −917.057 + 917.057i −0.299208 + 0.299208i −0.840703 0.541496i \(-0.817858\pi\)
0.541496 + 0.840703i \(0.317858\pi\)
\(212\) 0 0
\(213\) −2283.34 + 2401.60i −0.734516 + 0.772559i
\(214\) 0 0
\(215\) 3171.58i 1.00605i
\(216\) 0 0
\(217\) 839.133i 0.262507i
\(218\) 0 0
\(219\) 323.628 340.390i 0.0998575 0.105029i
\(220\) 0 0
\(221\) −4067.31 + 4067.31i −1.23799 + 1.23799i
\(222\) 0 0
\(223\) 332.177i 0.0997499i −0.998755 0.0498749i \(-0.984118\pi\)
0.998755 0.0498749i \(-0.0158823\pi\)
\(224\) 0 0
\(225\) 2171.67 109.708i 0.643457 0.0325062i
\(226\) 0 0
\(227\) 1201.02 + 1201.02i 0.351164 + 0.351164i 0.860543 0.509378i \(-0.170125\pi\)
−0.509378 + 0.860543i \(0.670125\pi\)
\(228\) 0 0
\(229\) 2969.95 2969.95i 0.857031 0.857031i −0.133957 0.990987i \(-0.542768\pi\)
0.990987 + 0.133957i \(0.0427683\pi\)
\(230\) 0 0
\(231\) −1021.60 + 25.7882i −0.290980 + 0.00734519i
\(232\) 0 0
\(233\) −4481.22 −1.25998 −0.629988 0.776605i \(-0.716940\pi\)
−0.629988 + 0.776605i \(0.716940\pi\)
\(234\) 0 0
\(235\) 882.996 + 882.996i 0.245108 + 0.245108i
\(236\) 0 0
\(237\) 4194.76 4412.02i 1.14970 1.20925i
\(238\) 0 0
\(239\) 2196.96 0.594602 0.297301 0.954784i \(-0.403914\pi\)
0.297301 + 0.954784i \(0.403914\pi\)
\(240\) 0 0
\(241\) −2608.91 −0.697322 −0.348661 0.937249i \(-0.613363\pi\)
−0.348661 + 0.937249i \(0.613363\pi\)
\(242\) 0 0
\(243\) 2994.32 + 2320.12i 0.790476 + 0.612493i
\(244\) 0 0
\(245\) 1514.20 + 1514.20i 0.394852 + 0.394852i
\(246\) 0 0
\(247\) 2117.37 0.545445
\(248\) 0 0
\(249\) 47.6337 + 1887.01i 0.0121232 + 0.480260i
\(250\) 0 0
\(251\) −1134.95 + 1134.95i −0.285409 + 0.285409i −0.835262 0.549853i \(-0.814684\pi\)
0.549853 + 0.835262i \(0.314684\pi\)
\(252\) 0 0
\(253\) 5.74601 + 5.74601i 0.00142786 + 0.00142786i
\(254\) 0 0
\(255\) 3809.70 96.1679i 0.935579 0.0236167i
\(256\) 0 0
\(257\) 1979.45i 0.480446i −0.970718 0.240223i \(-0.922779\pi\)
0.970718 0.240223i \(-0.0772206\pi\)
\(258\) 0 0
\(259\) −911.529 + 911.529i −0.218686 + 0.218686i
\(260\) 0 0
\(261\) −4604.81 4161.93i −1.09207 0.987038i
\(262\) 0 0
\(263\) 5494.40i 1.28821i −0.764937 0.644105i \(-0.777230\pi\)
0.764937 0.644105i \(-0.222770\pi\)
\(264\) 0 0
\(265\) 1840.63i 0.426675i
\(266\) 0 0
\(267\) 3083.66 + 2931.82i 0.706806 + 0.672001i
\(268\) 0 0
\(269\) 3967.07 3967.07i 0.899169 0.899169i −0.0961936 0.995363i \(-0.530667\pi\)
0.995363 + 0.0961936i \(0.0306668\pi\)
\(270\) 0 0
\(271\) 2659.35i 0.596103i −0.954550 0.298051i \(-0.903663\pi\)
0.954550 0.298051i \(-0.0963367\pi\)
\(272\) 0 0
\(273\) 32.0656 + 1270.28i 0.00710877 + 0.281615i
\(274\) 0 0
\(275\) −2395.17 2395.17i −0.525215 0.525215i
\(276\) 0 0
\(277\) −3478.53 + 3478.53i −0.754530 + 0.754530i −0.975321 0.220791i \(-0.929136\pi\)
0.220791 + 0.975321i \(0.429136\pi\)
\(278\) 0 0
\(279\) −4839.18 + 244.466i −1.03840 + 0.0524580i
\(280\) 0 0
\(281\) −555.076 −0.117840 −0.0589200 0.998263i \(-0.518766\pi\)
−0.0589200 + 0.998263i \(0.518766\pi\)
\(282\) 0 0
\(283\) 2673.37 + 2673.37i 0.561538 + 0.561538i 0.929744 0.368206i \(-0.120028\pi\)
−0.368206 + 0.929744i \(0.620028\pi\)
\(284\) 0 0
\(285\) −1016.66 966.598i −0.211305 0.200899i
\(286\) 0 0
\(287\) 230.083 0.0473218
\(288\) 0 0
\(289\) −7183.86 −1.46221
\(290\) 0 0
\(291\) −2514.59 2390.77i −0.506557 0.481612i
\(292\) 0 0
\(293\) −5234.64 5234.64i −1.04372 1.04372i −0.998999 0.0447231i \(-0.985759\pi\)
−0.0447231 0.998999i \(-0.514241\pi\)
\(294\) 0 0
\(295\) 2853.82 0.563239
\(296\) 0 0
\(297\) −446.342 5883.93i −0.0872033 1.14956i
\(298\) 0 0
\(299\) 7.14470 7.14470i 0.00138190 0.00138190i
\(300\) 0 0
\(301\) 1572.61 + 1572.61i 0.301141 + 0.301141i
\(302\) 0 0
\(303\) 147.254 + 5833.47i 0.0279192 + 1.10602i
\(304\) 0 0
\(305\) 4726.75i 0.887388i
\(306\) 0 0
\(307\) −6270.43 + 6270.43i −1.16571 + 1.16571i −0.182502 + 0.983205i \(0.558420\pi\)
−0.983205 + 0.182502i \(0.941580\pi\)
\(308\) 0 0
\(309\) 4090.88 + 3889.43i 0.753145 + 0.716058i
\(310\) 0 0
\(311\) 2819.71i 0.514119i −0.966396 0.257059i \(-0.917246\pi\)
0.966396 0.257059i \(-0.0827536\pi\)
\(312\) 0 0
\(313\) 744.254i 0.134402i 0.997739 + 0.0672008i \(0.0214068\pi\)
−0.997739 + 0.0672008i \(0.978593\pi\)
\(314\) 0 0
\(315\) 564.498 624.567i 0.100971 0.111715i
\(316\) 0 0
\(317\) −105.984 + 105.984i −0.0187782 + 0.0187782i −0.716434 0.697655i \(-0.754227\pi\)
0.697655 + 0.716434i \(0.254227\pi\)
\(318\) 0 0
\(319\) 9668.99i 1.69705i
\(320\) 0 0
\(321\) −3585.78 + 90.5156i −0.623486 + 0.0157386i
\(322\) 0 0
\(323\) 3148.70 + 3148.70i 0.542410 + 0.542410i
\(324\) 0 0
\(325\) −2978.20 + 2978.20i −0.508310 + 0.508310i
\(326\) 0 0
\(327\) −24.4106 967.027i −0.00412816 0.163537i
\(328\) 0 0
\(329\) −875.655 −0.146737
\(330\) 0 0
\(331\) −2520.49 2520.49i −0.418545 0.418545i 0.466157 0.884702i \(-0.345638\pi\)
−0.884702 + 0.466157i \(0.845638\pi\)
\(332\) 0 0
\(333\) −5522.23 4991.12i −0.908758 0.821356i
\(334\) 0 0
\(335\) −344.016 −0.0561063
\(336\) 0 0
\(337\) −1969.50 −0.318355 −0.159178 0.987250i \(-0.550884\pi\)
−0.159178 + 0.987250i \(0.550884\pi\)
\(338\) 0 0
\(339\) 4305.90 4528.92i 0.689866 0.725596i
\(340\) 0 0
\(341\) 5337.21 + 5337.21i 0.847584 + 0.847584i
\(342\) 0 0
\(343\) −3105.46 −0.488861
\(344\) 0 0
\(345\) −6.69218 + 0.168930i −0.00104433 + 2.63620e-5i
\(346\) 0 0
\(347\) −3206.45 + 3206.45i −0.496056 + 0.496056i −0.910208 0.414152i \(-0.864078\pi\)
0.414152 + 0.910208i \(0.364078\pi\)
\(348\) 0 0
\(349\) −2228.50 2228.50i −0.341802 0.341802i 0.515242 0.857045i \(-0.327702\pi\)
−0.857045 + 0.515242i \(0.827702\pi\)
\(350\) 0 0
\(351\) −7316.20 + 554.990i −1.11256 + 0.0843965i
\(352\) 0 0
\(353\) 8425.61i 1.27040i −0.772349 0.635198i \(-0.780918\pi\)
0.772349 0.635198i \(-0.219082\pi\)
\(354\) 0 0
\(355\) −3007.06 + 3007.06i −0.449572 + 0.449572i
\(356\) 0 0
\(357\) −1841.33 + 1936.70i −0.272979 + 0.287117i
\(358\) 0 0
\(359\) 12048.7i 1.77133i 0.464325 + 0.885665i \(0.346297\pi\)
−0.464325 + 0.885665i \(0.653703\pi\)
\(360\) 0 0
\(361\) 5219.84i 0.761021i
\(362\) 0 0
\(363\) −1568.32 + 1649.54i −0.226764 + 0.238509i
\(364\) 0 0
\(365\) 426.204 426.204i 0.0611193 0.0611193i
\(366\) 0 0
\(367\) 2019.62i 0.287257i 0.989632 + 0.143628i \(0.0458770\pi\)
−0.989632 + 0.143628i \(0.954123\pi\)
\(368\) 0 0
\(369\) 67.0303 + 1326.86i 0.00945652 + 0.187191i
\(370\) 0 0
\(371\) 912.662 + 912.662i 0.127717 + 0.127717i
\(372\) 0 0
\(373\) −119.726 + 119.726i −0.0166197 + 0.0166197i −0.715368 0.698748i \(-0.753741\pi\)
0.698748 + 0.715368i \(0.253741\pi\)
\(374\) 0 0
\(375\) 7119.33 179.713i 0.980376 0.0247475i
\(376\) 0 0
\(377\) 12022.6 1.64243
\(378\) 0 0
\(379\) 4492.22 + 4492.22i 0.608838 + 0.608838i 0.942642 0.333804i \(-0.108332\pi\)
−0.333804 + 0.942642i \(0.608332\pi\)
\(380\) 0 0
\(381\) −9181.51 + 9657.05i −1.23460 + 1.29854i
\(382\) 0 0
\(383\) 1574.45 0.210054 0.105027 0.994469i \(-0.466507\pi\)
0.105027 + 0.994469i \(0.466507\pi\)
\(384\) 0 0
\(385\) −1311.44 −0.173603
\(386\) 0 0
\(387\) −8610.87 + 9527.17i −1.13105 + 1.25140i
\(388\) 0 0
\(389\) −619.930 619.930i −0.0808013 0.0808013i 0.665551 0.746352i \(-0.268197\pi\)
−0.746352 + 0.665551i \(0.768197\pi\)
\(390\) 0 0
\(391\) 21.2496 0.00274843
\(392\) 0 0
\(393\) 230.302 + 9123.42i 0.0295603 + 1.17103i
\(394\) 0 0
\(395\) 5524.31 5524.31i 0.703692 0.703692i
\(396\) 0 0
\(397\) −10371.0 10371.0i −1.31110 1.31110i −0.920607 0.390491i \(-0.872305\pi\)
−0.390491 0.920607i \(-0.627695\pi\)
\(398\) 0 0
\(399\) 983.385 24.8235i 0.123386 0.00311461i
\(400\) 0 0
\(401\) 10287.3i 1.28110i 0.767915 + 0.640552i \(0.221294\pi\)
−0.767915 + 0.640552i \(0.778706\pi\)
\(402\) 0 0
\(403\) 6636.39 6636.39i 0.820303 0.820303i
\(404\) 0 0
\(405\) 3766.26 + 3073.43i 0.462091 + 0.377087i
\(406\) 0 0
\(407\) 11595.4i 1.41219i
\(408\) 0 0
\(409\) 1734.25i 0.209665i −0.994490 0.104833i \(-0.966569\pi\)
0.994490 0.104833i \(-0.0334307\pi\)
\(410\) 0 0
\(411\) 5204.27 + 4948.00i 0.624594 + 0.593837i
\(412\) 0 0
\(413\) −1415.04 + 1415.04i −0.168595 + 0.168595i
\(414\) 0 0
\(415\) 2422.38i 0.286530i
\(416\) 0 0
\(417\) −119.372 4728.94i −0.0140184 0.555341i
\(418\) 0 0
\(419\) −4435.64 4435.64i −0.517172 0.517172i 0.399543 0.916715i \(-0.369169\pi\)
−0.916715 + 0.399543i \(0.869169\pi\)
\(420\) 0 0
\(421\) 1602.03 1602.03i 0.185459 0.185459i −0.608271 0.793730i \(-0.708137\pi\)
0.793730 + 0.608271i \(0.208137\pi\)
\(422\) 0 0
\(423\) −255.106 5049.79i −0.0293231 0.580447i
\(424\) 0 0
\(425\) −8857.67 −1.01096
\(426\) 0 0
\(427\) −2343.73 2343.73i −0.265623 0.265623i
\(428\) 0 0
\(429\) 8283.41 + 7875.51i 0.932231 + 0.886325i
\(430\) 0 0
\(431\) −11106.8 −1.24129 −0.620645 0.784092i \(-0.713129\pi\)
−0.620645 + 0.784092i \(0.713129\pi\)
\(432\) 0 0
\(433\) 400.999 0.0445053 0.0222527 0.999752i \(-0.492916\pi\)
0.0222527 + 0.999752i \(0.492916\pi\)
\(434\) 0 0
\(435\) −5772.70 5488.43i −0.636275 0.604943i
\(436\) 0 0
\(437\) −5.53107 5.53107i −0.000605462 0.000605462i
\(438\) 0 0
\(439\) −9964.43 −1.08332 −0.541658 0.840599i \(-0.682203\pi\)
−0.541658 + 0.840599i \(0.682203\pi\)
\(440\) 0 0
\(441\) −437.467 8659.62i −0.0472375 0.935063i
\(442\) 0 0
\(443\) 7441.81 7441.81i 0.798129 0.798129i −0.184671 0.982800i \(-0.559122\pi\)
0.982800 + 0.184671i \(0.0591221\pi\)
\(444\) 0 0
\(445\) 3861.07 + 3861.07i 0.411308 + 0.411308i
\(446\) 0 0
\(447\) −112.112 4441.33i −0.0118629 0.469950i
\(448\) 0 0
\(449\) 15032.1i 1.57997i −0.613124 0.789987i \(-0.710087\pi\)
0.613124 0.789987i \(-0.289913\pi\)
\(450\) 0 0
\(451\) 1463.41 1463.41i 0.152793 0.152793i
\(452\) 0 0
\(453\) −5154.18 4900.38i −0.534580 0.508256i
\(454\) 0 0
\(455\) 1630.67i 0.168015i
\(456\) 0 0
\(457\) 12925.5i 1.32304i −0.749927 0.661521i \(-0.769911\pi\)
0.749927 0.661521i \(-0.230089\pi\)
\(458\) 0 0
\(459\) −11705.1 10054.5i −1.19030 1.02245i
\(460\) 0 0
\(461\) 9557.64 9557.64i 0.965604 0.965604i −0.0338235 0.999428i \(-0.510768\pi\)
0.999428 + 0.0338235i \(0.0107684\pi\)
\(462\) 0 0
\(463\) 7779.26i 0.780849i −0.920635 0.390424i \(-0.872328\pi\)
0.920635 0.390424i \(-0.127672\pi\)
\(464\) 0 0
\(465\) −6216.06 + 156.912i −0.619920 + 0.0156486i
\(466\) 0 0
\(467\) 8196.34 + 8196.34i 0.812166 + 0.812166i 0.984958 0.172792i \(-0.0552789\pi\)
−0.172792 + 0.984958i \(0.555279\pi\)
\(468\) 0 0
\(469\) 170.578 170.578i 0.0167944 0.0167944i
\(470\) 0 0
\(471\) −289.470 11467.4i −0.0283186 1.12184i
\(472\) 0 0
\(473\) 20004.7 1.94465
\(474\) 0 0
\(475\) 2305.57 + 2305.57i 0.222709 + 0.222709i
\(476\) 0 0
\(477\) −4997.32 + 5529.09i −0.479689 + 0.530733i
\(478\) 0 0
\(479\) 15149.0 1.44504 0.722522 0.691348i \(-0.242983\pi\)
0.722522 + 0.691348i \(0.242983\pi\)
\(480\) 0 0
\(481\) 14417.9 1.36673
\(482\) 0 0
\(483\) 3.23451 3.40203i 0.000304711 0.000320492i
\(484\) 0 0
\(485\) −3148.53 3148.53i −0.294778 0.294778i
\(486\) 0 0
\(487\) 5601.13 0.521173 0.260587 0.965450i \(-0.416084\pi\)
0.260587 + 0.965450i \(0.416084\pi\)
\(488\) 0 0
\(489\) −14944.5 + 377.242i −1.38203 + 0.0348865i
\(490\) 0 0
\(491\) −1915.75 + 1915.75i −0.176083 + 0.176083i −0.789646 0.613563i \(-0.789736\pi\)
0.613563 + 0.789646i \(0.289736\pi\)
\(492\) 0 0
\(493\) 17878.6 + 17878.6i 1.63329 + 1.63329i
\(494\) 0 0
\(495\) −382.064 7562.91i −0.0346919 0.686723i
\(496\) 0 0
\(497\) 2982.06i 0.269142i
\(498\) 0 0
\(499\) 8401.78 8401.78i 0.753738 0.753738i −0.221437 0.975175i \(-0.571075\pi\)
0.975175 + 0.221437i \(0.0710746\pi\)
\(500\) 0 0
\(501\) 5225.24 5495.88i 0.465961 0.490095i
\(502\) 0 0
\(503\) 7484.92i 0.663491i −0.943369 0.331746i \(-0.892362\pi\)
0.943369 0.331746i \(-0.107638\pi\)
\(504\) 0 0
\(505\) 7488.49i 0.659868i
\(506\) 0 0
\(507\) 1926.55 2026.33i 0.168759 0.177500i
\(508\) 0 0
\(509\) 1636.10 1636.10i 0.142473 0.142473i −0.632273 0.774746i \(-0.717878\pi\)
0.774746 + 0.632273i \(0.217878\pi\)
\(510\) 0 0
\(511\) 422.660i 0.0365898i
\(512\) 0 0
\(513\) 429.645 + 5663.83i 0.0369772 + 0.487454i
\(514\) 0 0
\(515\) 5122.20 + 5122.20i 0.438274 + 0.438274i
\(516\) 0 0
\(517\) −5569.50 + 5569.50i −0.473784 + 0.473784i
\(518\) 0 0
\(519\) 6372.89 160.870i 0.538996 0.0136058i
\(520\) 0 0
\(521\) −14829.8 −1.24703 −0.623517 0.781810i \(-0.714297\pi\)
−0.623517 + 0.781810i \(0.714297\pi\)
\(522\) 0 0
\(523\) 7012.23 + 7012.23i 0.586278 + 0.586278i 0.936621 0.350343i \(-0.113935\pi\)
−0.350343 + 0.936621i \(0.613935\pi\)
\(524\) 0 0
\(525\) −1348.27 + 1418.10i −0.112083 + 0.117888i
\(526\) 0 0
\(527\) 19737.7 1.63148
\(528\) 0 0
\(529\) 12167.0 0.999997
\(530\) 0 0
\(531\) −8572.63 7748.14i −0.700603 0.633221i
\(532\) 0 0
\(533\) −1819.64 1819.64i −0.147875 0.147875i
\(534\) 0 0
\(535\) −4603.11 −0.371981
\(536\) 0 0
\(537\) 301.994 + 11963.5i 0.0242681 + 0.961384i
\(538\) 0 0
\(539\) −9550.84 + 9550.84i −0.763235 + 0.763235i
\(540\) 0 0
\(541\) −12824.9 12824.9i −1.01920 1.01920i −0.999812 0.0193853i \(-0.993829\pi\)
−0.0193853 0.999812i \(-0.506171\pi\)
\(542\) 0 0
\(543\) −16228.2 + 409.647i −1.28254 + 0.0323750i
\(544\) 0 0
\(545\) 1241.38i 0.0975688i
\(546\) 0 0
\(547\) 7736.14 7736.14i 0.604705 0.604705i −0.336853 0.941557i \(-0.609362\pi\)
0.941557 + 0.336853i \(0.109362\pi\)
\(548\) 0 0
\(549\) 12833.2 14198.8i 0.997645 1.10381i
\(550\) 0 0
\(551\) 9307.29i 0.719608i
\(552\) 0 0
\(553\) 5478.38i 0.421274i
\(554\) 0 0
\(555\) −6922.80 6581.90i −0.529471 0.503399i
\(556\) 0 0
\(557\) 11943.2 11943.2i 0.908528 0.908528i −0.0876259 0.996153i \(-0.527928\pi\)
0.996153 + 0.0876259i \(0.0279280\pi\)
\(558\) 0 0
\(559\) 24874.3i 1.88206i
\(560\) 0 0
\(561\) 606.579 + 24029.7i 0.0456503 + 1.80844i
\(562\) 0 0
\(563\) 8407.34 + 8407.34i 0.629355 + 0.629355i 0.947906 0.318550i \(-0.103196\pi\)
−0.318550 + 0.947906i \(0.603196\pi\)
\(564\) 0 0
\(565\) 5670.67 5670.67i 0.422243 0.422243i
\(566\) 0 0
\(567\) −3391.41 + 343.532i −0.251192 + 0.0254444i
\(568\) 0 0
\(569\) 38.5252 0.00283842 0.00141921 0.999999i \(-0.499548\pi\)
0.00141921 + 0.999999i \(0.499548\pi\)
\(570\) 0 0
\(571\) −17899.6 17899.6i −1.31186 1.31186i −0.920041 0.391822i \(-0.871845\pi\)
−0.391822 0.920041i \(-0.628155\pi\)
\(572\) 0 0
\(573\) 6576.82 + 6252.96i 0.479495 + 0.455883i
\(574\) 0 0
\(575\) 15.5595 0.00112848
\(576\) 0 0
\(577\) 19242.4 1.38834 0.694171 0.719810i \(-0.255771\pi\)
0.694171 + 0.719810i \(0.255771\pi\)
\(578\) 0 0
\(579\) −4709.64 4477.72i −0.338041 0.321395i
\(580\) 0 0
\(581\) −1201.12 1201.12i −0.0857674 0.0857674i
\(582\) 0 0
\(583\) 11609.8 0.824746
\(584\) 0 0
\(585\) −9403.87 + 475.065i −0.664619 + 0.0335753i
\(586\) 0 0
\(587\) −5948.44 + 5948.44i −0.418259 + 0.418259i −0.884603 0.466344i \(-0.845571\pi\)
0.466344 + 0.884603i \(0.345571\pi\)
\(588\) 0 0
\(589\) −5137.56 5137.56i −0.359405 0.359405i
\(590\) 0 0
\(591\) −5.86833 232.474i −0.000408445 0.0161806i
\(592\) 0 0
\(593\) 13100.7i 0.907222i 0.891200 + 0.453611i \(0.149864\pi\)
−0.891200 + 0.453611i \(0.850136\pi\)
\(594\) 0 0
\(595\) −2424.94 + 2424.94i −0.167081 + 0.167081i
\(596\) 0 0
\(597\) −1012.25 962.403i −0.0693946 0.0659774i
\(598\) 0 0
\(599\) 16819.3i 1.14728i 0.819109 + 0.573638i \(0.194468\pi\)
−0.819109 + 0.573638i \(0.805532\pi\)
\(600\) 0 0
\(601\) 15871.2i 1.07720i −0.842561 0.538601i \(-0.818953\pi\)
0.842561 0.538601i \(-0.181047\pi\)
\(602\) 0 0
\(603\) 1033.40 + 934.007i 0.0697896 + 0.0630774i
\(604\) 0 0
\(605\) −2065.40 + 2065.40i −0.138794 + 0.138794i
\(606\) 0 0
\(607\) 7884.67i 0.527231i 0.964628 + 0.263615i \(0.0849149\pi\)
−0.964628 + 0.263615i \(0.915085\pi\)
\(608\) 0 0
\(609\) 5583.75 140.950i 0.371535 0.00937864i
\(610\) 0 0
\(611\) 6925.23 + 6925.23i 0.458535 + 0.458535i
\(612\) 0 0
\(613\) 5659.45 5659.45i 0.372892 0.372892i −0.495637 0.868530i \(-0.665066\pi\)
0.868530 + 0.495637i \(0.165066\pi\)
\(614\) 0 0
\(615\) 43.0237 + 1704.39i 0.00282095 + 0.111752i
\(616\) 0 0
\(617\) 20422.8 1.33257 0.666283 0.745699i \(-0.267884\pi\)
0.666283 + 0.745699i \(0.267884\pi\)
\(618\) 0 0
\(619\) −1382.80 1382.80i −0.0897888 0.0897888i 0.660786 0.750575i \(-0.270223\pi\)
−0.750575 + 0.660786i \(0.770223\pi\)
\(620\) 0 0
\(621\) 20.5614 + 17.6619i 0.00132867 + 0.00114130i
\(622\) 0 0
\(623\) −3828.96 −0.246235
\(624\) 0 0
\(625\) −927.672 −0.0593710
\(626\) 0 0
\(627\) 6096.82 6412.60i 0.388331 0.408444i
\(628\) 0 0
\(629\) 21440.6 + 21440.6i 1.35913 + 1.35913i
\(630\) 0 0
\(631\) −21039.0 −1.32734 −0.663669 0.748026i \(-0.731002\pi\)
−0.663669 + 0.748026i \(0.731002\pi\)
\(632\) 0 0
\(633\) 6736.82 170.057i 0.423009 0.0106780i
\(634\) 0 0
\(635\) −12091.6 + 12091.6i −0.755656 + 0.755656i
\(636\) 0 0
\(637\) 11875.7 + 11875.7i 0.738669 + 0.738669i
\(638\) 0 0
\(639\) 17197.1 868.766i 1.06465 0.0537838i
\(640\) 0 0
\(641\) 13567.3i 0.835997i −0.908448 0.417999i \(-0.862732\pi\)
0.908448 0.417999i \(-0.137268\pi\)
\(642\) 0 0
\(643\) 5070.72 5070.72i 0.310995 0.310995i −0.534300 0.845295i \(-0.679425\pi\)
0.845295 + 0.534300i \(0.179425\pi\)
\(644\) 0 0
\(645\) −11355.4 + 11943.5i −0.693204 + 0.729107i
\(646\) 0 0
\(647\) 4134.58i 0.251232i −0.992079 0.125616i \(-0.959909\pi\)
0.992079 0.125616i \(-0.0400907\pi\)
\(648\) 0 0
\(649\) 18000.5i 1.08872i
\(650\) 0 0
\(651\) 3004.39 3159.99i 0.180877 0.190246i
\(652\) 0 0
\(653\) 2132.91 2132.91i 0.127821 0.127821i −0.640302 0.768123i \(-0.721191\pi\)
0.768123 + 0.640302i \(0.221191\pi\)
\(654\) 0 0
\(655\) 11711.8i 0.698655i
\(656\) 0 0
\(657\) −2437.43 + 123.134i −0.144738 + 0.00731190i
\(658\) 0 0
\(659\) −5500.01 5500.01i −0.325114 0.325114i 0.525611 0.850725i \(-0.323837\pi\)
−0.850725 + 0.525611i \(0.823837\pi\)
\(660\) 0 0
\(661\) −4321.74 + 4321.74i −0.254306 + 0.254306i −0.822733 0.568428i \(-0.807552\pi\)
0.568428 + 0.822733i \(0.307552\pi\)
\(662\) 0 0
\(663\) 29879.0 754.233i 1.75023 0.0441809i
\(664\) 0 0
\(665\) 1262.38 0.0736136
\(666\) 0 0
\(667\) −31.4059 31.4059i −0.00182315 0.00182315i
\(668\) 0 0
\(669\) −1189.31 + 1250.91i −0.0687314 + 0.0722912i
\(670\) 0 0
\(671\) −29814.0 −1.71529
\(672\) 0 0
\(673\) −24564.4 −1.40696 −0.703482 0.710713i \(-0.748372\pi\)
−0.703482 + 0.710713i \(0.748372\pi\)
\(674\) 0 0
\(675\) −8570.82 7362.18i −0.488728 0.419808i
\(676\) 0 0
\(677\) −14002.2 14002.2i −0.794904 0.794904i 0.187383 0.982287i \(-0.440000\pi\)
−0.982287 + 0.187383i \(0.940000\pi\)
\(678\) 0 0
\(679\) 3122.35 0.176473
\(680\) 0 0
\(681\) −222.714 8822.83i −0.0125322 0.496463i
\(682\) 0 0
\(683\) 1738.73 1738.73i 0.0974093 0.0974093i −0.656723 0.754132i \(-0.728058\pi\)
0.754132 + 0.656723i \(0.228058\pi\)
\(684\) 0 0
\(685\) 6516.29 + 6516.29i 0.363467 + 0.363467i
\(686\) 0 0
\(687\) −21817.7 + 550.741i −1.21164 + 0.0305853i
\(688\) 0 0
\(689\) 14435.8i 0.798201i
\(690\) 0 0
\(691\) −10946.9 + 10946.9i −0.602664 + 0.602664i −0.941019 0.338355i \(-0.890130\pi\)
0.338355 + 0.941019i \(0.390130\pi\)
\(692\) 0 0
\(693\) 3939.46 + 3560.57i 0.215942 + 0.195173i
\(694\) 0 0
\(695\) 6070.59i 0.331325i
\(696\) 0 0
\(697\) 5411.91i 0.294104i
\(698\) 0 0
\(699\) 16875.3 + 16044.3i 0.913137 + 0.868171i
\(700\) 0 0
\(701\) −18915.0 + 18915.0i −1.01913 + 1.01913i −0.0193143 + 0.999813i \(0.506148\pi\)
−0.999813 + 0.0193143i \(0.993852\pi\)
\(702\) 0 0
\(703\) 11161.6i 0.598816i
\(704\) 0 0
\(705\) −163.741 6486.60i −0.00874729 0.346524i
\(706\) 0 0
\(707\) −3713.11 3713.11i −0.197519 0.197519i
\(708\) 0 0
\(709\) −9407.92 + 9407.92i −0.498338 + 0.498338i −0.910920 0.412582i \(-0.864627\pi\)
0.412582 + 0.910920i \(0.364627\pi\)
\(710\) 0 0
\(711\) −31593.1 + 1596.02i −1.66644 + 0.0841850i
\(712\) 0 0
\(713\) −34.6717 −0.00182113
\(714\) 0 0
\(715\) 10371.7 + 10371.7i 0.542489 + 0.542489i
\(716\) 0 0
\(717\) −8273.29 7865.89i −0.430923 0.409703i
\(718\) 0 0
\(719\) 20278.9 1.05184 0.525921 0.850533i \(-0.323721\pi\)
0.525921 + 0.850533i \(0.323721\pi\)
\(720\) 0 0
\(721\) −5079.61 −0.262378
\(722\) 0 0
\(723\) 9824.58 + 9340.79i 0.505367 + 0.480481i
\(724\) 0 0
\(725\) 13091.2 + 13091.2i 0.670616 + 0.670616i
\(726\) 0 0
\(727\) −5358.43 −0.273361 −0.136680 0.990615i \(-0.543643\pi\)
−0.136680 + 0.990615i \(0.543643\pi\)
\(728\) 0 0
\(729\) −2969.13 19457.8i −0.150847 0.988557i
\(730\) 0 0
\(731\) 36990.2 36990.2i 1.87159 1.87159i
\(732\) 0 0
\(733\) 282.297 + 282.297i 0.0142250 + 0.0142250i 0.714183 0.699959i \(-0.246798\pi\)
−0.699959 + 0.714183i \(0.746798\pi\)
\(734\) 0 0
\(735\) −280.790 11123.5i −0.0140913 0.558228i
\(736\) 0 0
\(737\) 2169.88i 0.108451i
\(738\) 0 0
\(739\) −9969.28 + 9969.28i −0.496246 + 0.496246i −0.910267 0.414021i \(-0.864124\pi\)
0.414021 + 0.910267i \(0.364124\pi\)
\(740\) 0 0
\(741\) −7973.55 7580.91i −0.395298 0.375832i
\(742\) 0 0
\(743\) 29235.1i 1.44351i 0.692147 + 0.721757i \(0.256665\pi\)
−0.692147 + 0.721757i \(0.743335\pi\)
\(744\) 0 0
\(745\) 5701.39i 0.280379i
\(746\) 0 0
\(747\) 6576.78 7276.63i 0.322131 0.356410i
\(748\) 0 0
\(749\) 2282.42 2282.42i 0.111345 0.111345i
\(750\) 0 0
\(751\) 16830.9i 0.817802i 0.912579 + 0.408901i \(0.134088\pi\)
−0.912579 + 0.408901i \(0.865912\pi\)
\(752\) 0 0
\(753\) 8337.51 210.463i 0.403500 0.0101855i
\(754\) 0 0
\(755\) −6453.57 6453.57i −0.311086 0.311086i
\(756\) 0 0
\(757\) 15563.2 15563.2i 0.747231 0.747231i −0.226728 0.973958i \(-0.572803\pi\)
0.973958 + 0.226728i \(0.0728027\pi\)
\(758\) 0 0
\(759\) −1.06553 42.2110i −5.09568e−5 0.00201866i
\(760\) 0 0
\(761\) −4967.50 −0.236625 −0.118313 0.992976i \(-0.537749\pi\)
−0.118313 + 0.992976i \(0.537749\pi\)
\(762\) 0 0
\(763\) 615.531 + 615.531i 0.0292054 + 0.0292054i
\(764\) 0 0
\(765\) −14690.8 13277.9i −0.694310 0.627533i
\(766\) 0 0
\(767\) 22382.1 1.05368
\(768\) 0 0
\(769\) −31721.3 −1.48752 −0.743758 0.668449i \(-0.766959\pi\)
−0.743758 + 0.668449i \(0.766959\pi\)
\(770\) 0 0
\(771\) −7087.11 + 7454.18i −0.331046 + 0.348191i
\(772\) 0 0
\(773\) −21018.6 21018.6i −0.977989 0.977989i 0.0217738 0.999763i \(-0.493069\pi\)
−0.999763 + 0.0217738i \(0.993069\pi\)
\(774\) 0 0
\(775\) 14452.5 0.669872
\(776\) 0 0
\(777\) 6696.21 169.032i 0.309170 0.00780436i
\(778\) 0 0
\(779\) −1408.67 + 1408.67i −0.0647893 + 0.0647893i
\(780\) 0 0
\(781\) −18967.0 18967.0i −0.869006 0.869006i
\(782\) 0 0
\(783\) 2439.56 + 32159.7i 0.111345 + 1.46781i
\(784\) 0 0
\(785\) 14720.8i 0.669309i
\(786\) 0 0
\(787\) −15691.0 + 15691.0i −0.710703 + 0.710703i −0.966682 0.255979i \(-0.917602\pi\)
0.255979 + 0.966682i \(0.417602\pi\)
\(788\) 0 0
\(789\) −19671.9 + 20690.7i −0.887625 + 0.933598i
\(790\) 0 0
\(791\) 5623.53i 0.252781i
\(792\) 0 0
\(793\) 37071.3i 1.66008i
\(794\) 0 0
\(795\) −6590.08 + 6931.40i −0.293995 + 0.309222i
\(796\) 0 0
\(797\) −392.159 + 392.159i −0.0174291 + 0.0174291i −0.715768 0.698339i \(-0.753923\pi\)
0.698339 + 0.715768i \(0.253923\pi\)
\(798\) 0 0
\(799\) 20596.8i 0.911967i
\(800\) 0 0
\(801\) −1115.50 22081.2i −0.0492062 0.974032i
\(802\) 0 0
\(803\) 2688.28 + 2688.28i 0.118141 + 0.118141i
\(804\) 0 0
\(805\) 4.25970 4.25970i 0.000186503 0.000186503i
\(806\) 0 0
\(807\) −29142.6 + 735.644i −1.27121 + 0.0320891i
\(808\) 0 0
\(809\) −1365.11 −0.0593259 −0.0296629 0.999560i \(-0.509443\pi\)
−0.0296629 + 0.999560i \(0.509443\pi\)
\(810\) 0 0
\(811\) 19620.1 + 19620.1i 0.849512 + 0.849512i 0.990072 0.140560i \(-0.0448903\pi\)
−0.140560 + 0.990072i \(0.544890\pi\)
\(812\) 0 0
\(813\) −9521.38 + 10014.5i −0.410737 + 0.432011i
\(814\) 0 0
\(815\) −19184.4 −0.824539
\(816\) 0 0
\(817\) −19256.4 −0.824598
\(818\) 0 0
\(819\) 4427.29 4898.40i 0.188891 0.208991i
\(820\) 0 0
\(821\) −21308.6 21308.6i −0.905818 0.905818i 0.0901139 0.995931i \(-0.471277\pi\)
−0.995931 + 0.0901139i \(0.971277\pi\)
\(822\) 0 0
\(823\) 42077.4 1.78217 0.891086 0.453835i \(-0.149944\pi\)
0.891086 + 0.453835i \(0.149944\pi\)
\(824\) 0 0
\(825\) 444.155 + 17595.2i 0.0187436 + 0.742530i
\(826\) 0 0
\(827\) 3135.69 3135.69i 0.131848 0.131848i −0.638103 0.769951i \(-0.720281\pi\)
0.769951 + 0.638103i \(0.220281\pi\)
\(828\) 0 0
\(829\) −12487.8 12487.8i −0.523184 0.523184i 0.395348 0.918532i \(-0.370624\pi\)
−0.918532 + 0.395348i \(0.870624\pi\)
\(830\) 0 0
\(831\) 25553.8 645.051i 1.06673 0.0269273i
\(832\) 0 0
\(833\) 35320.3i 1.46912i
\(834\) 0 0
\(835\) 6881.41 6881.41i 0.285199 0.285199i
\(836\) 0 0
\(837\) 19098.6 + 16405.3i 0.788701 + 0.677480i
\(838\) 0 0
\(839\) 39451.5i 1.62338i −0.584087 0.811691i \(-0.698547\pi\)
0.584087 0.811691i \(-0.301453\pi\)
\(840\) 0 0
\(841\) 28458.6i 1.16686i
\(842\) 0 0
\(843\) 2090.30 + 1987.36i 0.0854017 + 0.0811963i
\(844\) 0 0
\(845\) 2537.18 2537.18i 0.103292 0.103292i
\(846\) 0 0
\(847\) 2048.23i 0.0830908i
\(848\) 0 0
\(849\) −495.743 19638.9i −0.0200399 0.793882i
\(850\) 0 0
\(851\) −37.6629 37.6629i −0.00151712 0.00151712i
\(852\) 0 0
\(853\) −28218.6 + 28218.6i −1.13269 + 1.13269i −0.142966 + 0.989728i \(0.545664\pi\)
−0.989728 + 0.142966i \(0.954336\pi\)
\(854\) 0 0
\(855\) 367.771 + 7280.00i 0.0147105 + 0.291194i
\(856\) 0 0
\(857\) −27268.2 −1.08689 −0.543444 0.839446i \(-0.682880\pi\)
−0.543444 + 0.839446i \(0.682880\pi\)
\(858\) 0 0
\(859\) −20537.8 20537.8i −0.815764 0.815764i 0.169727 0.985491i \(-0.445711\pi\)
−0.985491 + 0.169727i \(0.945711\pi\)
\(860\) 0 0
\(861\) −866.442 823.776i −0.0342953 0.0326065i
\(862\) 0 0
\(863\) −27756.3 −1.09483 −0.547414 0.836862i \(-0.684388\pi\)
−0.547414 + 0.836862i \(0.684388\pi\)
\(864\) 0 0
\(865\) 8180.95 0.321573
\(866\) 0 0
\(867\) 27052.9 + 25720.7i 1.05970 + 1.00752i
\(868\) 0 0
\(869\) 34844.6 + 34844.6i 1.36021 + 1.36021i
\(870\) 0 0
\(871\) −2698.07 −0.104961
\(872\) 0 0
\(873\) 909.639 + 18006.2i 0.0352653 + 0.698074i
\(874\) 0 0
\(875\) −4531.59 + 4531.59i −0.175081 + 0.175081i
\(876\) 0 0
\(877\) −1240.18 1240.18i −0.0477512 0.0477512i 0.682828 0.730579i \(-0.260750\pi\)
−0.730579 + 0.682828i \(0.760750\pi\)
\(878\) 0 0
\(879\) 970.699 + 38454.3i 0.0372479 + 1.47558i
\(880\) 0 0
\(881\) 31267.9i 1.19574i 0.801595 + 0.597868i \(0.203985\pi\)
−0.801595 + 0.597868i \(0.796015\pi\)
\(882\) 0 0
\(883\) −26119.6 + 26119.6i −0.995464 + 0.995464i −0.999990 0.00452604i \(-0.998559\pi\)
0.00452604 + 0.999990i \(0.498559\pi\)
\(884\) 0 0
\(885\) −10746.9 10217.6i −0.408194 0.388093i
\(886\) 0 0
\(887\) 13730.5i 0.519758i −0.965641 0.259879i \(-0.916317\pi\)
0.965641 0.259879i \(-0.0836827\pi\)
\(888\) 0 0
\(889\) 11991.1i 0.452383i
\(890\) 0 0
\(891\) −19385.7 + 23755.7i −0.728895 + 0.893205i
\(892\) 0 0
\(893\) 5361.16 5361.16i 0.200901 0.200901i
\(894\) 0 0
\(895\) 15357.7i 0.573576i
\(896\) 0 0
\(897\) −52.4859 + 1.32490i −0.00195368 + 4.93167e-5i
\(898\) 0 0
\(899\) −29171.5 29171.5i −1.08223 1.08223i
\(900\) 0 0
\(901\) 21467.3 21467.3i 0.793760 0.793760i
\(902\) 0 0
\(903\) −291.620 11552.6i −0.0107470 0.425742i
\(904\) 0 0
\(905\) −20832.3 −0.765181
\(906\) 0 0
\(907\) −9646.24 9646.24i −0.353140 0.353140i 0.508136 0.861277i \(-0.330335\pi\)
−0.861277 + 0.508136i \(0.830335\pi\)
\(908\) 0 0
\(909\) 20331.3 22494.8i 0.741856 0.820798i
\(910\) 0 0
\(911\) 3435.47 0.124942 0.0624710 0.998047i \(-0.480102\pi\)
0.0624710 + 0.998047i \(0.480102\pi\)
\(912\) 0 0
\(913\) −15279.2 −0.553852
\(914\) 0 0
\(915\) 16923.4 17799.9i 0.611444 0.643112i
\(916\) 0 0
\(917\) −5807.23 5807.23i −0.209129 0.209129i
\(918\) 0 0
\(919\) −4868.66 −0.174758 −0.0873788 0.996175i \(-0.527849\pi\)
−0.0873788 + 0.996175i \(0.527849\pi\)
\(920\) 0 0
\(921\) 46063.4 1162.77i 1.64803 0.0416012i
\(922\) 0 0
\(923\) −23584.0 + 23584.0i −0.841035 + 0.841035i
\(924\) 0 0
\(925\) 15699.4 + 15699.4i 0.558047 + 0.558047i
\(926\) 0 0
\(927\) −1479.85 29293.5i −0.0524322 1.03789i
\(928\) 0 0
\(929\) 17567.8i 0.620431i 0.950666 + 0.310216i \(0.100401\pi\)
−0.950666 + 0.310216i \(0.899599\pi\)
\(930\) 0 0
\(931\) 9193.56 9193.56i 0.323638 0.323638i
\(932\) 0 0
\(933\) −10095.5 + 10618.4i −0.354247 + 0.372595i
\(934\) 0 0
\(935\) 30847.2i 1.07894i
\(936\) 0 0
\(937\) 13154.3i 0.458625i −0.973353 0.229312i \(-0.926352\pi\)
0.973353 0.229312i \(-0.0736477\pi\)
\(938\) 0 0
\(939\) 2664.69 2802.70i 0.0926078 0.0974043i
\(940\) 0 0
\(941\) −385.039 + 385.039i −0.0133389 + 0.0133389i −0.713745 0.700406i \(-0.753002\pi\)
0.700406 + 0.713745i \(0.253002\pi\)
\(942\) 0 0
\(943\) 9.50666i 0.000328292i
\(944\) 0 0
\(945\) −4361.94 + 330.887i −0.150152 + 0.0113902i
\(946\) 0 0
\(947\) −8878.86 8878.86i −0.304672 0.304672i 0.538167 0.842838i \(-0.319117\pi\)
−0.842838 + 0.538167i \(0.819117\pi\)
\(948\) 0 0
\(949\) 3342.66 3342.66i 0.114339 0.114339i
\(950\) 0 0
\(951\) 778.575 19.6535i 0.0265479 0.000670146i
\(952\) 0 0
\(953\) 28727.2 0.976457 0.488229 0.872716i \(-0.337643\pi\)
0.488229 + 0.872716i \(0.337643\pi\)
\(954\) 0 0
\(955\) 8234.87 + 8234.87i 0.279030 + 0.279030i
\(956\) 0 0
\(957\) 34618.3 36411.3i 1.16933 1.22990i
\(958\) 0 0
\(959\) −6462.11 −0.217594
\(960\) 0 0
\(961\) −2413.93 −0.0810288
\(962\) 0 0
\(963\) 13827.4 + 12497.5i 0.462700 + 0.418199i
\(964\) 0 0
\(965\) −5896.96 5896.96i −0.196715 0.196715i
\(966\) 0 0
\(967\) −24789.2 −0.824373 −0.412186 0.911100i \(-0.635235\pi\)
−0.412186 + 0.911100i \(0.635235\pi\)
\(968\) 0 0
\(969\) −583.888 23130.8i −0.0193573 0.766840i
\(970\) 0 0
\(971\) −23458.4 + 23458.4i −0.775299 + 0.775299i −0.979028 0.203728i \(-0.934694\pi\)
0.203728 + 0.979028i \(0.434694\pi\)
\(972\) 0 0
\(973\) 3010.06 + 3010.06i 0.0991758 + 0.0991758i
\(974\) 0 0
\(975\) 21878.2 552.271i 0.718630 0.0181403i
\(976\) 0 0
\(977\) 28932.0i 0.947407i 0.880684 + 0.473704i \(0.157083\pi\)
−0.880684 + 0.473704i \(0.842917\pi\)
\(978\) 0 0
\(979\) −24353.7 + 24353.7i −0.795043 + 0.795043i
\(980\) 0 0
\(981\) −3370.37 + 3729.01i −0.109692 + 0.121364i
\(982\) 0 0
\(983\) 28504.9i 0.924889i −0.886648 0.462445i \(-0.846972\pi\)
0.886648 0.462445i \(-0.153028\pi\)
\(984\) 0 0
\(985\) 298.430i 0.00965357i
\(986\) 0 0
\(987\) 3297.53 + 3135.15i 0.106344 + 0.101107i
\(988\) 0 0
\(989\) −64.9776 + 64.9776i −0.00208915 + 0.00208915i
\(990\) 0 0
\(991\) 32691.4i 1.04791i −0.851747 0.523953i \(-0.824457\pi\)
0.851747 0.523953i \(-0.175543\pi\)
\(992\) 0 0
\(993\) 467.393 + 18515.8i 0.0149368 + 0.591724i
\(994\) 0 0
\(995\) −1267.44 1267.44i −0.0403825 0.0403825i
\(996\) 0 0
\(997\) 14405.9 14405.9i 0.457613 0.457613i −0.440258 0.897871i \(-0.645113\pi\)
0.897871 + 0.440258i \(0.145113\pi\)
\(998\) 0 0
\(999\) 2925.60 + 38567.0i 0.0926546 + 1.22143i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.k.b.95.6 44
3.2 odd 2 inner 384.4.k.b.95.17 44
4.3 odd 2 384.4.k.a.95.17 44
8.3 odd 2 192.4.k.a.47.6 44
8.5 even 2 48.4.k.a.35.4 yes 44
12.11 even 2 384.4.k.a.95.6 44
16.3 odd 4 48.4.k.a.11.19 yes 44
16.5 even 4 384.4.k.a.287.6 44
16.11 odd 4 inner 384.4.k.b.287.17 44
16.13 even 4 192.4.k.a.143.17 44
24.5 odd 2 48.4.k.a.35.19 yes 44
24.11 even 2 192.4.k.a.47.17 44
48.5 odd 4 384.4.k.a.287.17 44
48.11 even 4 inner 384.4.k.b.287.6 44
48.29 odd 4 192.4.k.a.143.6 44
48.35 even 4 48.4.k.a.11.4 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.4 44 48.35 even 4
48.4.k.a.11.19 yes 44 16.3 odd 4
48.4.k.a.35.4 yes 44 8.5 even 2
48.4.k.a.35.19 yes 44 24.5 odd 2
192.4.k.a.47.6 44 8.3 odd 2
192.4.k.a.47.17 44 24.11 even 2
192.4.k.a.143.6 44 48.29 odd 4
192.4.k.a.143.17 44 16.13 even 4
384.4.k.a.95.6 44 12.11 even 2
384.4.k.a.95.17 44 4.3 odd 2
384.4.k.a.287.6 44 16.5 even 4
384.4.k.a.287.17 44 48.5 odd 4
384.4.k.b.95.6 44 1.1 even 1 trivial
384.4.k.b.95.17 44 3.2 odd 2 inner
384.4.k.b.287.6 44 48.11 even 4 inner
384.4.k.b.287.17 44 16.11 odd 4 inner