Properties

Label 192.4.k.a.47.17
Level $192$
Weight $4$
Character 192.47
Analytic conductor $11.328$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(47,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.17
Character \(\chi\) \(=\) 192.47
Dual form 192.4.k.a.143.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.58035 + 3.76578i) q^{3} +(-4.71515 - 4.71515i) q^{5} -4.67595 q^{7} +(-1.36225 + 26.9656i) q^{9} +(-29.7408 + 29.7408i) q^{11} +(36.9803 + 36.9803i) q^{13} +(0.874367 - 34.6381i) q^{15} +109.986i q^{17} +(-28.6283 + 28.6283i) q^{19} +(-16.7415 - 17.6086i) q^{21} +0.193203i q^{23} -80.5347i q^{25} +(-106.424 + 91.4163i) q^{27} +(-162.554 + 162.554i) q^{29} -179.457i q^{31} +(-218.480 - 5.51507i) q^{33} +(22.0478 + 22.0478i) q^{35} +(194.940 - 194.940i) q^{37} +(-6.85755 + 271.662i) q^{39} -49.2056 q^{41} +(336.318 + 336.318i) q^{43} +(133.570 - 120.724i) q^{45} -187.268 q^{47} -321.136 q^{49} +(-414.182 + 393.787i) q^{51} +(195.182 + 195.182i) q^{53} +280.465 q^{55} +(-210.307 - 5.30877i) q^{57} +(302.622 - 302.622i) q^{59} +(501.230 + 501.230i) q^{61} +(6.36981 - 126.090i) q^{63} -348.736i q^{65} +(36.4798 - 36.4798i) q^{67} +(-0.727560 + 0.691733i) q^{69} -637.743i q^{71} +90.3903i q^{73} +(303.276 - 288.342i) q^{75} +(139.067 - 139.067i) q^{77} -1171.61i q^{79} +(-725.289 - 73.4678i) q^{81} +(256.872 + 256.872i) q^{83} +(518.599 - 518.599i) q^{85} +(-1194.14 - 30.1437i) q^{87} +818.864 q^{89} +(-172.918 - 172.918i) q^{91} +(675.797 - 642.519i) q^{93} +269.973 q^{95} +667.747 q^{97} +(-761.465 - 842.494i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} + 8 q^{7} - 4 q^{13} - 20 q^{19} - 56 q^{21} + 134 q^{27} - 4 q^{33} - 4 q^{37} - 596 q^{39} + 436 q^{43} - 252 q^{45} + 972 q^{49} + 648 q^{51} - 280 q^{55} - 916 q^{61} + 1636 q^{67} + 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.58035 + 3.76578i 0.689038 + 0.724725i
\(4\) 0 0
\(5\) −4.71515 4.71515i −0.421736 0.421736i 0.464065 0.885801i \(-0.346390\pi\)
−0.885801 + 0.464065i \(0.846390\pi\)
\(6\) 0 0
\(7\) −4.67595 −0.252477 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(8\) 0 0
\(9\) −1.36225 + 26.9656i −0.0504537 + 0.998726i
\(10\) 0 0
\(11\) −29.7408 + 29.7408i −0.815200 + 0.815200i −0.985408 0.170208i \(-0.945556\pi\)
0.170208 + 0.985408i \(0.445556\pi\)
\(12\) 0 0
\(13\) 36.9803 + 36.9803i 0.788961 + 0.788961i 0.981324 0.192363i \(-0.0616149\pi\)
−0.192363 + 0.981324i \(0.561615\pi\)
\(14\) 0 0
\(15\) 0.874367 34.6381i 0.0150507 0.596235i
\(16\) 0 0
\(17\) 109.986i 1.56914i 0.620037 + 0.784572i \(0.287117\pi\)
−0.620037 + 0.784572i \(0.712883\pi\)
\(18\) 0 0
\(19\) −28.6283 + 28.6283i −0.345673 + 0.345673i −0.858495 0.512822i \(-0.828600\pi\)
0.512822 + 0.858495i \(0.328600\pi\)
\(20\) 0 0
\(21\) −16.7415 17.6086i −0.173967 0.182977i
\(22\) 0 0
\(23\) 0.193203i 0.00175155i 1.00000 0.000875773i \(0.000278767\pi\)
−1.00000 0.000875773i \(0.999721\pi\)
\(24\) 0 0
\(25\) 80.5347i 0.644277i
\(26\) 0 0
\(27\) −106.424 + 91.4163i −0.758567 + 0.651595i
\(28\) 0 0
\(29\) −162.554 + 162.554i −1.04088 + 1.04088i −0.0417521 + 0.999128i \(0.513294\pi\)
−0.999128 + 0.0417521i \(0.986706\pi\)
\(30\) 0 0
\(31\) 179.457i 1.03973i −0.854250 0.519863i \(-0.825983\pi\)
0.854250 0.519863i \(-0.174017\pi\)
\(32\) 0 0
\(33\) −218.480 5.51507i −1.15250 0.0290925i
\(34\) 0 0
\(35\) 22.0478 + 22.0478i 0.106479 + 0.106479i
\(36\) 0 0
\(37\) 194.940 194.940i 0.866160 0.866160i −0.125885 0.992045i \(-0.540177\pi\)
0.992045 + 0.125885i \(0.0401770\pi\)
\(38\) 0 0
\(39\) −6.85755 + 271.662i −0.0281561 + 1.11540i
\(40\) 0 0
\(41\) −49.2056 −0.187430 −0.0937149 0.995599i \(-0.529874\pi\)
−0.0937149 + 0.995599i \(0.529874\pi\)
\(42\) 0 0
\(43\) 336.318 + 336.318i 1.19274 + 1.19274i 0.976294 + 0.216450i \(0.0694480\pi\)
0.216450 + 0.976294i \(0.430552\pi\)
\(44\) 0 0
\(45\) 133.570 120.724i 0.442477 0.399921i
\(46\) 0 0
\(47\) −187.268 −0.581188 −0.290594 0.956846i \(-0.593853\pi\)
−0.290594 + 0.956846i \(0.593853\pi\)
\(48\) 0 0
\(49\) −321.136 −0.936255
\(50\) 0 0
\(51\) −414.182 + 393.787i −1.13720 + 1.08120i
\(52\) 0 0
\(53\) 195.182 + 195.182i 0.505855 + 0.505855i 0.913252 0.407396i \(-0.133563\pi\)
−0.407396 + 0.913252i \(0.633563\pi\)
\(54\) 0 0
\(55\) 280.465 0.687598
\(56\) 0 0
\(57\) −210.307 5.30877i −0.488699 0.0123362i
\(58\) 0 0
\(59\) 302.622 302.622i 0.667763 0.667763i −0.289435 0.957198i \(-0.593467\pi\)
0.957198 + 0.289435i \(0.0934674\pi\)
\(60\) 0 0
\(61\) 501.230 + 501.230i 1.05207 + 1.05207i 0.998568 + 0.0534972i \(0.0170368\pi\)
0.0534972 + 0.998568i \(0.482963\pi\)
\(62\) 0 0
\(63\) 6.36981 126.090i 0.0127384 0.252156i
\(64\) 0 0
\(65\) 348.736i 0.665467i
\(66\) 0 0
\(67\) 36.4798 36.4798i 0.0665183 0.0665183i −0.673065 0.739583i \(-0.735023\pi\)
0.739583 + 0.673065i \(0.235023\pi\)
\(68\) 0 0
\(69\) −0.727560 + 0.691733i −0.00126939 + 0.00120688i
\(70\) 0 0
\(71\) 637.743i 1.06600i −0.846114 0.533001i \(-0.821064\pi\)
0.846114 0.533001i \(-0.178936\pi\)
\(72\) 0 0
\(73\) 90.3903i 0.144923i 0.997371 + 0.0724615i \(0.0230855\pi\)
−0.997371 + 0.0724615i \(0.976915\pi\)
\(74\) 0 0
\(75\) 303.276 288.342i 0.466924 0.443932i
\(76\) 0 0
\(77\) 139.067 139.067i 0.205820 0.205820i
\(78\) 0 0
\(79\) 1171.61i 1.66856i −0.551341 0.834280i \(-0.685884\pi\)
0.551341 0.834280i \(-0.314116\pi\)
\(80\) 0 0
\(81\) −725.289 73.4678i −0.994909 0.100779i
\(82\) 0 0
\(83\) 256.872 + 256.872i 0.339703 + 0.339703i 0.856256 0.516553i \(-0.172785\pi\)
−0.516553 + 0.856256i \(0.672785\pi\)
\(84\) 0 0
\(85\) 518.599 518.599i 0.661765 0.661765i
\(86\) 0 0
\(87\) −1194.14 30.1437i −1.47156 0.0371464i
\(88\) 0 0
\(89\) 818.864 0.975274 0.487637 0.873047i \(-0.337859\pi\)
0.487637 + 0.873047i \(0.337859\pi\)
\(90\) 0 0
\(91\) −172.918 172.918i −0.199195 0.199195i
\(92\) 0 0
\(93\) 675.797 642.519i 0.753515 0.716410i
\(94\) 0 0
\(95\) 269.973 0.291565
\(96\) 0 0
\(97\) 667.747 0.698964 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(98\) 0 0
\(99\) −761.465 842.494i −0.773032 0.855292i
\(100\) 0 0
\(101\) −794.088 794.088i −0.782324 0.782324i 0.197899 0.980222i \(-0.436588\pi\)
−0.980222 + 0.197899i \(0.936588\pi\)
\(102\) 0 0
\(103\) 1086.33 1.03921 0.519607 0.854405i \(-0.326078\pi\)
0.519607 + 0.854405i \(0.326078\pi\)
\(104\) 0 0
\(105\) −4.08850 + 161.966i −0.00379997 + 0.150536i
\(106\) 0 0
\(107\) −488.119 + 488.119i −0.441011 + 0.441011i −0.892352 0.451341i \(-0.850946\pi\)
0.451341 + 0.892352i \(0.350946\pi\)
\(108\) 0 0
\(109\) −131.638 131.638i −0.115675 0.115675i 0.646900 0.762575i \(-0.276065\pi\)
−0.762575 + 0.646900i \(0.776065\pi\)
\(110\) 0 0
\(111\) 1432.05 + 36.1492i 1.22455 + 0.0309111i
\(112\) 0 0
\(113\) 1202.65i 1.00120i −0.865678 0.500601i \(-0.833113\pi\)
0.865678 0.500601i \(-0.166887\pi\)
\(114\) 0 0
\(115\) 0.910981 0.910981i 0.000738690 0.000738690i
\(116\) 0 0
\(117\) −1047.57 + 946.821i −0.827763 + 0.748151i
\(118\) 0 0
\(119\) 514.288i 0.396174i
\(120\) 0 0
\(121\) 438.035i 0.329102i
\(122\) 0 0
\(123\) −176.173 185.298i −0.129146 0.135835i
\(124\) 0 0
\(125\) −969.127 + 969.127i −0.693451 + 0.693451i
\(126\) 0 0
\(127\) 2564.42i 1.79178i 0.444281 + 0.895888i \(0.353459\pi\)
−0.444281 + 0.895888i \(0.646541\pi\)
\(128\) 0 0
\(129\) −62.3660 + 2470.63i −0.0425661 + 1.68626i
\(130\) 0 0
\(131\) 1241.94 + 1241.94i 0.828309 + 0.828309i 0.987283 0.158974i \(-0.0508186\pi\)
−0.158974 + 0.987283i \(0.550819\pi\)
\(132\) 0 0
\(133\) 133.864 133.864i 0.0872746 0.0872746i
\(134\) 0 0
\(135\) 932.847 + 70.7636i 0.594716 + 0.0451138i
\(136\) 0 0
\(137\) 1381.99 0.861835 0.430917 0.902391i \(-0.358190\pi\)
0.430917 + 0.902391i \(0.358190\pi\)
\(138\) 0 0
\(139\) 643.732 + 643.732i 0.392810 + 0.392810i 0.875688 0.482877i \(-0.160408\pi\)
−0.482877 + 0.875688i \(0.660408\pi\)
\(140\) 0 0
\(141\) −670.484 705.210i −0.400460 0.421201i
\(142\) 0 0
\(143\) −2199.65 −1.28632
\(144\) 0 0
\(145\) 1532.93 0.877953
\(146\) 0 0
\(147\) −1149.78 1209.33i −0.645115 0.678528i
\(148\) 0 0
\(149\) 604.581 + 604.581i 0.332411 + 0.332411i 0.853501 0.521091i \(-0.174475\pi\)
−0.521091 + 0.853501i \(0.674475\pi\)
\(150\) 0 0
\(151\) −1368.69 −0.737631 −0.368815 0.929503i \(-0.620237\pi\)
−0.368815 + 0.929503i \(0.620237\pi\)
\(152\) 0 0
\(153\) −2965.83 149.828i −1.56715 0.0791691i
\(154\) 0 0
\(155\) −846.168 + 846.168i −0.438490 + 0.438490i
\(156\) 0 0
\(157\) −1561.01 1561.01i −0.793516 0.793516i 0.188548 0.982064i \(-0.439622\pi\)
−0.982064 + 0.188548i \(0.939622\pi\)
\(158\) 0 0
\(159\) −36.1941 + 1433.83i −0.0180527 + 0.715160i
\(160\) 0 0
\(161\) 0.903406i 0.000442226i
\(162\) 0 0
\(163\) 2034.33 2034.33i 0.977554 0.977554i −0.0221997 0.999754i \(-0.507067\pi\)
0.999754 + 0.0221997i \(0.00706698\pi\)
\(164\) 0 0
\(165\) 1004.16 + 1056.17i 0.473781 + 0.498320i
\(166\) 0 0
\(167\) 1459.42i 0.676249i 0.941101 + 0.338125i \(0.109793\pi\)
−0.941101 + 0.338125i \(0.890207\pi\)
\(168\) 0 0
\(169\) 538.090i 0.244920i
\(170\) 0 0
\(171\) −732.980 810.978i −0.327792 0.362673i
\(172\) 0 0
\(173\) −867.517 + 867.517i −0.381249 + 0.381249i −0.871552 0.490303i \(-0.836886\pi\)
0.490303 + 0.871552i \(0.336886\pi\)
\(174\) 0 0
\(175\) 376.576i 0.162666i
\(176\) 0 0
\(177\) 2223.10 + 56.1175i 0.944058 + 0.0238308i
\(178\) 0 0
\(179\) 1628.54 + 1628.54i 0.680017 + 0.680017i 0.960004 0.279987i \(-0.0903300\pi\)
−0.279987 + 0.960004i \(0.590330\pi\)
\(180\) 0 0
\(181\) −2209.08 + 2209.08i −0.907181 + 0.907181i −0.996044 0.0888632i \(-0.971677\pi\)
0.0888632 + 0.996044i \(0.471677\pi\)
\(182\) 0 0
\(183\) −92.9470 + 3682.10i −0.0375456 + 1.48737i
\(184\) 0 0
\(185\) −1838.34 −0.730582
\(186\) 0 0
\(187\) −3271.07 3271.07i −1.27917 1.27917i
\(188\) 0 0
\(189\) 497.633 427.458i 0.191521 0.164513i
\(190\) 0 0
\(191\) −1746.47 −0.661623 −0.330812 0.943697i \(-0.607322\pi\)
−0.330812 + 0.943697i \(0.607322\pi\)
\(192\) 0 0
\(193\) 1250.64 0.466441 0.233220 0.972424i \(-0.425074\pi\)
0.233220 + 0.972424i \(0.425074\pi\)
\(194\) 0 0
\(195\) 1313.26 1248.59i 0.482281 0.458532i
\(196\) 0 0
\(197\) 31.6458 + 31.6458i 0.0114450 + 0.0114450i 0.712806 0.701361i \(-0.247424\pi\)
−0.701361 + 0.712806i \(0.747424\pi\)
\(198\) 0 0
\(199\) −268.802 −0.0957530 −0.0478765 0.998853i \(-0.515245\pi\)
−0.0478765 + 0.998853i \(0.515245\pi\)
\(200\) 0 0
\(201\) 267.986 + 6.76474i 0.0940411 + 0.00237387i
\(202\) 0 0
\(203\) 760.094 760.094i 0.262799 0.262799i
\(204\) 0 0
\(205\) 232.012 + 232.012i 0.0790459 + 0.0790459i
\(206\) 0 0
\(207\) −5.20983 0.263190i −0.00174932 8.83720e-5i
\(208\) 0 0
\(209\) 1702.86i 0.563585i
\(210\) 0 0
\(211\) −917.057 + 917.057i −0.299208 + 0.299208i −0.840703 0.541496i \(-0.817858\pi\)
0.541496 + 0.840703i \(0.317858\pi\)
\(212\) 0 0
\(213\) 2401.60 2283.34i 0.772559 0.734516i
\(214\) 0 0
\(215\) 3171.58i 1.00605i
\(216\) 0 0
\(217\) 839.133i 0.262507i
\(218\) 0 0
\(219\) −340.390 + 323.628i −0.105029 + 0.0998575i
\(220\) 0 0
\(221\) −4067.31 + 4067.31i −1.23799 + 1.23799i
\(222\) 0 0
\(223\) 332.177i 0.0997499i 0.998755 + 0.0498749i \(0.0158823\pi\)
−0.998755 + 0.0498749i \(0.984118\pi\)
\(224\) 0 0
\(225\) 2171.67 + 109.708i 0.643457 + 0.0325062i
\(226\) 0 0
\(227\) −1201.02 1201.02i −0.351164 0.351164i 0.509378 0.860543i \(-0.329875\pi\)
−0.860543 + 0.509378i \(0.829875\pi\)
\(228\) 0 0
\(229\) −2969.95 + 2969.95i −0.857031 + 0.857031i −0.990987 0.133957i \(-0.957232\pi\)
0.133957 + 0.990987i \(0.457232\pi\)
\(230\) 0 0
\(231\) 1021.60 + 25.7882i 0.290980 + 0.00734519i
\(232\) 0 0
\(233\) 4481.22 1.25998 0.629988 0.776605i \(-0.283060\pi\)
0.629988 + 0.776605i \(0.283060\pi\)
\(234\) 0 0
\(235\) 882.996 + 882.996i 0.245108 + 0.245108i
\(236\) 0 0
\(237\) 4412.02 4194.76i 1.20925 1.14970i
\(238\) 0 0
\(239\) 2196.96 0.594602 0.297301 0.954784i \(-0.403914\pi\)
0.297301 + 0.954784i \(0.403914\pi\)
\(240\) 0 0
\(241\) −2608.91 −0.697322 −0.348661 0.937249i \(-0.613363\pi\)
−0.348661 + 0.937249i \(0.613363\pi\)
\(242\) 0 0
\(243\) −2320.12 2994.32i −0.612493 0.790476i
\(244\) 0 0
\(245\) 1514.20 + 1514.20i 0.394852 + 0.394852i
\(246\) 0 0
\(247\) −2117.37 −0.545445
\(248\) 0 0
\(249\) −47.6337 + 1887.01i −0.0121232 + 0.480260i
\(250\) 0 0
\(251\) 1134.95 1134.95i 0.285409 0.285409i −0.549853 0.835262i \(-0.685316\pi\)
0.835262 + 0.549853i \(0.185316\pi\)
\(252\) 0 0
\(253\) −5.74601 5.74601i −0.00142786 0.00142786i
\(254\) 0 0
\(255\) 3809.70 + 96.1679i 0.935579 + 0.0236167i
\(256\) 0 0
\(257\) 1979.45i 0.480446i 0.970718 + 0.240223i \(0.0772206\pi\)
−0.970718 + 0.240223i \(0.922779\pi\)
\(258\) 0 0
\(259\) −911.529 + 911.529i −0.218686 + 0.218686i
\(260\) 0 0
\(261\) −4161.93 4604.81i −0.987038 1.09207i
\(262\) 0 0
\(263\) 5494.40i 1.28821i −0.764937 0.644105i \(-0.777230\pi\)
0.764937 0.644105i \(-0.222770\pi\)
\(264\) 0 0
\(265\) 1840.63i 0.426675i
\(266\) 0 0
\(267\) 2931.82 + 3083.66i 0.672001 + 0.706806i
\(268\) 0 0
\(269\) 3967.07 3967.07i 0.899169 0.899169i −0.0961936 0.995363i \(-0.530667\pi\)
0.995363 + 0.0961936i \(0.0306668\pi\)
\(270\) 0 0
\(271\) 2659.35i 0.596103i 0.954550 + 0.298051i \(0.0963367\pi\)
−0.954550 + 0.298051i \(0.903663\pi\)
\(272\) 0 0
\(273\) 32.0656 1270.28i 0.00710877 0.281615i
\(274\) 0 0
\(275\) 2395.17 + 2395.17i 0.525215 + 0.525215i
\(276\) 0 0
\(277\) 3478.53 3478.53i 0.754530 0.754530i −0.220791 0.975321i \(-0.570864\pi\)
0.975321 + 0.220791i \(0.0708639\pi\)
\(278\) 0 0
\(279\) 4839.18 + 244.466i 1.03840 + 0.0524580i
\(280\) 0 0
\(281\) 555.076 0.117840 0.0589200 0.998263i \(-0.481234\pi\)
0.0589200 + 0.998263i \(0.481234\pi\)
\(282\) 0 0
\(283\) 2673.37 + 2673.37i 0.561538 + 0.561538i 0.929744 0.368206i \(-0.120028\pi\)
−0.368206 + 0.929744i \(0.620028\pi\)
\(284\) 0 0
\(285\) 966.598 + 1016.66i 0.200899 + 0.211305i
\(286\) 0 0
\(287\) 230.083 0.0473218
\(288\) 0 0
\(289\) −7183.86 −1.46221
\(290\) 0 0
\(291\) 2390.77 + 2514.59i 0.481612 + 0.506557i
\(292\) 0 0
\(293\) −5234.64 5234.64i −1.04372 1.04372i −0.998999 0.0447231i \(-0.985759\pi\)
−0.0447231 0.998999i \(-0.514241\pi\)
\(294\) 0 0
\(295\) −2853.82 −0.563239
\(296\) 0 0
\(297\) 446.342 5883.93i 0.0872033 1.14956i
\(298\) 0 0
\(299\) −7.14470 + 7.14470i −0.00138190 + 0.00138190i
\(300\) 0 0
\(301\) −1572.61 1572.61i −0.301141 0.301141i
\(302\) 0 0
\(303\) 147.254 5833.47i 0.0279192 1.10602i
\(304\) 0 0
\(305\) 4726.75i 0.887388i
\(306\) 0 0
\(307\) −6270.43 + 6270.43i −1.16571 + 1.16571i −0.182502 + 0.983205i \(0.558420\pi\)
−0.983205 + 0.182502i \(0.941580\pi\)
\(308\) 0 0
\(309\) 3889.43 + 4090.88i 0.716058 + 0.753145i
\(310\) 0 0
\(311\) 2819.71i 0.514119i −0.966396 0.257059i \(-0.917246\pi\)
0.966396 0.257059i \(-0.0827536\pi\)
\(312\) 0 0
\(313\) 744.254i 0.134402i 0.997739 + 0.0672008i \(0.0214068\pi\)
−0.997739 + 0.0672008i \(0.978593\pi\)
\(314\) 0 0
\(315\) −624.567 + 564.498i −0.111715 + 0.100971i
\(316\) 0 0
\(317\) −105.984 + 105.984i −0.0187782 + 0.0187782i −0.716434 0.697655i \(-0.754227\pi\)
0.697655 + 0.716434i \(0.254227\pi\)
\(318\) 0 0
\(319\) 9668.99i 1.69705i
\(320\) 0 0
\(321\) −3585.78 90.5156i −0.623486 0.0157386i
\(322\) 0 0
\(323\) −3148.70 3148.70i −0.542410 0.542410i
\(324\) 0 0
\(325\) 2978.20 2978.20i 0.508310 0.508310i
\(326\) 0 0
\(327\) 24.4106 967.027i 0.00412816 0.163537i
\(328\) 0 0
\(329\) 875.655 0.146737
\(330\) 0 0
\(331\) −2520.49 2520.49i −0.418545 0.418545i 0.466157 0.884702i \(-0.345638\pi\)
−0.884702 + 0.466157i \(0.845638\pi\)
\(332\) 0 0
\(333\) 4991.12 + 5522.23i 0.821356 + 0.908758i
\(334\) 0 0
\(335\) −344.016 −0.0561063
\(336\) 0 0
\(337\) −1969.50 −0.318355 −0.159178 0.987250i \(-0.550884\pi\)
−0.159178 + 0.987250i \(0.550884\pi\)
\(338\) 0 0
\(339\) 4528.92 4305.90i 0.725596 0.689866i
\(340\) 0 0
\(341\) 5337.21 + 5337.21i 0.847584 + 0.847584i
\(342\) 0 0
\(343\) 3105.46 0.488861
\(344\) 0 0
\(345\) 6.69218 + 0.168930i 0.00104433 + 2.63620e-5i
\(346\) 0 0
\(347\) 3206.45 3206.45i 0.496056 0.496056i −0.414152 0.910208i \(-0.635922\pi\)
0.910208 + 0.414152i \(0.135922\pi\)
\(348\) 0 0
\(349\) 2228.50 + 2228.50i 0.341802 + 0.341802i 0.857045 0.515242i \(-0.172298\pi\)
−0.515242 + 0.857045i \(0.672298\pi\)
\(350\) 0 0
\(351\) −7316.20 554.990i −1.11256 0.0843965i
\(352\) 0 0
\(353\) 8425.61i 1.27040i 0.772349 + 0.635198i \(0.219082\pi\)
−0.772349 + 0.635198i \(0.780918\pi\)
\(354\) 0 0
\(355\) −3007.06 + 3007.06i −0.449572 + 0.449572i
\(356\) 0 0
\(357\) 1936.70 1841.33i 0.287117 0.272979i
\(358\) 0 0
\(359\) 12048.7i 1.77133i 0.464325 + 0.885665i \(0.346297\pi\)
−0.464325 + 0.885665i \(0.653703\pi\)
\(360\) 0 0
\(361\) 5219.84i 0.761021i
\(362\) 0 0
\(363\) 1649.54 1568.32i 0.238509 0.226764i
\(364\) 0 0
\(365\) 426.204 426.204i 0.0611193 0.0611193i
\(366\) 0 0
\(367\) 2019.62i 0.287257i −0.989632 0.143628i \(-0.954123\pi\)
0.989632 0.143628i \(-0.0458770\pi\)
\(368\) 0 0
\(369\) 67.0303 1326.86i 0.00945652 0.187191i
\(370\) 0 0
\(371\) −912.662 912.662i −0.127717 0.127717i
\(372\) 0 0
\(373\) 119.726 119.726i 0.0166197 0.0166197i −0.698748 0.715368i \(-0.746259\pi\)
0.715368 + 0.698748i \(0.246259\pi\)
\(374\) 0 0
\(375\) −7119.33 179.713i −0.980376 0.0247475i
\(376\) 0 0
\(377\) −12022.6 −1.64243
\(378\) 0 0
\(379\) 4492.22 + 4492.22i 0.608838 + 0.608838i 0.942642 0.333804i \(-0.108332\pi\)
−0.333804 + 0.942642i \(0.608332\pi\)
\(380\) 0 0
\(381\) −9657.05 + 9181.51i −1.29854 + 1.23460i
\(382\) 0 0
\(383\) 1574.45 0.210054 0.105027 0.994469i \(-0.466507\pi\)
0.105027 + 0.994469i \(0.466507\pi\)
\(384\) 0 0
\(385\) −1311.44 −0.173603
\(386\) 0 0
\(387\) −9527.17 + 8610.87i −1.25140 + 1.13105i
\(388\) 0 0
\(389\) −619.930 619.930i −0.0808013 0.0808013i 0.665551 0.746352i \(-0.268197\pi\)
−0.746352 + 0.665551i \(0.768197\pi\)
\(390\) 0 0
\(391\) −21.2496 −0.00274843
\(392\) 0 0
\(393\) −230.302 + 9123.42i −0.0295603 + 1.17103i
\(394\) 0 0
\(395\) −5524.31 + 5524.31i −0.703692 + 0.703692i
\(396\) 0 0
\(397\) 10371.0 + 10371.0i 1.31110 + 1.31110i 0.920607 + 0.390491i \(0.127695\pi\)
0.390491 + 0.920607i \(0.372305\pi\)
\(398\) 0 0
\(399\) 983.385 + 24.8235i 0.123386 + 0.00311461i
\(400\) 0 0
\(401\) 10287.3i 1.28110i −0.767915 0.640552i \(-0.778706\pi\)
0.767915 0.640552i \(-0.221294\pi\)
\(402\) 0 0
\(403\) 6636.39 6636.39i 0.820303 0.820303i
\(404\) 0 0
\(405\) 3073.43 + 3766.26i 0.377087 + 0.462091i
\(406\) 0 0
\(407\) 11595.4i 1.41219i
\(408\) 0 0
\(409\) 1734.25i 0.209665i −0.994490 0.104833i \(-0.966569\pi\)
0.994490 0.104833i \(-0.0334307\pi\)
\(410\) 0 0
\(411\) 4948.00 + 5204.27i 0.593837 + 0.624594i
\(412\) 0 0
\(413\) −1415.04 + 1415.04i −0.168595 + 0.168595i
\(414\) 0 0
\(415\) 2422.38i 0.286530i
\(416\) 0 0
\(417\) −119.372 + 4728.94i −0.0140184 + 0.555341i
\(418\) 0 0
\(419\) 4435.64 + 4435.64i 0.517172 + 0.517172i 0.916715 0.399543i \(-0.130831\pi\)
−0.399543 + 0.916715i \(0.630831\pi\)
\(420\) 0 0
\(421\) −1602.03 + 1602.03i −0.185459 + 0.185459i −0.793730 0.608271i \(-0.791863\pi\)
0.608271 + 0.793730i \(0.291863\pi\)
\(422\) 0 0
\(423\) 255.106 5049.79i 0.0293231 0.580447i
\(424\) 0 0
\(425\) 8857.67 1.01096
\(426\) 0 0
\(427\) −2343.73 2343.73i −0.265623 0.265623i
\(428\) 0 0
\(429\) −7875.51 8283.41i −0.886325 0.932231i
\(430\) 0 0
\(431\) −11106.8 −1.24129 −0.620645 0.784092i \(-0.713129\pi\)
−0.620645 + 0.784092i \(0.713129\pi\)
\(432\) 0 0
\(433\) 400.999 0.0445053 0.0222527 0.999752i \(-0.492916\pi\)
0.0222527 + 0.999752i \(0.492916\pi\)
\(434\) 0 0
\(435\) 5488.43 + 5772.70i 0.604943 + 0.636275i
\(436\) 0 0
\(437\) −5.53107 5.53107i −0.000605462 0.000605462i
\(438\) 0 0
\(439\) 9964.43 1.08332 0.541658 0.840599i \(-0.317797\pi\)
0.541658 + 0.840599i \(0.317797\pi\)
\(440\) 0 0
\(441\) 437.467 8659.62i 0.0472375 0.935063i
\(442\) 0 0
\(443\) −7441.81 + 7441.81i −0.798129 + 0.798129i −0.982800 0.184671i \(-0.940878\pi\)
0.184671 + 0.982800i \(0.440878\pi\)
\(444\) 0 0
\(445\) −3861.07 3861.07i −0.411308 0.411308i
\(446\) 0 0
\(447\) −112.112 + 4441.33i −0.0118629 + 0.469950i
\(448\) 0 0
\(449\) 15032.1i 1.57997i 0.613124 + 0.789987i \(0.289913\pi\)
−0.613124 + 0.789987i \(0.710087\pi\)
\(450\) 0 0
\(451\) 1463.41 1463.41i 0.152793 0.152793i
\(452\) 0 0
\(453\) −4900.38 5154.18i −0.508256 0.534580i
\(454\) 0 0
\(455\) 1630.67i 0.168015i
\(456\) 0 0
\(457\) 12925.5i 1.32304i −0.749927 0.661521i \(-0.769911\pi\)
0.749927 0.661521i \(-0.230089\pi\)
\(458\) 0 0
\(459\) −10054.5 11705.1i −1.02245 1.19030i
\(460\) 0 0
\(461\) 9557.64 9557.64i 0.965604 0.965604i −0.0338235 0.999428i \(-0.510768\pi\)
0.999428 + 0.0338235i \(0.0107684\pi\)
\(462\) 0 0
\(463\) 7779.26i 0.780849i 0.920635 + 0.390424i \(0.127672\pi\)
−0.920635 + 0.390424i \(0.872328\pi\)
\(464\) 0 0
\(465\) −6216.06 156.912i −0.619920 0.0156486i
\(466\) 0 0
\(467\) −8196.34 8196.34i −0.812166 0.812166i 0.172792 0.984958i \(-0.444721\pi\)
−0.984958 + 0.172792i \(0.944721\pi\)
\(468\) 0 0
\(469\) −170.578 + 170.578i −0.0167944 + 0.0167944i
\(470\) 0 0
\(471\) 289.470 11467.4i 0.0283186 1.12184i
\(472\) 0 0
\(473\) −20004.7 −1.94465
\(474\) 0 0
\(475\) 2305.57 + 2305.57i 0.222709 + 0.222709i
\(476\) 0 0
\(477\) −5529.09 + 4997.32i −0.530733 + 0.479689i
\(478\) 0 0
\(479\) 15149.0 1.44504 0.722522 0.691348i \(-0.242983\pi\)
0.722522 + 0.691348i \(0.242983\pi\)
\(480\) 0 0
\(481\) 14417.9 1.36673
\(482\) 0 0
\(483\) 3.40203 3.23451i 0.000320492 0.000304711i
\(484\) 0 0
\(485\) −3148.53 3148.53i −0.294778 0.294778i
\(486\) 0 0
\(487\) −5601.13 −0.521173 −0.260587 0.965450i \(-0.583916\pi\)
−0.260587 + 0.965450i \(0.583916\pi\)
\(488\) 0 0
\(489\) 14944.5 + 377.242i 1.38203 + 0.0348865i
\(490\) 0 0
\(491\) 1915.75 1915.75i 0.176083 0.176083i −0.613563 0.789646i \(-0.710264\pi\)
0.789646 + 0.613563i \(0.210264\pi\)
\(492\) 0 0
\(493\) −17878.6 17878.6i −1.63329 1.63329i
\(494\) 0 0
\(495\) −382.064 + 7562.91i −0.0346919 + 0.686723i
\(496\) 0 0
\(497\) 2982.06i 0.269142i
\(498\) 0 0
\(499\) 8401.78 8401.78i 0.753738 0.753738i −0.221437 0.975175i \(-0.571075\pi\)
0.975175 + 0.221437i \(0.0710746\pi\)
\(500\) 0 0
\(501\) −5495.88 + 5225.24i −0.490095 + 0.465961i
\(502\) 0 0
\(503\) 7484.92i 0.663491i −0.943369 0.331746i \(-0.892362\pi\)
0.943369 0.331746i \(-0.107638\pi\)
\(504\) 0 0
\(505\) 7488.49i 0.659868i
\(506\) 0 0
\(507\) −2026.33 + 1926.55i −0.177500 + 0.168759i
\(508\) 0 0
\(509\) 1636.10 1636.10i 0.142473 0.142473i −0.632273 0.774746i \(-0.717878\pi\)
0.774746 + 0.632273i \(0.217878\pi\)
\(510\) 0 0
\(511\) 422.660i 0.0365898i
\(512\) 0 0
\(513\) 429.645 5663.83i 0.0369772 0.487454i
\(514\) 0 0
\(515\) −5122.20 5122.20i −0.438274 0.438274i
\(516\) 0 0
\(517\) 5569.50 5569.50i 0.473784 0.473784i
\(518\) 0 0
\(519\) −6372.89 160.870i −0.538996 0.0136058i
\(520\) 0 0
\(521\) 14829.8 1.24703 0.623517 0.781810i \(-0.285703\pi\)
0.623517 + 0.781810i \(0.285703\pi\)
\(522\) 0 0
\(523\) 7012.23 + 7012.23i 0.586278 + 0.586278i 0.936621 0.350343i \(-0.113935\pi\)
−0.350343 + 0.936621i \(0.613935\pi\)
\(524\) 0 0
\(525\) −1418.10 + 1348.27i −0.117888 + 0.112083i
\(526\) 0 0
\(527\) 19737.7 1.63148
\(528\) 0 0
\(529\) 12167.0 0.999997
\(530\) 0 0
\(531\) 7748.14 + 8572.63i 0.633221 + 0.700603i
\(532\) 0 0
\(533\) −1819.64 1819.64i −0.147875 0.147875i
\(534\) 0 0
\(535\) 4603.11 0.371981
\(536\) 0 0
\(537\) −301.994 + 11963.5i −0.0242681 + 0.961384i
\(538\) 0 0
\(539\) 9550.84 9550.84i 0.763235 0.763235i
\(540\) 0 0
\(541\) 12824.9 + 12824.9i 1.01920 + 1.01920i 0.999812 + 0.0193853i \(0.00617093\pi\)
0.0193853 + 0.999812i \(0.493829\pi\)
\(542\) 0 0
\(543\) −16228.2 409.647i −1.28254 0.0323750i
\(544\) 0 0
\(545\) 1241.38i 0.0975688i
\(546\) 0 0
\(547\) 7736.14 7736.14i 0.604705 0.604705i −0.336853 0.941557i \(-0.609362\pi\)
0.941557 + 0.336853i \(0.109362\pi\)
\(548\) 0 0
\(549\) −14198.8 + 12833.2i −1.10381 + 0.997645i
\(550\) 0 0
\(551\) 9307.29i 0.719608i
\(552\) 0 0
\(553\) 5478.38i 0.421274i
\(554\) 0 0
\(555\) −6581.90 6922.80i −0.503399 0.529471i
\(556\) 0 0
\(557\) 11943.2 11943.2i 0.908528 0.908528i −0.0876259 0.996153i \(-0.527928\pi\)
0.996153 + 0.0876259i \(0.0279280\pi\)
\(558\) 0 0
\(559\) 24874.3i 1.88206i
\(560\) 0 0
\(561\) 606.579 24029.7i 0.0456503 1.80844i
\(562\) 0 0
\(563\) −8407.34 8407.34i −0.629355 0.629355i 0.318550 0.947906i \(-0.396804\pi\)
−0.947906 + 0.318550i \(0.896804\pi\)
\(564\) 0 0
\(565\) −5670.67 + 5670.67i −0.422243 + 0.422243i
\(566\) 0 0
\(567\) 3391.41 + 343.532i 0.251192 + 0.0254444i
\(568\) 0 0
\(569\) −38.5252 −0.00283842 −0.00141921 0.999999i \(-0.500452\pi\)
−0.00141921 + 0.999999i \(0.500452\pi\)
\(570\) 0 0
\(571\) −17899.6 17899.6i −1.31186 1.31186i −0.920041 0.391822i \(-0.871845\pi\)
−0.391822 0.920041i \(-0.628155\pi\)
\(572\) 0 0
\(573\) −6252.96 6576.82i −0.455883 0.479495i
\(574\) 0 0
\(575\) 15.5595 0.00112848
\(576\) 0 0
\(577\) 19242.4 1.38834 0.694171 0.719810i \(-0.255771\pi\)
0.694171 + 0.719810i \(0.255771\pi\)
\(578\) 0 0
\(579\) 4477.72 + 4709.64i 0.321395 + 0.338041i
\(580\) 0 0
\(581\) −1201.12 1201.12i −0.0857674 0.0857674i
\(582\) 0 0
\(583\) −11609.8 −0.824746
\(584\) 0 0
\(585\) 9403.87 + 475.065i 0.664619 + 0.0335753i
\(586\) 0 0
\(587\) 5948.44 5948.44i 0.418259 0.418259i −0.466344 0.884603i \(-0.654429\pi\)
0.884603 + 0.466344i \(0.154429\pi\)
\(588\) 0 0
\(589\) 5137.56 + 5137.56i 0.359405 + 0.359405i
\(590\) 0 0
\(591\) −5.86833 + 232.474i −0.000408445 + 0.0161806i
\(592\) 0 0
\(593\) 13100.7i 0.907222i −0.891200 0.453611i \(-0.850136\pi\)
0.891200 0.453611i \(-0.149864\pi\)
\(594\) 0 0
\(595\) −2424.94 + 2424.94i −0.167081 + 0.167081i
\(596\) 0 0
\(597\) −962.403 1012.25i −0.0659774 0.0693946i
\(598\) 0 0
\(599\) 16819.3i 1.14728i 0.819109 + 0.573638i \(0.194468\pi\)
−0.819109 + 0.573638i \(0.805532\pi\)
\(600\) 0 0
\(601\) 15871.2i 1.07720i −0.842561 0.538601i \(-0.818953\pi\)
0.842561 0.538601i \(-0.181047\pi\)
\(602\) 0 0
\(603\) 934.007 + 1033.40i 0.0630774 + 0.0697896i
\(604\) 0 0
\(605\) −2065.40 + 2065.40i −0.138794 + 0.138794i
\(606\) 0 0
\(607\) 7884.67i 0.527231i −0.964628 0.263615i \(-0.915085\pi\)
0.964628 0.263615i \(-0.0849149\pi\)
\(608\) 0 0
\(609\) 5583.75 + 140.950i 0.371535 + 0.00937864i
\(610\) 0 0
\(611\) −6925.23 6925.23i −0.458535 0.458535i
\(612\) 0 0
\(613\) −5659.45 + 5659.45i −0.372892 + 0.372892i −0.868530 0.495637i \(-0.834934\pi\)
0.495637 + 0.868530i \(0.334934\pi\)
\(614\) 0 0
\(615\) −43.0237 + 1704.39i −0.00282095 + 0.111752i
\(616\) 0 0
\(617\) −20422.8 −1.33257 −0.666283 0.745699i \(-0.732116\pi\)
−0.666283 + 0.745699i \(0.732116\pi\)
\(618\) 0 0
\(619\) −1382.80 1382.80i −0.0897888 0.0897888i 0.660786 0.750575i \(-0.270223\pi\)
−0.750575 + 0.660786i \(0.770223\pi\)
\(620\) 0 0
\(621\) −17.6619 20.5614i −0.00114130 0.00132867i
\(622\) 0 0
\(623\) −3828.96 −0.246235
\(624\) 0 0
\(625\) −927.672 −0.0593710
\(626\) 0 0
\(627\) 6412.60 6096.82i 0.408444 0.388331i
\(628\) 0 0
\(629\) 21440.6 + 21440.6i 1.35913 + 1.35913i
\(630\) 0 0
\(631\) 21039.0 1.32734 0.663669 0.748026i \(-0.268998\pi\)
0.663669 + 0.748026i \(0.268998\pi\)
\(632\) 0 0
\(633\) −6736.82 170.057i −0.423009 0.0106780i
\(634\) 0 0
\(635\) 12091.6 12091.6i 0.755656 0.755656i
\(636\) 0 0
\(637\) −11875.7 11875.7i −0.738669 0.738669i
\(638\) 0 0
\(639\) 17197.1 + 868.766i 1.06465 + 0.0537838i
\(640\) 0 0
\(641\) 13567.3i 0.835997i 0.908448 + 0.417999i \(0.137268\pi\)
−0.908448 + 0.417999i \(0.862732\pi\)
\(642\) 0 0
\(643\) 5070.72 5070.72i 0.310995 0.310995i −0.534300 0.845295i \(-0.679425\pi\)
0.845295 + 0.534300i \(0.179425\pi\)
\(644\) 0 0
\(645\) 11943.5 11355.4i 0.729107 0.693204i
\(646\) 0 0
\(647\) 4134.58i 0.251232i −0.992079 0.125616i \(-0.959909\pi\)
0.992079 0.125616i \(-0.0400907\pi\)
\(648\) 0 0
\(649\) 18000.5i 1.08872i
\(650\) 0 0
\(651\) −3159.99 + 3004.39i −0.190246 + 0.180877i
\(652\) 0 0
\(653\) 2132.91 2132.91i 0.127821 0.127821i −0.640302 0.768123i \(-0.721191\pi\)
0.768123 + 0.640302i \(0.221191\pi\)
\(654\) 0 0
\(655\) 11711.8i 0.698655i
\(656\) 0 0
\(657\) −2437.43 123.134i −0.144738 0.00731190i
\(658\) 0 0
\(659\) 5500.01 + 5500.01i 0.325114 + 0.325114i 0.850725 0.525611i \(-0.176163\pi\)
−0.525611 + 0.850725i \(0.676163\pi\)
\(660\) 0 0
\(661\) 4321.74 4321.74i 0.254306 0.254306i −0.568428 0.822733i \(-0.692448\pi\)
0.822733 + 0.568428i \(0.192448\pi\)
\(662\) 0 0
\(663\) −29879.0 754.233i −1.75023 0.0441809i
\(664\) 0 0
\(665\) −1262.38 −0.0736136
\(666\) 0 0
\(667\) −31.4059 31.4059i −0.00182315 0.00182315i
\(668\) 0 0
\(669\) −1250.91 + 1189.31i −0.0722912 + 0.0687314i
\(670\) 0 0
\(671\) −29814.0 −1.71529
\(672\) 0 0
\(673\) −24564.4 −1.40696 −0.703482 0.710713i \(-0.748372\pi\)
−0.703482 + 0.710713i \(0.748372\pi\)
\(674\) 0 0
\(675\) 7362.18 + 8570.82i 0.419808 + 0.488728i
\(676\) 0 0
\(677\) −14002.2 14002.2i −0.794904 0.794904i 0.187383 0.982287i \(-0.440000\pi\)
−0.982287 + 0.187383i \(0.940000\pi\)
\(678\) 0 0
\(679\) −3122.35 −0.176473
\(680\) 0 0
\(681\) 222.714 8822.83i 0.0125322 0.496463i
\(682\) 0 0
\(683\) −1738.73 + 1738.73i −0.0974093 + 0.0974093i −0.754132 0.656723i \(-0.771942\pi\)
0.656723 + 0.754132i \(0.271942\pi\)
\(684\) 0 0
\(685\) −6516.29 6516.29i −0.363467 0.363467i
\(686\) 0 0
\(687\) −21817.7 550.741i −1.21164 0.0305853i
\(688\) 0 0
\(689\) 14435.8i 0.798201i
\(690\) 0 0
\(691\) −10946.9 + 10946.9i −0.602664 + 0.602664i −0.941019 0.338355i \(-0.890130\pi\)
0.338355 + 0.941019i \(0.390130\pi\)
\(692\) 0 0
\(693\) 3560.57 + 3939.46i 0.195173 + 0.215942i
\(694\) 0 0
\(695\) 6070.59i 0.331325i
\(696\) 0 0
\(697\) 5411.91i 0.294104i
\(698\) 0 0
\(699\) 16044.3 + 16875.3i 0.868171 + 0.913137i
\(700\) 0 0
\(701\) −18915.0 + 18915.0i −1.01913 + 1.01913i −0.0193143 + 0.999813i \(0.506148\pi\)
−0.999813 + 0.0193143i \(0.993852\pi\)
\(702\) 0 0
\(703\) 11161.6i 0.598816i
\(704\) 0 0
\(705\) −163.741 + 6486.60i −0.00874729 + 0.346524i
\(706\) 0 0
\(707\) 3713.11 + 3713.11i 0.197519 + 0.197519i
\(708\) 0 0
\(709\) 9407.92 9407.92i 0.498338 0.498338i −0.412582 0.910920i \(-0.635373\pi\)
0.910920 + 0.412582i \(0.135373\pi\)
\(710\) 0 0
\(711\) 31593.1 + 1596.02i 1.66644 + 0.0841850i
\(712\) 0 0
\(713\) 34.6717 0.00182113
\(714\) 0 0
\(715\) 10371.7 + 10371.7i 0.542489 + 0.542489i
\(716\) 0 0
\(717\) 7865.89 + 8273.29i 0.409703 + 0.430923i
\(718\) 0 0
\(719\) 20278.9 1.05184 0.525921 0.850533i \(-0.323721\pi\)
0.525921 + 0.850533i \(0.323721\pi\)
\(720\) 0 0
\(721\) −5079.61 −0.262378
\(722\) 0 0
\(723\) −9340.79 9824.58i −0.480481 0.505367i
\(724\) 0 0
\(725\) 13091.2 + 13091.2i 0.670616 + 0.670616i
\(726\) 0 0
\(727\) 5358.43 0.273361 0.136680 0.990615i \(-0.456357\pi\)
0.136680 + 0.990615i \(0.456357\pi\)
\(728\) 0 0
\(729\) 2969.13 19457.8i 0.150847 0.988557i
\(730\) 0 0
\(731\) −36990.2 + 36990.2i −1.87159 + 1.87159i
\(732\) 0 0
\(733\) −282.297 282.297i −0.0142250 0.0142250i 0.699959 0.714183i \(-0.253202\pi\)
−0.714183 + 0.699959i \(0.753202\pi\)
\(734\) 0 0
\(735\) −280.790 + 11123.5i −0.0140913 + 0.558228i
\(736\) 0 0
\(737\) 2169.88i 0.108451i
\(738\) 0 0
\(739\) −9969.28 + 9969.28i −0.496246 + 0.496246i −0.910267 0.414021i \(-0.864124\pi\)
0.414021 + 0.910267i \(0.364124\pi\)
\(740\) 0 0
\(741\) −7580.91 7973.55i −0.375832 0.395298i
\(742\) 0 0
\(743\) 29235.1i 1.44351i 0.692147 + 0.721757i \(0.256665\pi\)
−0.692147 + 0.721757i \(0.743335\pi\)
\(744\) 0 0
\(745\) 5701.39i 0.280379i
\(746\) 0 0
\(747\) −7276.63 + 6576.78i −0.356410 + 0.322131i
\(748\) 0 0
\(749\) 2282.42 2282.42i 0.111345 0.111345i
\(750\) 0 0
\(751\) 16830.9i 0.817802i −0.912579 0.408901i \(-0.865912\pi\)
0.912579 0.408901i \(-0.134088\pi\)
\(752\) 0 0
\(753\) 8337.51 + 210.463i 0.403500 + 0.0101855i
\(754\) 0 0
\(755\) 6453.57 + 6453.57i 0.311086 + 0.311086i
\(756\) 0 0
\(757\) −15563.2 + 15563.2i −0.747231 + 0.747231i −0.973958 0.226728i \(-0.927197\pi\)
0.226728 + 0.973958i \(0.427197\pi\)
\(758\) 0 0
\(759\) 1.06553 42.2110i 5.09568e−5 0.00201866i
\(760\) 0 0
\(761\) 4967.50 0.236625 0.118313 0.992976i \(-0.462251\pi\)
0.118313 + 0.992976i \(0.462251\pi\)
\(762\) 0 0
\(763\) 615.531 + 615.531i 0.0292054 + 0.0292054i
\(764\) 0 0
\(765\) 13277.9 + 14690.8i 0.627533 + 0.694310i
\(766\) 0 0
\(767\) 22382.1 1.05368
\(768\) 0 0
\(769\) −31721.3 −1.48752 −0.743758 0.668449i \(-0.766959\pi\)
−0.743758 + 0.668449i \(0.766959\pi\)
\(770\) 0 0
\(771\) −7454.18 + 7087.11i −0.348191 + 0.331046i
\(772\) 0 0
\(773\) −21018.6 21018.6i −0.977989 0.977989i 0.0217738 0.999763i \(-0.493069\pi\)
−0.999763 + 0.0217738i \(0.993069\pi\)
\(774\) 0 0
\(775\) −14452.5 −0.669872
\(776\) 0 0
\(777\) −6696.21 169.032i −0.309170 0.00780436i
\(778\) 0 0
\(779\) 1408.67 1408.67i 0.0647893 0.0647893i
\(780\) 0 0
\(781\) 18967.0 + 18967.0i 0.869006 + 0.869006i
\(782\) 0 0
\(783\) 2439.56 32159.7i 0.111345 1.46781i
\(784\) 0 0
\(785\) 14720.8i 0.669309i
\(786\) 0 0
\(787\) −15691.0 + 15691.0i −0.710703 + 0.710703i −0.966682 0.255979i \(-0.917602\pi\)
0.255979 + 0.966682i \(0.417602\pi\)
\(788\) 0 0
\(789\) 20690.7 19671.9i 0.933598 0.887625i
\(790\) 0 0
\(791\) 5623.53i 0.252781i
\(792\) 0 0
\(793\) 37071.3i 1.66008i
\(794\) 0 0
\(795\) 6931.40 6590.08i 0.309222 0.293995i
\(796\) 0 0
\(797\) −392.159 + 392.159i −0.0174291 + 0.0174291i −0.715768 0.698339i \(-0.753923\pi\)
0.698339 + 0.715768i \(0.253923\pi\)
\(798\) 0 0
\(799\) 20596.8i 0.911967i
\(800\) 0 0
\(801\) −1115.50 + 22081.2i −0.0492062 + 0.974032i
\(802\) 0 0
\(803\) −2688.28 2688.28i −0.118141 0.118141i
\(804\) 0 0
\(805\) −4.25970 + 4.25970i −0.000186503 + 0.000186503i
\(806\) 0 0
\(807\) 29142.6 + 735.644i 1.27121 + 0.0320891i
\(808\) 0 0
\(809\) 1365.11 0.0593259 0.0296629 0.999560i \(-0.490557\pi\)
0.0296629 + 0.999560i \(0.490557\pi\)
\(810\) 0 0
\(811\) 19620.1 + 19620.1i 0.849512 + 0.849512i 0.990072 0.140560i \(-0.0448903\pi\)
−0.140560 + 0.990072i \(0.544890\pi\)
\(812\) 0 0
\(813\) −10014.5 + 9521.38i −0.432011 + 0.410737i
\(814\) 0 0
\(815\) −19184.4 −0.824539
\(816\) 0 0
\(817\) −19256.4 −0.824598
\(818\) 0 0
\(819\) 4898.40 4427.29i 0.208991 0.188891i
\(820\) 0 0
\(821\) −21308.6 21308.6i −0.905818 0.905818i 0.0901139 0.995931i \(-0.471277\pi\)
−0.995931 + 0.0901139i \(0.971277\pi\)
\(822\) 0 0
\(823\) −42077.4 −1.78217 −0.891086 0.453835i \(-0.850056\pi\)
−0.891086 + 0.453835i \(0.850056\pi\)
\(824\) 0 0
\(825\) −444.155 + 17595.2i −0.0187436 + 0.742530i
\(826\) 0 0
\(827\) −3135.69 + 3135.69i −0.131848 + 0.131848i −0.769951 0.638103i \(-0.779719\pi\)
0.638103 + 0.769951i \(0.279719\pi\)
\(828\) 0 0
\(829\) 12487.8 + 12487.8i 0.523184 + 0.523184i 0.918532 0.395348i \(-0.129376\pi\)
−0.395348 + 0.918532i \(0.629376\pi\)
\(830\) 0 0
\(831\) 25553.8 + 645.051i 1.06673 + 0.0269273i
\(832\) 0 0
\(833\) 35320.3i 1.46912i
\(834\) 0 0
\(835\) 6881.41 6881.41i 0.285199 0.285199i
\(836\) 0 0
\(837\) 16405.3 + 19098.6i 0.677480 + 0.788701i
\(838\) 0 0
\(839\) 39451.5i 1.62338i −0.584087 0.811691i \(-0.698547\pi\)
0.584087 0.811691i \(-0.301453\pi\)
\(840\) 0 0
\(841\) 28458.6i 1.16686i
\(842\) 0 0
\(843\) 1987.36 + 2090.30i 0.0811963 + 0.0854017i
\(844\) 0 0
\(845\) 2537.18 2537.18i 0.103292 0.103292i
\(846\) 0 0
\(847\) 2048.23i 0.0830908i
\(848\) 0 0
\(849\) −495.743 + 19638.9i −0.0200399 + 0.793882i
\(850\) 0 0
\(851\) 37.6629 + 37.6629i 0.00151712 + 0.00151712i
\(852\) 0 0
\(853\) 28218.6 28218.6i 1.13269 1.13269i 0.142966 0.989728i \(-0.454336\pi\)
0.989728 0.142966i \(-0.0456638\pi\)
\(854\) 0 0
\(855\) −367.771 + 7280.00i −0.0147105 + 0.291194i
\(856\) 0 0
\(857\) 27268.2 1.08689 0.543444 0.839446i \(-0.317120\pi\)
0.543444 + 0.839446i \(0.317120\pi\)
\(858\) 0 0
\(859\) −20537.8 20537.8i −0.815764 0.815764i 0.169727 0.985491i \(-0.445711\pi\)
−0.985491 + 0.169727i \(0.945711\pi\)
\(860\) 0 0
\(861\) 823.776 + 866.442i 0.0326065 + 0.0342953i
\(862\) 0 0
\(863\) −27756.3 −1.09483 −0.547414 0.836862i \(-0.684388\pi\)
−0.547414 + 0.836862i \(0.684388\pi\)
\(864\) 0 0
\(865\) 8180.95 0.321573
\(866\) 0 0
\(867\) −25720.7 27052.9i −1.00752 1.05970i
\(868\) 0 0
\(869\) 34844.6 + 34844.6i 1.36021 + 1.36021i
\(870\) 0 0
\(871\) 2698.07 0.104961
\(872\) 0 0
\(873\) −909.639 + 18006.2i −0.0352653 + 0.698074i
\(874\) 0 0
\(875\) 4531.59 4531.59i 0.175081 0.175081i
\(876\) 0 0
\(877\) 1240.18 + 1240.18i 0.0477512 + 0.0477512i 0.730579 0.682828i \(-0.239250\pi\)
−0.682828 + 0.730579i \(0.739250\pi\)
\(878\) 0 0
\(879\) 970.699 38454.3i 0.0372479 1.47558i
\(880\) 0 0
\(881\) 31267.9i 1.19574i −0.801595 0.597868i \(-0.796015\pi\)
0.801595 0.597868i \(-0.203985\pi\)
\(882\) 0 0
\(883\) −26119.6 + 26119.6i −0.995464 + 0.995464i −0.999990 0.00452604i \(-0.998559\pi\)
0.00452604 + 0.999990i \(0.498559\pi\)
\(884\) 0 0
\(885\) −10217.6 10746.9i −0.388093 0.408194i
\(886\) 0 0
\(887\) 13730.5i 0.519758i −0.965641 0.259879i \(-0.916317\pi\)
0.965641 0.259879i \(-0.0836827\pi\)
\(888\) 0 0
\(889\) 11991.1i 0.452383i
\(890\) 0 0
\(891\) 23755.7 19385.7i 0.893205 0.728895i
\(892\) 0 0
\(893\) 5361.16 5361.16i 0.200901 0.200901i
\(894\) 0 0
\(895\) 15357.7i 0.573576i
\(896\) 0 0
\(897\) −52.4859 1.32490i −0.00195368 4.93167e-5i
\(898\) 0 0
\(899\) 29171.5 + 29171.5i 1.08223 + 1.08223i
\(900\) 0 0
\(901\) −21467.3 + 21467.3i −0.793760 + 0.793760i
\(902\) 0 0
\(903\) 291.620 11552.6i 0.0107470 0.425742i
\(904\) 0 0
\(905\) 20832.3 0.765181
\(906\) 0 0
\(907\) −9646.24 9646.24i −0.353140 0.353140i 0.508136 0.861277i \(-0.330335\pi\)
−0.861277 + 0.508136i \(0.830335\pi\)
\(908\) 0 0
\(909\) 22494.8 20331.3i 0.820798 0.741856i
\(910\) 0 0
\(911\) 3435.47 0.124942 0.0624710 0.998047i \(-0.480102\pi\)
0.0624710 + 0.998047i \(0.480102\pi\)
\(912\) 0 0
\(913\) −15279.2 −0.553852
\(914\) 0 0
\(915\) 17799.9 16923.4i 0.643112 0.611444i
\(916\) 0 0
\(917\) −5807.23 5807.23i −0.209129 0.209129i
\(918\) 0 0
\(919\) 4868.66 0.174758 0.0873788 0.996175i \(-0.472151\pi\)
0.0873788 + 0.996175i \(0.472151\pi\)
\(920\) 0 0
\(921\) −46063.4 1162.77i −1.64803 0.0416012i
\(922\) 0 0
\(923\) 23584.0 23584.0i 0.841035 0.841035i
\(924\) 0 0
\(925\) −15699.4 15699.4i −0.558047 0.558047i
\(926\) 0 0
\(927\) −1479.85 + 29293.5i −0.0524322 + 1.03789i
\(928\) 0 0
\(929\) 17567.8i 0.620431i −0.950666 0.310216i \(-0.899599\pi\)
0.950666 0.310216i \(-0.100401\pi\)
\(930\) 0 0
\(931\) 9193.56 9193.56i 0.323638 0.323638i
\(932\) 0 0
\(933\) 10618.4 10095.5i 0.372595 0.354247i
\(934\) 0 0
\(935\) 30847.2i 1.07894i
\(936\) 0 0
\(937\) 13154.3i 0.458625i −0.973353 0.229312i \(-0.926352\pi\)
0.973353 0.229312i \(-0.0736477\pi\)
\(938\) 0 0
\(939\) −2802.70 + 2664.69i −0.0974043 + 0.0926078i
\(940\) 0 0
\(941\) −385.039 + 385.039i −0.0133389 + 0.0133389i −0.713745 0.700406i \(-0.753002\pi\)
0.700406 + 0.713745i \(0.253002\pi\)
\(942\) 0 0
\(943\) 9.50666i 0.000328292i
\(944\) 0 0
\(945\) −4361.94 330.887i −0.150152 0.0113902i
\(946\) 0 0
\(947\) 8878.86 + 8878.86i 0.304672 + 0.304672i 0.842838 0.538167i \(-0.180883\pi\)
−0.538167 + 0.842838i \(0.680883\pi\)
\(948\) 0 0
\(949\) −3342.66 + 3342.66i −0.114339 + 0.114339i
\(950\) 0 0
\(951\) −778.575 19.6535i −0.0265479 0.000670146i
\(952\) 0 0
\(953\) −28727.2 −0.976457 −0.488229 0.872716i \(-0.662357\pi\)
−0.488229 + 0.872716i \(0.662357\pi\)
\(954\) 0 0
\(955\) 8234.87 + 8234.87i 0.279030 + 0.279030i
\(956\) 0 0
\(957\) 36411.3 34618.3i 1.22990 1.16933i
\(958\) 0 0
\(959\) −6462.11 −0.217594
\(960\) 0 0
\(961\) −2413.93 −0.0810288
\(962\) 0 0
\(963\) −12497.5 13827.4i −0.418199 0.462700i
\(964\) 0 0
\(965\) −5896.96 5896.96i −0.196715 0.196715i
\(966\) 0 0
\(967\) 24789.2 0.824373 0.412186 0.911100i \(-0.364765\pi\)
0.412186 + 0.911100i \(0.364765\pi\)
\(968\) 0 0
\(969\) 583.888 23130.8i 0.0193573 0.766840i
\(970\) 0 0
\(971\) 23458.4 23458.4i 0.775299 0.775299i −0.203728 0.979028i \(-0.565306\pi\)
0.979028 + 0.203728i \(0.0653058\pi\)
\(972\) 0 0
\(973\) −3010.06 3010.06i −0.0991758 0.0991758i
\(974\) 0 0
\(975\) 21878.2 + 552.271i 0.718630 + 0.0181403i
\(976\) 0 0
\(977\) 28932.0i 0.947407i −0.880684 0.473704i \(-0.842917\pi\)
0.880684 0.473704i \(-0.157083\pi\)
\(978\) 0 0
\(979\) −24353.7 + 24353.7i −0.795043 + 0.795043i
\(980\) 0 0
\(981\) 3729.01 3370.37i 0.121364 0.109692i
\(982\) 0 0
\(983\) 28504.9i 0.924889i −0.886648 0.462445i \(-0.846972\pi\)
0.886648 0.462445i \(-0.153028\pi\)
\(984\) 0 0
\(985\) 298.430i 0.00965357i
\(986\) 0 0
\(987\) 3135.15 + 3297.53i 0.101107 + 0.106344i
\(988\) 0 0
\(989\) −64.9776 + 64.9776i −0.00208915 + 0.00208915i
\(990\) 0 0
\(991\) 32691.4i 1.04791i 0.851747 + 0.523953i \(0.175543\pi\)
−0.851747 + 0.523953i \(0.824457\pi\)
\(992\) 0 0
\(993\) 467.393 18515.8i 0.0149368 0.591724i
\(994\) 0 0
\(995\) 1267.44 + 1267.44i 0.0403825 + 0.0403825i
\(996\) 0 0
\(997\) −14405.9 + 14405.9i −0.457613 + 0.457613i −0.897871 0.440258i \(-0.854887\pi\)
0.440258 + 0.897871i \(0.354887\pi\)
\(998\) 0 0
\(999\) −2925.60 + 38567.0i −0.0926546 + 1.22143i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.k.a.47.17 44
3.2 odd 2 inner 192.4.k.a.47.6 44
4.3 odd 2 48.4.k.a.35.19 yes 44
8.3 odd 2 384.4.k.b.95.17 44
8.5 even 2 384.4.k.a.95.6 44
12.11 even 2 48.4.k.a.35.4 yes 44
16.3 odd 4 384.4.k.a.287.17 44
16.5 even 4 48.4.k.a.11.4 44
16.11 odd 4 inner 192.4.k.a.143.6 44
16.13 even 4 384.4.k.b.287.6 44
24.5 odd 2 384.4.k.a.95.17 44
24.11 even 2 384.4.k.b.95.6 44
48.5 odd 4 48.4.k.a.11.19 yes 44
48.11 even 4 inner 192.4.k.a.143.17 44
48.29 odd 4 384.4.k.b.287.17 44
48.35 even 4 384.4.k.a.287.6 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.4 44 16.5 even 4
48.4.k.a.11.19 yes 44 48.5 odd 4
48.4.k.a.35.4 yes 44 12.11 even 2
48.4.k.a.35.19 yes 44 4.3 odd 2
192.4.k.a.47.6 44 3.2 odd 2 inner
192.4.k.a.47.17 44 1.1 even 1 trivial
192.4.k.a.143.6 44 16.11 odd 4 inner
192.4.k.a.143.17 44 48.11 even 4 inner
384.4.k.a.95.6 44 8.5 even 2
384.4.k.a.95.17 44 24.5 odd 2
384.4.k.a.287.6 44 48.35 even 4
384.4.k.a.287.17 44 16.3 odd 4
384.4.k.b.95.6 44 24.11 even 2
384.4.k.b.95.17 44 8.3 odd 2
384.4.k.b.287.6 44 16.13 even 4
384.4.k.b.287.17 44 48.29 odd 4