Properties

Label 192.4.k.a.143.6
Level $192$
Weight $4$
Character 192.143
Analytic conductor $11.328$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(47,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.6
Character \(\chi\) \(=\) 192.143
Dual form 192.4.k.a.47.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.76578 + 3.58035i) q^{3} +(4.71515 - 4.71515i) q^{5} -4.67595 q^{7} +(1.36225 - 26.9656i) q^{9} +(29.7408 + 29.7408i) q^{11} +(36.9803 - 36.9803i) q^{13} +(-0.874367 + 34.6381i) q^{15} +109.986i q^{17} +(-28.6283 - 28.6283i) q^{19} +(17.6086 - 16.7415i) q^{21} +0.193203i q^{23} +80.5347i q^{25} +(91.4163 + 106.424i) q^{27} +(162.554 + 162.554i) q^{29} +179.457i q^{31} +(-218.480 - 5.51507i) q^{33} +(-22.0478 + 22.0478i) q^{35} +(194.940 + 194.940i) q^{37} +(-6.85755 + 271.662i) q^{39} +49.2056 q^{41} +(336.318 - 336.318i) q^{43} +(-120.724 - 133.570i) q^{45} +187.268 q^{47} -321.136 q^{49} +(-393.787 - 414.182i) q^{51} +(-195.182 + 195.182i) q^{53} +280.465 q^{55} +(210.307 + 5.30877i) q^{57} +(-302.622 - 302.622i) q^{59} +(501.230 - 501.230i) q^{61} +(-6.36981 + 126.090i) q^{63} -348.736i q^{65} +(36.4798 + 36.4798i) q^{67} +(-0.691733 - 0.727560i) q^{69} -637.743i q^{71} -90.3903i q^{73} +(-288.342 - 303.276i) q^{75} +(-139.067 - 139.067i) q^{77} +1171.61i q^{79} +(-725.289 - 73.4678i) q^{81} +(-256.872 + 256.872i) q^{83} +(518.599 + 518.599i) q^{85} +(-1194.14 - 30.1437i) q^{87} -818.864 q^{89} +(-172.918 + 172.918i) q^{91} +(-642.519 - 675.797i) q^{93} -269.973 q^{95} +667.747 q^{97} +(842.494 - 761.465i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} + 8 q^{7} - 4 q^{13} - 20 q^{19} - 56 q^{21} + 134 q^{27} - 4 q^{33} - 4 q^{37} - 596 q^{39} + 436 q^{43} - 252 q^{45} + 972 q^{49} + 648 q^{51} - 280 q^{55} - 916 q^{61} + 1636 q^{67} + 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.76578 + 3.58035i −0.724725 + 0.689038i
\(4\) 0 0
\(5\) 4.71515 4.71515i 0.421736 0.421736i −0.464065 0.885801i \(-0.653610\pi\)
0.885801 + 0.464065i \(0.153610\pi\)
\(6\) 0 0
\(7\) −4.67595 −0.252477 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(8\) 0 0
\(9\) 1.36225 26.9656i 0.0504537 0.998726i
\(10\) 0 0
\(11\) 29.7408 + 29.7408i 0.815200 + 0.815200i 0.985408 0.170208i \(-0.0544440\pi\)
−0.170208 + 0.985408i \(0.554444\pi\)
\(12\) 0 0
\(13\) 36.9803 36.9803i 0.788961 0.788961i −0.192363 0.981324i \(-0.561615\pi\)
0.981324 + 0.192363i \(0.0616149\pi\)
\(14\) 0 0
\(15\) −0.874367 + 34.6381i −0.0150507 + 0.596235i
\(16\) 0 0
\(17\) 109.986i 1.56914i 0.620037 + 0.784572i \(0.287117\pi\)
−0.620037 + 0.784572i \(0.712883\pi\)
\(18\) 0 0
\(19\) −28.6283 28.6283i −0.345673 0.345673i 0.512822 0.858495i \(-0.328600\pi\)
−0.858495 + 0.512822i \(0.828600\pi\)
\(20\) 0 0
\(21\) 17.6086 16.7415i 0.182977 0.173967i
\(22\) 0 0
\(23\) 0.193203i 0.00175155i 1.00000 0.000875773i \(0.000278767\pi\)
−1.00000 0.000875773i \(0.999721\pi\)
\(24\) 0 0
\(25\) 80.5347i 0.644277i
\(26\) 0 0
\(27\) 91.4163 + 106.424i 0.651595 + 0.758567i
\(28\) 0 0
\(29\) 162.554 + 162.554i 1.04088 + 1.04088i 0.999128 + 0.0417521i \(0.0132940\pi\)
0.0417521 + 0.999128i \(0.486706\pi\)
\(30\) 0 0
\(31\) 179.457i 1.03973i 0.854250 + 0.519863i \(0.174017\pi\)
−0.854250 + 0.519863i \(0.825983\pi\)
\(32\) 0 0
\(33\) −218.480 5.51507i −1.15250 0.0290925i
\(34\) 0 0
\(35\) −22.0478 + 22.0478i −0.106479 + 0.106479i
\(36\) 0 0
\(37\) 194.940 + 194.940i 0.866160 + 0.866160i 0.992045 0.125885i \(-0.0401770\pi\)
−0.125885 + 0.992045i \(0.540177\pi\)
\(38\) 0 0
\(39\) −6.85755 + 271.662i −0.0281561 + 1.11540i
\(40\) 0 0
\(41\) 49.2056 0.187430 0.0937149 0.995599i \(-0.470126\pi\)
0.0937149 + 0.995599i \(0.470126\pi\)
\(42\) 0 0
\(43\) 336.318 336.318i 1.19274 1.19274i 0.216450 0.976294i \(-0.430552\pi\)
0.976294 0.216450i \(-0.0694480\pi\)
\(44\) 0 0
\(45\) −120.724 133.570i −0.399921 0.442477i
\(46\) 0 0
\(47\) 187.268 0.581188 0.290594 0.956846i \(-0.406147\pi\)
0.290594 + 0.956846i \(0.406147\pi\)
\(48\) 0 0
\(49\) −321.136 −0.936255
\(50\) 0 0
\(51\) −393.787 414.182i −1.08120 1.13720i
\(52\) 0 0
\(53\) −195.182 + 195.182i −0.505855 + 0.505855i −0.913252 0.407396i \(-0.866437\pi\)
0.407396 + 0.913252i \(0.366437\pi\)
\(54\) 0 0
\(55\) 280.465 0.687598
\(56\) 0 0
\(57\) 210.307 + 5.30877i 0.488699 + 0.0123362i
\(58\) 0 0
\(59\) −302.622 302.622i −0.667763 0.667763i 0.289435 0.957198i \(-0.406533\pi\)
−0.957198 + 0.289435i \(0.906533\pi\)
\(60\) 0 0
\(61\) 501.230 501.230i 1.05207 1.05207i 0.0534972 0.998568i \(-0.482963\pi\)
0.998568 0.0534972i \(-0.0170368\pi\)
\(62\) 0 0
\(63\) −6.36981 + 126.090i −0.0127384 + 0.252156i
\(64\) 0 0
\(65\) 348.736i 0.665467i
\(66\) 0 0
\(67\) 36.4798 + 36.4798i 0.0665183 + 0.0665183i 0.739583 0.673065i \(-0.235023\pi\)
−0.673065 + 0.739583i \(0.735023\pi\)
\(68\) 0 0
\(69\) −0.691733 0.727560i −0.00120688 0.00126939i
\(70\) 0 0
\(71\) 637.743i 1.06600i −0.846114 0.533001i \(-0.821064\pi\)
0.846114 0.533001i \(-0.178936\pi\)
\(72\) 0 0
\(73\) 90.3903i 0.144923i −0.997371 0.0724615i \(-0.976915\pi\)
0.997371 0.0724615i \(-0.0230855\pi\)
\(74\) 0 0
\(75\) −288.342 303.276i −0.443932 0.466924i
\(76\) 0 0
\(77\) −139.067 139.067i −0.205820 0.205820i
\(78\) 0 0
\(79\) 1171.61i 1.66856i 0.551341 + 0.834280i \(0.314116\pi\)
−0.551341 + 0.834280i \(0.685884\pi\)
\(80\) 0 0
\(81\) −725.289 73.4678i −0.994909 0.100779i
\(82\) 0 0
\(83\) −256.872 + 256.872i −0.339703 + 0.339703i −0.856256 0.516553i \(-0.827215\pi\)
0.516553 + 0.856256i \(0.327215\pi\)
\(84\) 0 0
\(85\) 518.599 + 518.599i 0.661765 + 0.661765i
\(86\) 0 0
\(87\) −1194.14 30.1437i −1.47156 0.0371464i
\(88\) 0 0
\(89\) −818.864 −0.975274 −0.487637 0.873047i \(-0.662141\pi\)
−0.487637 + 0.873047i \(0.662141\pi\)
\(90\) 0 0
\(91\) −172.918 + 172.918i −0.199195 + 0.199195i
\(92\) 0 0
\(93\) −642.519 675.797i −0.716410 0.753515i
\(94\) 0 0
\(95\) −269.973 −0.291565
\(96\) 0 0
\(97\) 667.747 0.698964 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(98\) 0 0
\(99\) 842.494 761.465i 0.855292 0.773032i
\(100\) 0 0
\(101\) 794.088 794.088i 0.782324 0.782324i −0.197899 0.980222i \(-0.563412\pi\)
0.980222 + 0.197899i \(0.0634118\pi\)
\(102\) 0 0
\(103\) 1086.33 1.03921 0.519607 0.854405i \(-0.326078\pi\)
0.519607 + 0.854405i \(0.326078\pi\)
\(104\) 0 0
\(105\) 4.08850 161.966i 0.00379997 0.150536i
\(106\) 0 0
\(107\) 488.119 + 488.119i 0.441011 + 0.441011i 0.892352 0.451341i \(-0.149054\pi\)
−0.451341 + 0.892352i \(0.649054\pi\)
\(108\) 0 0
\(109\) −131.638 + 131.638i −0.115675 + 0.115675i −0.762575 0.646900i \(-0.776065\pi\)
0.646900 + 0.762575i \(0.276065\pi\)
\(110\) 0 0
\(111\) −1432.05 36.1492i −1.22455 0.0309111i
\(112\) 0 0
\(113\) 1202.65i 1.00120i −0.865678 0.500601i \(-0.833113\pi\)
0.865678 0.500601i \(-0.166887\pi\)
\(114\) 0 0
\(115\) 0.910981 + 0.910981i 0.000738690 + 0.000738690i
\(116\) 0 0
\(117\) −946.821 1047.57i −0.748151 0.827763i
\(118\) 0 0
\(119\) 514.288i 0.396174i
\(120\) 0 0
\(121\) 438.035i 0.329102i
\(122\) 0 0
\(123\) −185.298 + 176.173i −0.135835 + 0.129146i
\(124\) 0 0
\(125\) 969.127 + 969.127i 0.693451 + 0.693451i
\(126\) 0 0
\(127\) 2564.42i 1.79178i −0.444281 0.895888i \(-0.646541\pi\)
0.444281 0.895888i \(-0.353459\pi\)
\(128\) 0 0
\(129\) −62.3660 + 2470.63i −0.0425661 + 1.68626i
\(130\) 0 0
\(131\) −1241.94 + 1241.94i −0.828309 + 0.828309i −0.987283 0.158974i \(-0.949181\pi\)
0.158974 + 0.987283i \(0.449181\pi\)
\(132\) 0 0
\(133\) 133.864 + 133.864i 0.0872746 + 0.0872746i
\(134\) 0 0
\(135\) 932.847 + 70.7636i 0.594716 + 0.0451138i
\(136\) 0 0
\(137\) −1381.99 −0.861835 −0.430917 0.902391i \(-0.641810\pi\)
−0.430917 + 0.902391i \(0.641810\pi\)
\(138\) 0 0
\(139\) 643.732 643.732i 0.392810 0.392810i −0.482877 0.875688i \(-0.660408\pi\)
0.875688 + 0.482877i \(0.160408\pi\)
\(140\) 0 0
\(141\) −705.210 + 670.484i −0.421201 + 0.400460i
\(142\) 0 0
\(143\) 2199.65 1.28632
\(144\) 0 0
\(145\) 1532.93 0.877953
\(146\) 0 0
\(147\) 1209.33 1149.78i 0.678528 0.645115i
\(148\) 0 0
\(149\) −604.581 + 604.581i −0.332411 + 0.332411i −0.853501 0.521091i \(-0.825525\pi\)
0.521091 + 0.853501i \(0.325525\pi\)
\(150\) 0 0
\(151\) −1368.69 −0.737631 −0.368815 0.929503i \(-0.620237\pi\)
−0.368815 + 0.929503i \(0.620237\pi\)
\(152\) 0 0
\(153\) 2965.83 + 149.828i 1.56715 + 0.0791691i
\(154\) 0 0
\(155\) 846.168 + 846.168i 0.438490 + 0.438490i
\(156\) 0 0
\(157\) −1561.01 + 1561.01i −0.793516 + 0.793516i −0.982064 0.188548i \(-0.939622\pi\)
0.188548 + 0.982064i \(0.439622\pi\)
\(158\) 0 0
\(159\) 36.1941 1433.83i 0.0180527 0.715160i
\(160\) 0 0
\(161\) 0.903406i 0.000442226i
\(162\) 0 0
\(163\) 2034.33 + 2034.33i 0.977554 + 0.977554i 0.999754 0.0221997i \(-0.00706698\pi\)
−0.0221997 + 0.999754i \(0.507067\pi\)
\(164\) 0 0
\(165\) −1056.17 + 1004.16i −0.498320 + 0.473781i
\(166\) 0 0
\(167\) 1459.42i 0.676249i 0.941101 + 0.338125i \(0.109793\pi\)
−0.941101 + 0.338125i \(0.890207\pi\)
\(168\) 0 0
\(169\) 538.090i 0.244920i
\(170\) 0 0
\(171\) −810.978 + 732.980i −0.362673 + 0.327792i
\(172\) 0 0
\(173\) 867.517 + 867.517i 0.381249 + 0.381249i 0.871552 0.490303i \(-0.163114\pi\)
−0.490303 + 0.871552i \(0.663114\pi\)
\(174\) 0 0
\(175\) 376.576i 0.162666i
\(176\) 0 0
\(177\) 2223.10 + 56.1175i 0.944058 + 0.0238308i
\(178\) 0 0
\(179\) −1628.54 + 1628.54i −0.680017 + 0.680017i −0.960004 0.279987i \(-0.909670\pi\)
0.279987 + 0.960004i \(0.409670\pi\)
\(180\) 0 0
\(181\) −2209.08 2209.08i −0.907181 0.907181i 0.0888632 0.996044i \(-0.471677\pi\)
−0.996044 + 0.0888632i \(0.971677\pi\)
\(182\) 0 0
\(183\) −92.9470 + 3682.10i −0.0375456 + 1.48737i
\(184\) 0 0
\(185\) 1838.34 0.730582
\(186\) 0 0
\(187\) −3271.07 + 3271.07i −1.27917 + 1.27917i
\(188\) 0 0
\(189\) −427.458 497.633i −0.164513 0.191521i
\(190\) 0 0
\(191\) 1746.47 0.661623 0.330812 0.943697i \(-0.392678\pi\)
0.330812 + 0.943697i \(0.392678\pi\)
\(192\) 0 0
\(193\) 1250.64 0.466441 0.233220 0.972424i \(-0.425074\pi\)
0.233220 + 0.972424i \(0.425074\pi\)
\(194\) 0 0
\(195\) 1248.59 + 1313.26i 0.458532 + 0.482281i
\(196\) 0 0
\(197\) −31.6458 + 31.6458i −0.0114450 + 0.0114450i −0.712806 0.701361i \(-0.752576\pi\)
0.701361 + 0.712806i \(0.252576\pi\)
\(198\) 0 0
\(199\) −268.802 −0.0957530 −0.0478765 0.998853i \(-0.515245\pi\)
−0.0478765 + 0.998853i \(0.515245\pi\)
\(200\) 0 0
\(201\) −267.986 6.76474i −0.0940411 0.00237387i
\(202\) 0 0
\(203\) −760.094 760.094i −0.262799 0.262799i
\(204\) 0 0
\(205\) 232.012 232.012i 0.0790459 0.0790459i
\(206\) 0 0
\(207\) 5.20983 + 0.263190i 0.00174932 + 8.83720e-5i
\(208\) 0 0
\(209\) 1702.86i 0.563585i
\(210\) 0 0
\(211\) −917.057 917.057i −0.299208 0.299208i 0.541496 0.840703i \(-0.317858\pi\)
−0.840703 + 0.541496i \(0.817858\pi\)
\(212\) 0 0
\(213\) 2283.34 + 2401.60i 0.734516 + 0.772559i
\(214\) 0 0
\(215\) 3171.58i 1.00605i
\(216\) 0 0
\(217\) 839.133i 0.262507i
\(218\) 0 0
\(219\) 323.628 + 340.390i 0.0998575 + 0.105029i
\(220\) 0 0
\(221\) 4067.31 + 4067.31i 1.23799 + 1.23799i
\(222\) 0 0
\(223\) 332.177i 0.0997499i −0.998755 0.0498749i \(-0.984118\pi\)
0.998755 0.0498749i \(-0.0158823\pi\)
\(224\) 0 0
\(225\) 2171.67 + 109.708i 0.643457 + 0.0325062i
\(226\) 0 0
\(227\) 1201.02 1201.02i 0.351164 0.351164i −0.509378 0.860543i \(-0.670125\pi\)
0.860543 + 0.509378i \(0.170125\pi\)
\(228\) 0 0
\(229\) −2969.95 2969.95i −0.857031 0.857031i 0.133957 0.990987i \(-0.457232\pi\)
−0.990987 + 0.133957i \(0.957232\pi\)
\(230\) 0 0
\(231\) 1021.60 + 25.7882i 0.290980 + 0.00734519i
\(232\) 0 0
\(233\) −4481.22 −1.25998 −0.629988 0.776605i \(-0.716940\pi\)
−0.629988 + 0.776605i \(0.716940\pi\)
\(234\) 0 0
\(235\) 882.996 882.996i 0.245108 0.245108i
\(236\) 0 0
\(237\) −4194.76 4412.02i −1.14970 1.20925i
\(238\) 0 0
\(239\) −2196.96 −0.594602 −0.297301 0.954784i \(-0.596086\pi\)
−0.297301 + 0.954784i \(0.596086\pi\)
\(240\) 0 0
\(241\) −2608.91 −0.697322 −0.348661 0.937249i \(-0.613363\pi\)
−0.348661 + 0.937249i \(0.613363\pi\)
\(242\) 0 0
\(243\) 2994.32 2320.12i 0.790476 0.612493i
\(244\) 0 0
\(245\) −1514.20 + 1514.20i −0.394852 + 0.394852i
\(246\) 0 0
\(247\) −2117.37 −0.545445
\(248\) 0 0
\(249\) 47.6337 1887.01i 0.0121232 0.480260i
\(250\) 0 0
\(251\) −1134.95 1134.95i −0.285409 0.285409i 0.549853 0.835262i \(-0.314684\pi\)
−0.835262 + 0.549853i \(0.814684\pi\)
\(252\) 0 0
\(253\) −5.74601 + 5.74601i −0.00142786 + 0.00142786i
\(254\) 0 0
\(255\) −3809.70 96.1679i −0.935579 0.0236167i
\(256\) 0 0
\(257\) 1979.45i 0.480446i 0.970718 + 0.240223i \(0.0772206\pi\)
−0.970718 + 0.240223i \(0.922779\pi\)
\(258\) 0 0
\(259\) −911.529 911.529i −0.218686 0.218686i
\(260\) 0 0
\(261\) 4604.81 4161.93i 1.09207 0.987038i
\(262\) 0 0
\(263\) 5494.40i 1.28821i −0.764937 0.644105i \(-0.777230\pi\)
0.764937 0.644105i \(-0.222770\pi\)
\(264\) 0 0
\(265\) 1840.63i 0.426675i
\(266\) 0 0
\(267\) 3083.66 2931.82i 0.706806 0.672001i
\(268\) 0 0
\(269\) −3967.07 3967.07i −0.899169 0.899169i 0.0961936 0.995363i \(-0.469333\pi\)
−0.995363 + 0.0961936i \(0.969333\pi\)
\(270\) 0 0
\(271\) 2659.35i 0.596103i −0.954550 0.298051i \(-0.903663\pi\)
0.954550 0.298051i \(-0.0963367\pi\)
\(272\) 0 0
\(273\) 32.0656 1270.28i 0.00710877 0.281615i
\(274\) 0 0
\(275\) −2395.17 + 2395.17i −0.525215 + 0.525215i
\(276\) 0 0
\(277\) 3478.53 + 3478.53i 0.754530 + 0.754530i 0.975321 0.220791i \(-0.0708639\pi\)
−0.220791 + 0.975321i \(0.570864\pi\)
\(278\) 0 0
\(279\) 4839.18 + 244.466i 1.03840 + 0.0524580i
\(280\) 0 0
\(281\) −555.076 −0.117840 −0.0589200 0.998263i \(-0.518766\pi\)
−0.0589200 + 0.998263i \(0.518766\pi\)
\(282\) 0 0
\(283\) 2673.37 2673.37i 0.561538 0.561538i −0.368206 0.929744i \(-0.620028\pi\)
0.929744 + 0.368206i \(0.120028\pi\)
\(284\) 0 0
\(285\) 1016.66 966.598i 0.211305 0.200899i
\(286\) 0 0
\(287\) −230.083 −0.0473218
\(288\) 0 0
\(289\) −7183.86 −1.46221
\(290\) 0 0
\(291\) −2514.59 + 2390.77i −0.506557 + 0.481612i
\(292\) 0 0
\(293\) 5234.64 5234.64i 1.04372 1.04372i 0.0447231 0.998999i \(-0.485759\pi\)
0.998999 0.0447231i \(-0.0142406\pi\)
\(294\) 0 0
\(295\) −2853.82 −0.563239
\(296\) 0 0
\(297\) −446.342 + 5883.93i −0.0872033 + 1.14956i
\(298\) 0 0
\(299\) 7.14470 + 7.14470i 0.00138190 + 0.00138190i
\(300\) 0 0
\(301\) −1572.61 + 1572.61i −0.301141 + 0.301141i
\(302\) 0 0
\(303\) −147.254 + 5833.47i −0.0279192 + 1.10602i
\(304\) 0 0
\(305\) 4726.75i 0.887388i
\(306\) 0 0
\(307\) −6270.43 6270.43i −1.16571 1.16571i −0.983205 0.182502i \(-0.941580\pi\)
−0.182502 0.983205i \(-0.558420\pi\)
\(308\) 0 0
\(309\) −4090.88 + 3889.43i −0.753145 + 0.716058i
\(310\) 0 0
\(311\) 2819.71i 0.514119i −0.966396 0.257059i \(-0.917246\pi\)
0.966396 0.257059i \(-0.0827536\pi\)
\(312\) 0 0
\(313\) 744.254i 0.134402i −0.997739 0.0672008i \(-0.978593\pi\)
0.997739 0.0672008i \(-0.0214068\pi\)
\(314\) 0 0
\(315\) 564.498 + 624.567i 0.100971 + 0.111715i
\(316\) 0 0
\(317\) 105.984 + 105.984i 0.0187782 + 0.0187782i 0.716434 0.697655i \(-0.245773\pi\)
−0.697655 + 0.716434i \(0.745773\pi\)
\(318\) 0 0
\(319\) 9668.99i 1.69705i
\(320\) 0 0
\(321\) −3585.78 90.5156i −0.623486 0.0157386i
\(322\) 0 0
\(323\) 3148.70 3148.70i 0.542410 0.542410i
\(324\) 0 0
\(325\) 2978.20 + 2978.20i 0.508310 + 0.508310i
\(326\) 0 0
\(327\) 24.4106 967.027i 0.00412816 0.163537i
\(328\) 0 0
\(329\) −875.655 −0.146737
\(330\) 0 0
\(331\) −2520.49 + 2520.49i −0.418545 + 0.418545i −0.884702 0.466157i \(-0.845638\pi\)
0.466157 + 0.884702i \(0.345638\pi\)
\(332\) 0 0
\(333\) 5522.23 4991.12i 0.908758 0.821356i
\(334\) 0 0
\(335\) 344.016 0.0561063
\(336\) 0 0
\(337\) −1969.50 −0.318355 −0.159178 0.987250i \(-0.550884\pi\)
−0.159178 + 0.987250i \(0.550884\pi\)
\(338\) 0 0
\(339\) 4305.90 + 4528.92i 0.689866 + 0.725596i
\(340\) 0 0
\(341\) −5337.21 + 5337.21i −0.847584 + 0.847584i
\(342\) 0 0
\(343\) 3105.46 0.488861
\(344\) 0 0
\(345\) −6.69218 0.168930i −0.00104433 2.63620e-5i
\(346\) 0 0
\(347\) −3206.45 3206.45i −0.496056 0.496056i 0.414152 0.910208i \(-0.364078\pi\)
−0.910208 + 0.414152i \(0.864078\pi\)
\(348\) 0 0
\(349\) 2228.50 2228.50i 0.341802 0.341802i −0.515242 0.857045i \(-0.672298\pi\)
0.857045 + 0.515242i \(0.172298\pi\)
\(350\) 0 0
\(351\) 7316.20 + 554.990i 1.11256 + 0.0843965i
\(352\) 0 0
\(353\) 8425.61i 1.27040i 0.772349 + 0.635198i \(0.219082\pi\)
−0.772349 + 0.635198i \(0.780918\pi\)
\(354\) 0 0
\(355\) −3007.06 3007.06i −0.449572 0.449572i
\(356\) 0 0
\(357\) 1841.33 + 1936.70i 0.272979 + 0.287117i
\(358\) 0 0
\(359\) 12048.7i 1.77133i 0.464325 + 0.885665i \(0.346297\pi\)
−0.464325 + 0.885665i \(0.653703\pi\)
\(360\) 0 0
\(361\) 5219.84i 0.761021i
\(362\) 0 0
\(363\) −1568.32 1649.54i −0.226764 0.238509i
\(364\) 0 0
\(365\) −426.204 426.204i −0.0611193 0.0611193i
\(366\) 0 0
\(367\) 2019.62i 0.287257i 0.989632 + 0.143628i \(0.0458770\pi\)
−0.989632 + 0.143628i \(0.954123\pi\)
\(368\) 0 0
\(369\) 67.0303 1326.86i 0.00945652 0.187191i
\(370\) 0 0
\(371\) 912.662 912.662i 0.127717 0.127717i
\(372\) 0 0
\(373\) 119.726 + 119.726i 0.0166197 + 0.0166197i 0.715368 0.698748i \(-0.246259\pi\)
−0.698748 + 0.715368i \(0.746259\pi\)
\(374\) 0 0
\(375\) −7119.33 179.713i −0.980376 0.0247475i
\(376\) 0 0
\(377\) 12022.6 1.64243
\(378\) 0 0
\(379\) 4492.22 4492.22i 0.608838 0.608838i −0.333804 0.942642i \(-0.608332\pi\)
0.942642 + 0.333804i \(0.108332\pi\)
\(380\) 0 0
\(381\) 9181.51 + 9657.05i 1.23460 + 1.29854i
\(382\) 0 0
\(383\) −1574.45 −0.210054 −0.105027 0.994469i \(-0.533493\pi\)
−0.105027 + 0.994469i \(0.533493\pi\)
\(384\) 0 0
\(385\) −1311.44 −0.173603
\(386\) 0 0
\(387\) −8610.87 9527.17i −1.13105 1.25140i
\(388\) 0 0
\(389\) 619.930 619.930i 0.0808013 0.0808013i −0.665551 0.746352i \(-0.731803\pi\)
0.746352 + 0.665551i \(0.231803\pi\)
\(390\) 0 0
\(391\) −21.2496 −0.00274843
\(392\) 0 0
\(393\) 230.302 9123.42i 0.0295603 1.17103i
\(394\) 0 0
\(395\) 5524.31 + 5524.31i 0.703692 + 0.703692i
\(396\) 0 0
\(397\) 10371.0 10371.0i 1.31110 1.31110i 0.390491 0.920607i \(-0.372305\pi\)
0.920607 0.390491i \(-0.127695\pi\)
\(398\) 0 0
\(399\) −983.385 24.8235i −0.123386 0.00311461i
\(400\) 0 0
\(401\) 10287.3i 1.28110i −0.767915 0.640552i \(-0.778706\pi\)
0.767915 0.640552i \(-0.221294\pi\)
\(402\) 0 0
\(403\) 6636.39 + 6636.39i 0.820303 + 0.820303i
\(404\) 0 0
\(405\) −3766.26 + 3073.43i −0.462091 + 0.377087i
\(406\) 0 0
\(407\) 11595.4i 1.41219i
\(408\) 0 0
\(409\) 1734.25i 0.209665i 0.994490 + 0.104833i \(0.0334307\pi\)
−0.994490 + 0.104833i \(0.966569\pi\)
\(410\) 0 0
\(411\) 5204.27 4948.00i 0.624594 0.593837i
\(412\) 0 0
\(413\) 1415.04 + 1415.04i 0.168595 + 0.168595i
\(414\) 0 0
\(415\) 2422.38i 0.286530i
\(416\) 0 0
\(417\) −119.372 + 4728.94i −0.0140184 + 0.555341i
\(418\) 0 0
\(419\) −4435.64 + 4435.64i −0.517172 + 0.517172i −0.916715 0.399543i \(-0.869169\pi\)
0.399543 + 0.916715i \(0.369169\pi\)
\(420\) 0 0
\(421\) −1602.03 1602.03i −0.185459 0.185459i 0.608271 0.793730i \(-0.291863\pi\)
−0.793730 + 0.608271i \(0.791863\pi\)
\(422\) 0 0
\(423\) 255.106 5049.79i 0.0293231 0.580447i
\(424\) 0 0
\(425\) −8857.67 −1.01096
\(426\) 0 0
\(427\) −2343.73 + 2343.73i −0.265623 + 0.265623i
\(428\) 0 0
\(429\) −8283.41 + 7875.51i −0.932231 + 0.886325i
\(430\) 0 0
\(431\) 11106.8 1.24129 0.620645 0.784092i \(-0.286871\pi\)
0.620645 + 0.784092i \(0.286871\pi\)
\(432\) 0 0
\(433\) 400.999 0.0445053 0.0222527 0.999752i \(-0.492916\pi\)
0.0222527 + 0.999752i \(0.492916\pi\)
\(434\) 0 0
\(435\) −5772.70 + 5488.43i −0.636275 + 0.604943i
\(436\) 0 0
\(437\) 5.53107 5.53107i 0.000605462 0.000605462i
\(438\) 0 0
\(439\) 9964.43 1.08332 0.541658 0.840599i \(-0.317797\pi\)
0.541658 + 0.840599i \(0.317797\pi\)
\(440\) 0 0
\(441\) −437.467 + 8659.62i −0.0472375 + 0.935063i
\(442\) 0 0
\(443\) 7441.81 + 7441.81i 0.798129 + 0.798129i 0.982800 0.184671i \(-0.0591221\pi\)
−0.184671 + 0.982800i \(0.559122\pi\)
\(444\) 0 0
\(445\) −3861.07 + 3861.07i −0.411308 + 0.411308i
\(446\) 0 0
\(447\) 112.112 4441.33i 0.0118629 0.469950i
\(448\) 0 0
\(449\) 15032.1i 1.57997i 0.613124 + 0.789987i \(0.289913\pi\)
−0.613124 + 0.789987i \(0.710087\pi\)
\(450\) 0 0
\(451\) 1463.41 + 1463.41i 0.152793 + 0.152793i
\(452\) 0 0
\(453\) 5154.18 4900.38i 0.534580 0.508256i
\(454\) 0 0
\(455\) 1630.67i 0.168015i
\(456\) 0 0
\(457\) 12925.5i 1.32304i 0.749927 + 0.661521i \(0.230089\pi\)
−0.749927 + 0.661521i \(0.769911\pi\)
\(458\) 0 0
\(459\) −11705.1 + 10054.5i −1.19030 + 1.02245i
\(460\) 0 0
\(461\) −9557.64 9557.64i −0.965604 0.965604i 0.0338235 0.999428i \(-0.489232\pi\)
−0.999428 + 0.0338235i \(0.989232\pi\)
\(462\) 0 0
\(463\) 7779.26i 0.780849i −0.920635 0.390424i \(-0.872328\pi\)
0.920635 0.390424i \(-0.127672\pi\)
\(464\) 0 0
\(465\) −6216.06 156.912i −0.619920 0.0156486i
\(466\) 0 0
\(467\) 8196.34 8196.34i 0.812166 0.812166i −0.172792 0.984958i \(-0.555279\pi\)
0.984958 + 0.172792i \(0.0552789\pi\)
\(468\) 0 0
\(469\) −170.578 170.578i −0.0167944 0.0167944i
\(470\) 0 0
\(471\) 289.470 11467.4i 0.0283186 1.12184i
\(472\) 0 0
\(473\) 20004.7 1.94465
\(474\) 0 0
\(475\) 2305.57 2305.57i 0.222709 0.222709i
\(476\) 0 0
\(477\) 4997.32 + 5529.09i 0.479689 + 0.530733i
\(478\) 0 0
\(479\) −15149.0 −1.44504 −0.722522 0.691348i \(-0.757017\pi\)
−0.722522 + 0.691348i \(0.757017\pi\)
\(480\) 0 0
\(481\) 14417.9 1.36673
\(482\) 0 0
\(483\) 3.23451 + 3.40203i 0.000304711 + 0.000320492i
\(484\) 0 0
\(485\) 3148.53 3148.53i 0.294778 0.294778i
\(486\) 0 0
\(487\) −5601.13 −0.521173 −0.260587 0.965450i \(-0.583916\pi\)
−0.260587 + 0.965450i \(0.583916\pi\)
\(488\) 0 0
\(489\) −14944.5 377.242i −1.38203 0.0348865i
\(490\) 0 0
\(491\) −1915.75 1915.75i −0.176083 0.176083i 0.613563 0.789646i \(-0.289736\pi\)
−0.789646 + 0.613563i \(0.789736\pi\)
\(492\) 0 0
\(493\) −17878.6 + 17878.6i −1.63329 + 1.63329i
\(494\) 0 0
\(495\) 382.064 7562.91i 0.0346919 0.686723i
\(496\) 0 0
\(497\) 2982.06i 0.269142i
\(498\) 0 0
\(499\) 8401.78 + 8401.78i 0.753738 + 0.753738i 0.975175 0.221437i \(-0.0710746\pi\)
−0.221437 + 0.975175i \(0.571075\pi\)
\(500\) 0 0
\(501\) −5225.24 5495.88i −0.465961 0.490095i
\(502\) 0 0
\(503\) 7484.92i 0.663491i −0.943369 0.331746i \(-0.892362\pi\)
0.943369 0.331746i \(-0.107638\pi\)
\(504\) 0 0
\(505\) 7488.49i 0.659868i
\(506\) 0 0
\(507\) 1926.55 + 2026.33i 0.168759 + 0.177500i
\(508\) 0 0
\(509\) −1636.10 1636.10i −0.142473 0.142473i 0.632273 0.774746i \(-0.282122\pi\)
−0.774746 + 0.632273i \(0.782122\pi\)
\(510\) 0 0
\(511\) 422.660i 0.0365898i
\(512\) 0 0
\(513\) 429.645 5663.83i 0.0369772 0.487454i
\(514\) 0 0
\(515\) 5122.20 5122.20i 0.438274 0.438274i
\(516\) 0 0
\(517\) 5569.50 + 5569.50i 0.473784 + 0.473784i
\(518\) 0 0
\(519\) −6372.89 160.870i −0.538996 0.0136058i
\(520\) 0 0
\(521\) −14829.8 −1.24703 −0.623517 0.781810i \(-0.714297\pi\)
−0.623517 + 0.781810i \(0.714297\pi\)
\(522\) 0 0
\(523\) 7012.23 7012.23i 0.586278 0.586278i −0.350343 0.936621i \(-0.613935\pi\)
0.936621 + 0.350343i \(0.113935\pi\)
\(524\) 0 0
\(525\) 1348.27 + 1418.10i 0.112083 + 0.117888i
\(526\) 0 0
\(527\) −19737.7 −1.63148
\(528\) 0 0
\(529\) 12167.0 0.999997
\(530\) 0 0
\(531\) −8572.63 + 7748.14i −0.700603 + 0.633221i
\(532\) 0 0
\(533\) 1819.64 1819.64i 0.147875 0.147875i
\(534\) 0 0
\(535\) 4603.11 0.371981
\(536\) 0 0
\(537\) 301.994 11963.5i 0.0242681 0.961384i
\(538\) 0 0
\(539\) −9550.84 9550.84i −0.763235 0.763235i
\(540\) 0 0
\(541\) 12824.9 12824.9i 1.01920 1.01920i 0.0193853 0.999812i \(-0.493829\pi\)
0.999812 0.0193853i \(-0.00617093\pi\)
\(542\) 0 0
\(543\) 16228.2 + 409.647i 1.28254 + 0.0323750i
\(544\) 0 0
\(545\) 1241.38i 0.0975688i
\(546\) 0 0
\(547\) 7736.14 + 7736.14i 0.604705 + 0.604705i 0.941557 0.336853i \(-0.109362\pi\)
−0.336853 + 0.941557i \(0.609362\pi\)
\(548\) 0 0
\(549\) −12833.2 14198.8i −0.997645 1.10381i
\(550\) 0 0
\(551\) 9307.29i 0.719608i
\(552\) 0 0
\(553\) 5478.38i 0.421274i
\(554\) 0 0
\(555\) −6922.80 + 6581.90i −0.529471 + 0.503399i
\(556\) 0 0
\(557\) −11943.2 11943.2i −0.908528 0.908528i 0.0876259 0.996153i \(-0.472072\pi\)
−0.996153 + 0.0876259i \(0.972072\pi\)
\(558\) 0 0
\(559\) 24874.3i 1.88206i
\(560\) 0 0
\(561\) 606.579 24029.7i 0.0456503 1.80844i
\(562\) 0 0
\(563\) 8407.34 8407.34i 0.629355 0.629355i −0.318550 0.947906i \(-0.603196\pi\)
0.947906 + 0.318550i \(0.103196\pi\)
\(564\) 0 0
\(565\) −5670.67 5670.67i −0.422243 0.422243i
\(566\) 0 0
\(567\) 3391.41 + 343.532i 0.251192 + 0.0254444i
\(568\) 0 0
\(569\) 38.5252 0.00283842 0.00141921 0.999999i \(-0.499548\pi\)
0.00141921 + 0.999999i \(0.499548\pi\)
\(570\) 0 0
\(571\) −17899.6 + 17899.6i −1.31186 + 1.31186i −0.391822 + 0.920041i \(0.628155\pi\)
−0.920041 + 0.391822i \(0.871845\pi\)
\(572\) 0 0
\(573\) −6576.82 + 6252.96i −0.479495 + 0.455883i
\(574\) 0 0
\(575\) −15.5595 −0.00112848
\(576\) 0 0
\(577\) 19242.4 1.38834 0.694171 0.719810i \(-0.255771\pi\)
0.694171 + 0.719810i \(0.255771\pi\)
\(578\) 0 0
\(579\) −4709.64 + 4477.72i −0.338041 + 0.321395i
\(580\) 0 0
\(581\) 1201.12 1201.12i 0.0857674 0.0857674i
\(582\) 0 0
\(583\) −11609.8 −0.824746
\(584\) 0 0
\(585\) −9403.87 475.065i −0.664619 0.0335753i
\(586\) 0 0
\(587\) −5948.44 5948.44i −0.418259 0.418259i 0.466344 0.884603i \(-0.345571\pi\)
−0.884603 + 0.466344i \(0.845571\pi\)
\(588\) 0 0
\(589\) 5137.56 5137.56i 0.359405 0.359405i
\(590\) 0 0
\(591\) 5.86833 232.474i 0.000408445 0.0161806i
\(592\) 0 0
\(593\) 13100.7i 0.907222i −0.891200 0.453611i \(-0.850136\pi\)
0.891200 0.453611i \(-0.149864\pi\)
\(594\) 0 0
\(595\) −2424.94 2424.94i −0.167081 0.167081i
\(596\) 0 0
\(597\) 1012.25 962.403i 0.0693946 0.0659774i
\(598\) 0 0
\(599\) 16819.3i 1.14728i 0.819109 + 0.573638i \(0.194468\pi\)
−0.819109 + 0.573638i \(0.805532\pi\)
\(600\) 0 0
\(601\) 15871.2i 1.07720i 0.842561 + 0.538601i \(0.181047\pi\)
−0.842561 + 0.538601i \(0.818953\pi\)
\(602\) 0 0
\(603\) 1033.40 934.007i 0.0697896 0.0630774i
\(604\) 0 0
\(605\) 2065.40 + 2065.40i 0.138794 + 0.138794i
\(606\) 0 0
\(607\) 7884.67i 0.527231i 0.964628 + 0.263615i \(0.0849149\pi\)
−0.964628 + 0.263615i \(0.915085\pi\)
\(608\) 0 0
\(609\) 5583.75 + 140.950i 0.371535 + 0.00937864i
\(610\) 0 0
\(611\) 6925.23 6925.23i 0.458535 0.458535i
\(612\) 0 0
\(613\) −5659.45 5659.45i −0.372892 0.372892i 0.495637 0.868530i \(-0.334934\pi\)
−0.868530 + 0.495637i \(0.834934\pi\)
\(614\) 0 0
\(615\) −43.0237 + 1704.39i −0.00282095 + 0.111752i
\(616\) 0 0
\(617\) 20422.8 1.33257 0.666283 0.745699i \(-0.267884\pi\)
0.666283 + 0.745699i \(0.267884\pi\)
\(618\) 0 0
\(619\) −1382.80 + 1382.80i −0.0897888 + 0.0897888i −0.750575 0.660786i \(-0.770223\pi\)
0.660786 + 0.750575i \(0.270223\pi\)
\(620\) 0 0
\(621\) −20.5614 + 17.6619i −0.00132867 + 0.00114130i
\(622\) 0 0
\(623\) 3828.96 0.246235
\(624\) 0 0
\(625\) −927.672 −0.0593710
\(626\) 0 0
\(627\) 6096.82 + 6412.60i 0.388331 + 0.408444i
\(628\) 0 0
\(629\) −21440.6 + 21440.6i −1.35913 + 1.35913i
\(630\) 0 0
\(631\) 21039.0 1.32734 0.663669 0.748026i \(-0.268998\pi\)
0.663669 + 0.748026i \(0.268998\pi\)
\(632\) 0 0
\(633\) 6736.82 + 170.057i 0.423009 + 0.0106780i
\(634\) 0 0
\(635\) −12091.6 12091.6i −0.755656 0.755656i
\(636\) 0 0
\(637\) −11875.7 + 11875.7i −0.738669 + 0.738669i
\(638\) 0 0
\(639\) −17197.1 868.766i −1.06465 0.0537838i
\(640\) 0 0
\(641\) 13567.3i 0.835997i 0.908448 + 0.417999i \(0.137268\pi\)
−0.908448 + 0.417999i \(0.862732\pi\)
\(642\) 0 0
\(643\) 5070.72 + 5070.72i 0.310995 + 0.310995i 0.845295 0.534300i \(-0.179425\pi\)
−0.534300 + 0.845295i \(0.679425\pi\)
\(644\) 0 0
\(645\) 11355.4 + 11943.5i 0.693204 + 0.729107i
\(646\) 0 0
\(647\) 4134.58i 0.251232i −0.992079 0.125616i \(-0.959909\pi\)
0.992079 0.125616i \(-0.0400907\pi\)
\(648\) 0 0
\(649\) 18000.5i 1.08872i
\(650\) 0 0
\(651\) 3004.39 + 3159.99i 0.180877 + 0.190246i
\(652\) 0 0
\(653\) −2132.91 2132.91i −0.127821 0.127821i 0.640302 0.768123i \(-0.278809\pi\)
−0.768123 + 0.640302i \(0.778809\pi\)
\(654\) 0 0
\(655\) 11711.8i 0.698655i
\(656\) 0 0
\(657\) −2437.43 123.134i −0.144738 0.00731190i
\(658\) 0 0
\(659\) −5500.01 + 5500.01i −0.325114 + 0.325114i −0.850725 0.525611i \(-0.823837\pi\)
0.525611 + 0.850725i \(0.323837\pi\)
\(660\) 0 0
\(661\) 4321.74 + 4321.74i 0.254306 + 0.254306i 0.822733 0.568428i \(-0.192448\pi\)
−0.568428 + 0.822733i \(0.692448\pi\)
\(662\) 0 0
\(663\) −29879.0 754.233i −1.75023 0.0441809i
\(664\) 0 0
\(665\) 1262.38 0.0736136
\(666\) 0 0
\(667\) −31.4059 + 31.4059i −0.00182315 + 0.00182315i
\(668\) 0 0
\(669\) 1189.31 + 1250.91i 0.0687314 + 0.0722912i
\(670\) 0 0
\(671\) 29814.0 1.71529
\(672\) 0 0
\(673\) −24564.4 −1.40696 −0.703482 0.710713i \(-0.748372\pi\)
−0.703482 + 0.710713i \(0.748372\pi\)
\(674\) 0 0
\(675\) −8570.82 + 7362.18i −0.488728 + 0.419808i
\(676\) 0 0
\(677\) 14002.2 14002.2i 0.794904 0.794904i −0.187383 0.982287i \(-0.560000\pi\)
0.982287 + 0.187383i \(0.0600005\pi\)
\(678\) 0 0
\(679\) −3122.35 −0.176473
\(680\) 0 0
\(681\) −222.714 + 8822.83i −0.0125322 + 0.496463i
\(682\) 0 0
\(683\) 1738.73 + 1738.73i 0.0974093 + 0.0974093i 0.754132 0.656723i \(-0.228058\pi\)
−0.656723 + 0.754132i \(0.728058\pi\)
\(684\) 0 0
\(685\) −6516.29 + 6516.29i −0.363467 + 0.363467i
\(686\) 0 0
\(687\) 21817.7 + 550.741i 1.21164 + 0.0305853i
\(688\) 0 0
\(689\) 14435.8i 0.798201i
\(690\) 0 0
\(691\) −10946.9 10946.9i −0.602664 0.602664i 0.338355 0.941019i \(-0.390130\pi\)
−0.941019 + 0.338355i \(0.890130\pi\)
\(692\) 0 0
\(693\) −3939.46 + 3560.57i −0.215942 + 0.195173i
\(694\) 0 0
\(695\) 6070.59i 0.331325i
\(696\) 0 0
\(697\) 5411.91i 0.294104i
\(698\) 0 0
\(699\) 16875.3 16044.3i 0.913137 0.868171i
\(700\) 0 0
\(701\) 18915.0 + 18915.0i 1.01913 + 1.01913i 0.999813 + 0.0193143i \(0.00614832\pi\)
0.0193143 + 0.999813i \(0.493852\pi\)
\(702\) 0 0
\(703\) 11161.6i 0.598816i
\(704\) 0 0
\(705\) −163.741 + 6486.60i −0.00874729 + 0.346524i
\(706\) 0 0
\(707\) −3713.11 + 3713.11i −0.197519 + 0.197519i
\(708\) 0 0
\(709\) 9407.92 + 9407.92i 0.498338 + 0.498338i 0.910920 0.412582i \(-0.135373\pi\)
−0.412582 + 0.910920i \(0.635373\pi\)
\(710\) 0 0
\(711\) 31593.1 + 1596.02i 1.66644 + 0.0841850i
\(712\) 0 0
\(713\) −34.6717 −0.00182113
\(714\) 0 0
\(715\) 10371.7 10371.7i 0.542489 0.542489i
\(716\) 0 0
\(717\) 8273.29 7865.89i 0.430923 0.409703i
\(718\) 0 0
\(719\) −20278.9 −1.05184 −0.525921 0.850533i \(-0.676279\pi\)
−0.525921 + 0.850533i \(0.676279\pi\)
\(720\) 0 0
\(721\) −5079.61 −0.262378
\(722\) 0 0
\(723\) 9824.58 9340.79i 0.505367 0.480481i
\(724\) 0 0
\(725\) −13091.2 + 13091.2i −0.670616 + 0.670616i
\(726\) 0 0
\(727\) 5358.43 0.273361 0.136680 0.990615i \(-0.456357\pi\)
0.136680 + 0.990615i \(0.456357\pi\)
\(728\) 0 0
\(729\) −2969.13 + 19457.8i −0.150847 + 0.988557i
\(730\) 0 0
\(731\) 36990.2 + 36990.2i 1.87159 + 1.87159i
\(732\) 0 0
\(733\) −282.297 + 282.297i −0.0142250 + 0.0142250i −0.714183 0.699959i \(-0.753202\pi\)
0.699959 + 0.714183i \(0.253202\pi\)
\(734\) 0 0
\(735\) 280.790 11123.5i 0.0140913 0.558228i
\(736\) 0 0
\(737\) 2169.88i 0.108451i
\(738\) 0 0
\(739\) −9969.28 9969.28i −0.496246 0.496246i 0.414021 0.910267i \(-0.364124\pi\)
−0.910267 + 0.414021i \(0.864124\pi\)
\(740\) 0 0
\(741\) 7973.55 7580.91i 0.395298 0.375832i
\(742\) 0 0
\(743\) 29235.1i 1.44351i 0.692147 + 0.721757i \(0.256665\pi\)
−0.692147 + 0.721757i \(0.743335\pi\)
\(744\) 0 0
\(745\) 5701.39i 0.280379i
\(746\) 0 0
\(747\) 6576.78 + 7276.63i 0.322131 + 0.356410i
\(748\) 0 0
\(749\) −2282.42 2282.42i −0.111345 0.111345i
\(750\) 0 0
\(751\) 16830.9i 0.817802i 0.912579 + 0.408901i \(0.134088\pi\)
−0.912579 + 0.408901i \(0.865912\pi\)
\(752\) 0 0
\(753\) 8337.51 + 210.463i 0.403500 + 0.0101855i
\(754\) 0 0
\(755\) −6453.57 + 6453.57i −0.311086 + 0.311086i
\(756\) 0 0
\(757\) −15563.2 15563.2i −0.747231 0.747231i 0.226728 0.973958i \(-0.427197\pi\)
−0.973958 + 0.226728i \(0.927197\pi\)
\(758\) 0 0
\(759\) 1.06553 42.2110i 5.09568e−5 0.00201866i
\(760\) 0 0
\(761\) −4967.50 −0.236625 −0.118313 0.992976i \(-0.537749\pi\)
−0.118313 + 0.992976i \(0.537749\pi\)
\(762\) 0 0
\(763\) 615.531 615.531i 0.0292054 0.0292054i
\(764\) 0 0
\(765\) 14690.8 13277.9i 0.694310 0.627533i
\(766\) 0 0
\(767\) −22382.1 −1.05368
\(768\) 0 0
\(769\) −31721.3 −1.48752 −0.743758 0.668449i \(-0.766959\pi\)
−0.743758 + 0.668449i \(0.766959\pi\)
\(770\) 0 0
\(771\) −7087.11 7454.18i −0.331046 0.348191i
\(772\) 0 0
\(773\) 21018.6 21018.6i 0.977989 0.977989i −0.0217738 0.999763i \(-0.506931\pi\)
0.999763 + 0.0217738i \(0.00693135\pi\)
\(774\) 0 0
\(775\) −14452.5 −0.669872
\(776\) 0 0
\(777\) 6696.21 + 169.032i 0.309170 + 0.00780436i
\(778\) 0 0
\(779\) −1408.67 1408.67i −0.0647893 0.0647893i
\(780\) 0 0
\(781\) 18967.0 18967.0i 0.869006 0.869006i
\(782\) 0 0
\(783\) −2439.56 + 32159.7i −0.111345 + 1.46781i
\(784\) 0 0
\(785\) 14720.8i 0.669309i
\(786\) 0 0
\(787\) −15691.0 15691.0i −0.710703 0.710703i 0.255979 0.966682i \(-0.417602\pi\)
−0.966682 + 0.255979i \(0.917602\pi\)
\(788\) 0 0
\(789\) 19671.9 + 20690.7i 0.887625 + 0.933598i
\(790\) 0 0
\(791\) 5623.53i 0.252781i
\(792\) 0 0
\(793\) 37071.3i 1.66008i
\(794\) 0 0
\(795\) −6590.08 6931.40i −0.293995 0.309222i
\(796\) 0 0
\(797\) 392.159 + 392.159i 0.0174291 + 0.0174291i 0.715768 0.698339i \(-0.246077\pi\)
−0.698339 + 0.715768i \(0.746077\pi\)
\(798\) 0 0
\(799\) 20596.8i 0.911967i
\(800\) 0 0
\(801\) −1115.50 + 22081.2i −0.0492062 + 0.974032i
\(802\) 0 0
\(803\) 2688.28 2688.28i 0.118141 0.118141i
\(804\) 0 0
\(805\) −4.25970 4.25970i −0.000186503 0.000186503i
\(806\) 0 0
\(807\) 29142.6 + 735.644i 1.27121 + 0.0320891i
\(808\) 0 0
\(809\) −1365.11 −0.0593259 −0.0296629 0.999560i \(-0.509443\pi\)
−0.0296629 + 0.999560i \(0.509443\pi\)
\(810\) 0 0
\(811\) 19620.1 19620.1i 0.849512 0.849512i −0.140560 0.990072i \(-0.544890\pi\)
0.990072 + 0.140560i \(0.0448903\pi\)
\(812\) 0 0
\(813\) 9521.38 + 10014.5i 0.410737 + 0.432011i
\(814\) 0 0
\(815\) 19184.4 0.824539
\(816\) 0 0
\(817\) −19256.4 −0.824598
\(818\) 0 0
\(819\) 4427.29 + 4898.40i 0.188891 + 0.208991i
\(820\) 0 0
\(821\) 21308.6 21308.6i 0.905818 0.905818i −0.0901139 0.995931i \(-0.528723\pi\)
0.995931 + 0.0901139i \(0.0287231\pi\)
\(822\) 0 0
\(823\) −42077.4 −1.78217 −0.891086 0.453835i \(-0.850056\pi\)
−0.891086 + 0.453835i \(0.850056\pi\)
\(824\) 0 0
\(825\) 444.155 17595.2i 0.0187436 0.742530i
\(826\) 0 0
\(827\) 3135.69 + 3135.69i 0.131848 + 0.131848i 0.769951 0.638103i \(-0.220281\pi\)
−0.638103 + 0.769951i \(0.720281\pi\)
\(828\) 0 0
\(829\) 12487.8 12487.8i 0.523184 0.523184i −0.395348 0.918532i \(-0.629376\pi\)
0.918532 + 0.395348i \(0.129376\pi\)
\(830\) 0 0
\(831\) −25553.8 645.051i −1.06673 0.0269273i
\(832\) 0 0
\(833\) 35320.3i 1.46912i
\(834\) 0 0
\(835\) 6881.41 + 6881.41i 0.285199 + 0.285199i
\(836\) 0 0
\(837\) −19098.6 + 16405.3i −0.788701 + 0.677480i
\(838\) 0 0
\(839\) 39451.5i 1.62338i −0.584087 0.811691i \(-0.698547\pi\)
0.584087 0.811691i \(-0.301453\pi\)
\(840\) 0 0
\(841\) 28458.6i 1.16686i
\(842\) 0 0
\(843\) 2090.30 1987.36i 0.0854017 0.0811963i
\(844\) 0 0
\(845\) −2537.18 2537.18i −0.103292 0.103292i
\(846\) 0 0
\(847\) 2048.23i 0.0830908i
\(848\) 0 0
\(849\) −495.743 + 19638.9i −0.0200399 + 0.793882i
\(850\) 0 0
\(851\) −37.6629 + 37.6629i −0.00151712 + 0.00151712i
\(852\) 0 0
\(853\) 28218.6 + 28218.6i 1.13269 + 1.13269i 0.989728 + 0.142966i \(0.0456638\pi\)
0.142966 + 0.989728i \(0.454336\pi\)
\(854\) 0 0
\(855\) −367.771 + 7280.00i −0.0147105 + 0.291194i
\(856\) 0 0
\(857\) −27268.2 −1.08689 −0.543444 0.839446i \(-0.682880\pi\)
−0.543444 + 0.839446i \(0.682880\pi\)
\(858\) 0 0
\(859\) −20537.8 + 20537.8i −0.815764 + 0.815764i −0.985491 0.169727i \(-0.945711\pi\)
0.169727 + 0.985491i \(0.445711\pi\)
\(860\) 0 0
\(861\) 866.442 823.776i 0.0342953 0.0326065i
\(862\) 0 0
\(863\) 27756.3 1.09483 0.547414 0.836862i \(-0.315612\pi\)
0.547414 + 0.836862i \(0.315612\pi\)
\(864\) 0 0
\(865\) 8180.95 0.321573
\(866\) 0 0
\(867\) 27052.9 25720.7i 1.05970 1.00752i
\(868\) 0 0
\(869\) −34844.6 + 34844.6i −1.36021 + 1.36021i
\(870\) 0 0
\(871\) 2698.07 0.104961
\(872\) 0 0
\(873\) 909.639 18006.2i 0.0352653 0.698074i
\(874\) 0 0
\(875\) −4531.59 4531.59i −0.175081 0.175081i
\(876\) 0 0
\(877\) 1240.18 1240.18i 0.0477512 0.0477512i −0.682828 0.730579i \(-0.739250\pi\)
0.730579 + 0.682828i \(0.239250\pi\)
\(878\) 0 0
\(879\) −970.699 + 38454.3i −0.0372479 + 1.47558i
\(880\) 0 0
\(881\) 31267.9i 1.19574i −0.801595 0.597868i \(-0.796015\pi\)
0.801595 0.597868i \(-0.203985\pi\)
\(882\) 0 0
\(883\) −26119.6 26119.6i −0.995464 0.995464i 0.00452604 0.999990i \(-0.498559\pi\)
−0.999990 + 0.00452604i \(0.998559\pi\)
\(884\) 0 0
\(885\) 10746.9 10217.6i 0.408194 0.388093i
\(886\) 0 0
\(887\) 13730.5i 0.519758i −0.965641 0.259879i \(-0.916317\pi\)
0.965641 0.259879i \(-0.0836827\pi\)
\(888\) 0 0
\(889\) 11991.1i 0.452383i
\(890\) 0 0
\(891\) −19385.7 23755.7i −0.728895 0.893205i
\(892\) 0 0
\(893\) −5361.16 5361.16i −0.200901 0.200901i
\(894\) 0 0
\(895\) 15357.7i 0.573576i
\(896\) 0 0
\(897\) −52.4859 1.32490i −0.00195368 4.93167e-5i
\(898\) 0 0
\(899\) −29171.5 + 29171.5i −1.08223 + 1.08223i
\(900\) 0 0
\(901\) −21467.3 21467.3i −0.793760 0.793760i
\(902\) 0 0
\(903\) 291.620 11552.6i 0.0107470 0.425742i
\(904\) 0 0
\(905\) −20832.3 −0.765181
\(906\) 0 0
\(907\) −9646.24 + 9646.24i −0.353140 + 0.353140i −0.861277 0.508136i \(-0.830335\pi\)
0.508136 + 0.861277i \(0.330335\pi\)
\(908\) 0 0
\(909\) −20331.3 22494.8i −0.741856 0.820798i
\(910\) 0 0
\(911\) −3435.47 −0.124942 −0.0624710 0.998047i \(-0.519898\pi\)
−0.0624710 + 0.998047i \(0.519898\pi\)
\(912\) 0 0
\(913\) −15279.2 −0.553852
\(914\) 0 0
\(915\) 16923.4 + 17799.9i 0.611444 + 0.643112i
\(916\) 0 0
\(917\) 5807.23 5807.23i 0.209129 0.209129i
\(918\) 0 0
\(919\) 4868.66 0.174758 0.0873788 0.996175i \(-0.472151\pi\)
0.0873788 + 0.996175i \(0.472151\pi\)
\(920\) 0 0
\(921\) 46063.4 + 1162.77i 1.64803 + 0.0416012i
\(922\) 0 0
\(923\) −23584.0 23584.0i −0.841035 0.841035i
\(924\) 0 0
\(925\) −15699.4 + 15699.4i −0.558047 + 0.558047i
\(926\) 0 0
\(927\) 1479.85 29293.5i 0.0524322 1.03789i
\(928\) 0 0
\(929\) 17567.8i 0.620431i −0.950666 0.310216i \(-0.899599\pi\)
0.950666 0.310216i \(-0.100401\pi\)
\(930\) 0 0
\(931\) 9193.56 + 9193.56i 0.323638 + 0.323638i
\(932\) 0 0
\(933\) 10095.5 + 10618.4i 0.354247 + 0.372595i
\(934\) 0 0
\(935\) 30847.2i 1.07894i
\(936\) 0 0
\(937\) 13154.3i 0.458625i 0.973353 + 0.229312i \(0.0736477\pi\)
−0.973353 + 0.229312i \(0.926352\pi\)
\(938\) 0 0
\(939\) 2664.69 + 2802.70i 0.0926078 + 0.0974043i
\(940\) 0 0
\(941\) 385.039 + 385.039i 0.0133389 + 0.0133389i 0.713745 0.700406i \(-0.246998\pi\)
−0.700406 + 0.713745i \(0.746998\pi\)
\(942\) 0 0
\(943\) 9.50666i 0.000328292i
\(944\) 0 0
\(945\) −4361.94 330.887i −0.150152 0.0113902i
\(946\) 0 0
\(947\) −8878.86 + 8878.86i −0.304672 + 0.304672i −0.842838 0.538167i \(-0.819117\pi\)
0.538167 + 0.842838i \(0.319117\pi\)
\(948\) 0 0
\(949\) −3342.66 3342.66i −0.114339 0.114339i
\(950\) 0 0
\(951\) −778.575 19.6535i −0.0265479 0.000670146i
\(952\) 0 0
\(953\) 28727.2 0.976457 0.488229 0.872716i \(-0.337643\pi\)
0.488229 + 0.872716i \(0.337643\pi\)
\(954\) 0 0
\(955\) 8234.87 8234.87i 0.279030 0.279030i
\(956\) 0 0
\(957\) −34618.3 36411.3i −1.16933 1.22990i
\(958\) 0 0
\(959\) 6462.11 0.217594
\(960\) 0 0
\(961\) −2413.93 −0.0810288
\(962\) 0 0
\(963\) 13827.4 12497.5i 0.462700 0.418199i
\(964\) 0 0
\(965\) 5896.96 5896.96i 0.196715 0.196715i
\(966\) 0 0
\(967\) 24789.2 0.824373 0.412186 0.911100i \(-0.364765\pi\)
0.412186 + 0.911100i \(0.364765\pi\)
\(968\) 0 0
\(969\) −583.888 + 23130.8i −0.0193573 + 0.766840i
\(970\) 0 0
\(971\) −23458.4 23458.4i −0.775299 0.775299i 0.203728 0.979028i \(-0.434694\pi\)
−0.979028 + 0.203728i \(0.934694\pi\)
\(972\) 0 0
\(973\) −3010.06 + 3010.06i −0.0991758 + 0.0991758i
\(974\) 0 0
\(975\) −21878.2 552.271i −0.718630 0.0181403i
\(976\) 0 0
\(977\) 28932.0i 0.947407i −0.880684 0.473704i \(-0.842917\pi\)
0.880684 0.473704i \(-0.157083\pi\)
\(978\) 0 0
\(979\) −24353.7 24353.7i −0.795043 0.795043i
\(980\) 0 0
\(981\) 3370.37 + 3729.01i 0.109692 + 0.121364i
\(982\) 0 0
\(983\) 28504.9i 0.924889i −0.886648 0.462445i \(-0.846972\pi\)
0.886648 0.462445i \(-0.153028\pi\)
\(984\) 0 0
\(985\) 298.430i 0.00965357i
\(986\) 0 0
\(987\) 3297.53 3135.15i 0.106344 0.101107i
\(988\) 0 0
\(989\) 64.9776 + 64.9776i 0.00208915 + 0.00208915i
\(990\) 0 0
\(991\) 32691.4i 1.04791i −0.851747 0.523953i \(-0.824457\pi\)
0.851747 0.523953i \(-0.175543\pi\)
\(992\) 0 0
\(993\) 467.393 18515.8i 0.0149368 0.591724i
\(994\) 0 0
\(995\) −1267.44 + 1267.44i −0.0403825 + 0.0403825i
\(996\) 0 0
\(997\) −14405.9 14405.9i −0.457613 0.457613i 0.440258 0.897871i \(-0.354887\pi\)
−0.897871 + 0.440258i \(0.854887\pi\)
\(998\) 0 0
\(999\) −2925.60 + 38567.0i −0.0926546 + 1.22143i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.k.a.143.6 44
3.2 odd 2 inner 192.4.k.a.143.17 44
4.3 odd 2 48.4.k.a.11.4 44
8.3 odd 2 384.4.k.b.287.6 44
8.5 even 2 384.4.k.a.287.17 44
12.11 even 2 48.4.k.a.11.19 yes 44
16.3 odd 4 inner 192.4.k.a.47.17 44
16.5 even 4 384.4.k.b.95.17 44
16.11 odd 4 384.4.k.a.95.6 44
16.13 even 4 48.4.k.a.35.19 yes 44
24.5 odd 2 384.4.k.a.287.6 44
24.11 even 2 384.4.k.b.287.17 44
48.5 odd 4 384.4.k.b.95.6 44
48.11 even 4 384.4.k.a.95.17 44
48.29 odd 4 48.4.k.a.35.4 yes 44
48.35 even 4 inner 192.4.k.a.47.6 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.4 44 4.3 odd 2
48.4.k.a.11.19 yes 44 12.11 even 2
48.4.k.a.35.4 yes 44 48.29 odd 4
48.4.k.a.35.19 yes 44 16.13 even 4
192.4.k.a.47.6 44 48.35 even 4 inner
192.4.k.a.47.17 44 16.3 odd 4 inner
192.4.k.a.143.6 44 1.1 even 1 trivial
192.4.k.a.143.17 44 3.2 odd 2 inner
384.4.k.a.95.6 44 16.11 odd 4
384.4.k.a.95.17 44 48.11 even 4
384.4.k.a.287.6 44 24.5 odd 2
384.4.k.a.287.17 44 8.5 even 2
384.4.k.b.95.6 44 48.5 odd 4
384.4.k.b.95.17 44 16.5 even 4
384.4.k.b.287.6 44 8.3 odd 2
384.4.k.b.287.17 44 24.11 even 2