Properties

Label 3822.2.c.k.883.1
Level $3822$
Weight $2$
Character 3822.883
Analytic conductor $30.519$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3822,2,Mod(883,3822)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3822, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3822.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,-6,0,0,0,0,6,0,0,-6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.9144576.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.1
Root \(-2.60168i\) of defining polynomial
Character \(\chi\) \(=\) 3822.883
Dual form 3822.2.c.k.883.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} -2.60168i q^{5} -1.00000i q^{6} +1.00000i q^{8} +1.00000 q^{9} -2.60168 q^{10} +3.60168i q^{11} -1.00000 q^{12} +(3.60168 - 0.167055i) q^{13} -2.60168i q^{15} +1.00000 q^{16} -2.83294 q^{17} -1.00000i q^{18} +1.33411i q^{19} +2.60168i q^{20} +3.60168 q^{22} +2.93579 q^{23} +1.00000i q^{24} -1.76873 q^{25} +(-0.167055 - 3.60168i) q^{26} +1.00000 q^{27} +8.97209 q^{29} -2.60168 q^{30} -4.00000i q^{31} -1.00000i q^{32} +3.60168i q^{33} +2.83294i q^{34} -1.00000 q^{36} +0.167055i q^{37} +1.33411 q^{38} +(3.60168 - 0.167055i) q^{39} +2.60168 q^{40} -3.03630i q^{41} +2.33411 q^{43} -3.60168i q^{44} -2.60168i q^{45} -2.93579i q^{46} +9.74083i q^{47} +1.00000 q^{48} +1.76873i q^{50} -2.83294 q^{51} +(-3.60168 + 0.167055i) q^{52} +3.00000 q^{53} -1.00000i q^{54} +9.37041 q^{55} +1.33411i q^{57} -8.97209i q^{58} -11.5738i q^{59} +2.60168i q^{60} +4.03630 q^{61} -4.00000 q^{62} -1.00000 q^{64} +(-0.434624 - 9.37041i) q^{65} +3.60168 q^{66} +11.7408i q^{67} +2.83294 q^{68} +2.93579 q^{69} -5.76873i q^{71} +1.00000i q^{72} -11.4709i q^{73} +0.167055 q^{74} -1.76873 q^{75} -1.33411i q^{76} +(-0.167055 - 3.60168i) q^{78} +6.74083 q^{79} -2.60168i q^{80} +1.00000 q^{81} -3.03630 q^{82} -8.10051i q^{83} +7.37041i q^{85} -2.33411i q^{86} +8.97209 q^{87} -3.60168 q^{88} +8.16706i q^{89} -2.60168 q^{90} -2.93579 q^{92} -4.00000i q^{93} +9.74083 q^{94} +3.47093 q^{95} -1.00000i q^{96} +0.139148i q^{97} +3.60168i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{4} + 6 q^{9} - 6 q^{12} + 6 q^{13} + 6 q^{16} - 18 q^{17} + 6 q^{22} + 6 q^{25} + 6 q^{27} + 6 q^{29} - 6 q^{36} + 6 q^{38} + 6 q^{39} + 12 q^{43} + 6 q^{48} - 18 q^{51} - 6 q^{52}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(2549\) \(3433\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 2.60168i 1.16351i −0.813365 0.581753i \(-0.802367\pi\)
0.813365 0.581753i \(-0.197633\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) −2.60168 −0.822723
\(11\) 3.60168i 1.08595i 0.839750 + 0.542974i \(0.182702\pi\)
−0.839750 + 0.542974i \(0.817298\pi\)
\(12\) −1.00000 −0.288675
\(13\) 3.60168 0.167055i 0.998926 0.0463328i
\(14\) 0 0
\(15\) 2.60168i 0.671751i
\(16\) 1.00000 0.250000
\(17\) −2.83294 −0.687090 −0.343545 0.939136i \(-0.611628\pi\)
−0.343545 + 0.939136i \(0.611628\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.33411i 0.306066i 0.988221 + 0.153033i \(0.0489041\pi\)
−0.988221 + 0.153033i \(0.951096\pi\)
\(20\) 2.60168i 0.581753i
\(21\) 0 0
\(22\) 3.60168 0.767881
\(23\) 2.93579 0.612154 0.306077 0.952007i \(-0.400983\pi\)
0.306077 + 0.952007i \(0.400983\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.76873 −0.353747
\(26\) −0.167055 3.60168i −0.0327622 0.706347i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.97209 1.66608 0.833038 0.553216i \(-0.186600\pi\)
0.833038 + 0.553216i \(0.186600\pi\)
\(30\) −2.60168 −0.474999
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 3.60168i 0.626972i
\(34\) 2.83294i 0.485846i
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 0.167055i 0.0274637i 0.999906 + 0.0137319i \(0.00437112\pi\)
−0.999906 + 0.0137319i \(0.995629\pi\)
\(38\) 1.33411 0.216421
\(39\) 3.60168 0.167055i 0.576730 0.0267502i
\(40\) 2.60168 0.411362
\(41\) 3.03630i 0.474191i −0.971486 0.237095i \(-0.923805\pi\)
0.971486 0.237095i \(-0.0761954\pi\)
\(42\) 0 0
\(43\) 2.33411 0.355948 0.177974 0.984035i \(-0.443046\pi\)
0.177974 + 0.984035i \(0.443046\pi\)
\(44\) 3.60168i 0.542974i
\(45\) 2.60168i 0.387835i
\(46\) 2.93579i 0.432859i
\(47\) 9.74083i 1.42085i 0.703775 + 0.710423i \(0.251496\pi\)
−0.703775 + 0.710423i \(0.748504\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) 1.76873i 0.250137i
\(51\) −2.83294 −0.396692
\(52\) −3.60168 + 0.167055i −0.499463 + 0.0231664i
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 9.37041 1.26351
\(56\) 0 0
\(57\) 1.33411i 0.176707i
\(58\) 8.97209i 1.17809i
\(59\) 11.5738i 1.50678i −0.657576 0.753388i \(-0.728418\pi\)
0.657576 0.753388i \(-0.271582\pi\)
\(60\) 2.60168i 0.335875i
\(61\) 4.03630 0.516796 0.258398 0.966039i \(-0.416805\pi\)
0.258398 + 0.966039i \(0.416805\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −0.434624 9.37041i −0.0539085 1.16226i
\(66\) 3.60168 0.443336
\(67\) 11.7408i 1.43437i 0.696883 + 0.717185i \(0.254570\pi\)
−0.696883 + 0.717185i \(0.745430\pi\)
\(68\) 2.83294 0.343545
\(69\) 2.93579 0.353428
\(70\) 0 0
\(71\) 5.76873i 0.684623i −0.939587 0.342311i \(-0.888790\pi\)
0.939587 0.342311i \(-0.111210\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 11.4709i 1.34257i −0.741199 0.671285i \(-0.765743\pi\)
0.741199 0.671285i \(-0.234257\pi\)
\(74\) 0.167055 0.0194198
\(75\) −1.76873 −0.204236
\(76\) 1.33411i 0.153033i
\(77\) 0 0
\(78\) −0.167055 3.60168i −0.0189153 0.407810i
\(79\) 6.74083 0.758402 0.379201 0.925314i \(-0.376199\pi\)
0.379201 + 0.925314i \(0.376199\pi\)
\(80\) 2.60168i 0.290877i
\(81\) 1.00000 0.111111
\(82\) −3.03630 −0.335304
\(83\) 8.10051i 0.889147i −0.895742 0.444573i \(-0.853355\pi\)
0.895742 0.444573i \(-0.146645\pi\)
\(84\) 0 0
\(85\) 7.37041i 0.799434i
\(86\) 2.33411i 0.251694i
\(87\) 8.97209 0.961909
\(88\) −3.60168 −0.383940
\(89\) 8.16706i 0.865706i 0.901464 + 0.432853i \(0.142493\pi\)
−0.901464 + 0.432853i \(0.857507\pi\)
\(90\) −2.60168 −0.274241
\(91\) 0 0
\(92\) −2.93579 −0.306077
\(93\) 4.00000i 0.414781i
\(94\) 9.74083 1.00469
\(95\) 3.47093 0.356110
\(96\) 1.00000i 0.102062i
\(97\) 0.139148i 0.0141283i 0.999975 + 0.00706416i \(0.00224861\pi\)
−0.999975 + 0.00706416i \(0.997751\pi\)
\(98\) 0 0
\(99\) 3.60168i 0.361982i
\(100\) 1.76873 0.176873
\(101\) 3.56538 0.354768 0.177384 0.984142i \(-0.443237\pi\)
0.177384 + 0.984142i \(0.443237\pi\)
\(102\) 2.83294i 0.280503i
\(103\) 19.0749 1.87951 0.939755 0.341850i \(-0.111053\pi\)
0.939755 + 0.341850i \(0.111053\pi\)
\(104\) 0.167055 + 3.60168i 0.0163811 + 0.353174i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) −8.07261 −0.780408 −0.390204 0.920728i \(-0.627596\pi\)
−0.390204 + 0.920728i \(0.627596\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 12.8692i 1.23265i −0.787492 0.616325i \(-0.788621\pi\)
0.787492 0.616325i \(-0.211379\pi\)
\(110\) 9.37041i 0.893434i
\(111\) 0.167055i 0.0158562i
\(112\) 0 0
\(113\) −19.8800 −1.87015 −0.935075 0.354449i \(-0.884668\pi\)
−0.935075 + 0.354449i \(0.884668\pi\)
\(114\) 1.33411 0.124951
\(115\) 7.63798i 0.712246i
\(116\) −8.97209 −0.833038
\(117\) 3.60168 0.167055i 0.332975 0.0154443i
\(118\) −11.5738 −1.06545
\(119\) 0 0
\(120\) 2.60168 0.237500
\(121\) −1.97209 −0.179281
\(122\) 4.03630i 0.365430i
\(123\) 3.03630i 0.273774i
\(124\) 4.00000i 0.359211i
\(125\) 8.40672i 0.751920i
\(126\) 0 0
\(127\) −10.0386 −0.890785 −0.445392 0.895335i \(-0.646936\pi\)
−0.445392 + 0.895335i \(0.646936\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 2.33411 0.205507
\(130\) −9.37041 + 0.434624i −0.821840 + 0.0381190i
\(131\) 8.11124 0.708682 0.354341 0.935116i \(-0.384705\pi\)
0.354341 + 0.935116i \(0.384705\pi\)
\(132\) 3.60168i 0.313486i
\(133\) 0 0
\(134\) 11.7408 1.01425
\(135\) 2.60168i 0.223917i
\(136\) 2.83294i 0.242923i
\(137\) 4.62959i 0.395532i 0.980249 + 0.197766i \(0.0633687\pi\)
−0.980249 + 0.197766i \(0.936631\pi\)
\(138\) 2.93579i 0.249911i
\(139\) −0.935789 −0.0793726 −0.0396863 0.999212i \(-0.512636\pi\)
−0.0396863 + 0.999212i \(0.512636\pi\)
\(140\) 0 0
\(141\) 9.74083i 0.820326i
\(142\) −5.76873 −0.484101
\(143\) 0.601679 + 12.9721i 0.0503149 + 1.08478i
\(144\) 1.00000 0.0833333
\(145\) 23.3425i 1.93849i
\(146\) −11.4709 −0.949341
\(147\) 0 0
\(148\) 0.167055i 0.0137319i
\(149\) 8.13915i 0.666785i −0.942788 0.333392i \(-0.891807\pi\)
0.942788 0.333392i \(-0.108193\pi\)
\(150\) 1.76873i 0.144417i
\(151\) 20.0084i 1.62826i 0.580683 + 0.814130i \(0.302786\pi\)
−0.580683 + 0.814130i \(0.697214\pi\)
\(152\) −1.33411 −0.108211
\(153\) −2.83294 −0.229030
\(154\) 0 0
\(155\) −10.4067 −0.835888
\(156\) −3.60168 + 0.167055i −0.288365 + 0.0133751i
\(157\) 21.3448 1.70350 0.851752 0.523946i \(-0.175540\pi\)
0.851752 + 0.523946i \(0.175540\pi\)
\(158\) 6.74083i 0.536271i
\(159\) 3.00000 0.237915
\(160\) −2.60168 −0.205681
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 1.02791i 0.0805119i 0.999189 + 0.0402560i \(0.0128173\pi\)
−0.999189 + 0.0402560i \(0.987183\pi\)
\(164\) 3.03630i 0.237095i
\(165\) 9.37041 0.729486
\(166\) −8.10051 −0.628722
\(167\) 5.96976i 0.461954i −0.972959 0.230977i \(-0.925808\pi\)
0.972959 0.230977i \(-0.0741922\pi\)
\(168\) 0 0
\(169\) 12.9442 1.20336i 0.995707 0.0925660i
\(170\) 7.37041 0.565285
\(171\) 1.33411i 0.102022i
\(172\) −2.33411 −0.177974
\(173\) −16.5822 −1.26072 −0.630359 0.776303i \(-0.717092\pi\)
−0.630359 + 0.776303i \(0.717092\pi\)
\(174\) 8.97209i 0.680173i
\(175\) 0 0
\(176\) 3.60168i 0.271487i
\(177\) 11.5738i 0.869938i
\(178\) 8.16706 0.612147
\(179\) −18.7408 −1.40076 −0.700378 0.713773i \(-0.746985\pi\)
−0.700378 + 0.713773i \(0.746985\pi\)
\(180\) 2.60168i 0.193918i
\(181\) −0.426228 −0.0316813 −0.0158406 0.999875i \(-0.505042\pi\)
−0.0158406 + 0.999875i \(0.505042\pi\)
\(182\) 0 0
\(183\) 4.03630 0.298372
\(184\) 2.93579i 0.216429i
\(185\) 0.434624 0.0319542
\(186\) −4.00000 −0.293294
\(187\) 10.2034i 0.746143i
\(188\) 9.74083i 0.710423i
\(189\) 0 0
\(190\) 3.47093i 0.251808i
\(191\) −8.86925 −0.641756 −0.320878 0.947120i \(-0.603978\pi\)
−0.320878 + 0.947120i \(0.603978\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 7.00840i 0.504475i −0.967665 0.252238i \(-0.918834\pi\)
0.967665 0.252238i \(-0.0811665\pi\)
\(194\) 0.139148 0.00999023
\(195\) −0.434624 9.37041i −0.0311241 0.671029i
\(196\) 0 0
\(197\) 17.8050i 1.26856i 0.773105 + 0.634278i \(0.218703\pi\)
−0.773105 + 0.634278i \(0.781297\pi\)
\(198\) 3.60168 0.255960
\(199\) −27.1089 −1.92170 −0.960850 0.277070i \(-0.910637\pi\)
−0.960850 + 0.277070i \(0.910637\pi\)
\(200\) 1.76873i 0.125068i
\(201\) 11.7408i 0.828134i
\(202\) 3.56538i 0.250859i
\(203\) 0 0
\(204\) 2.83294 0.198346
\(205\) −7.89949 −0.551724
\(206\) 19.0749i 1.32901i
\(207\) 2.93579 0.204051
\(208\) 3.60168 0.167055i 0.249732 0.0115832i
\(209\) −4.80504 −0.332371
\(210\) 0 0
\(211\) 22.6743 1.56096 0.780481 0.625179i \(-0.214974\pi\)
0.780481 + 0.625179i \(0.214974\pi\)
\(212\) −3.00000 −0.206041
\(213\) 5.76873i 0.395267i
\(214\) 8.07261i 0.551832i
\(215\) 6.07261i 0.414148i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) −12.8692 −0.871615
\(219\) 11.4709i 0.775133i
\(220\) −9.37041 −0.631753
\(221\) −10.2034 + 0.473258i −0.686352 + 0.0318348i
\(222\) 0.167055 0.0112120
\(223\) 9.19496i 0.615740i 0.951428 + 0.307870i \(0.0996162\pi\)
−0.951428 + 0.307870i \(0.900384\pi\)
\(224\) 0 0
\(225\) −1.76873 −0.117916
\(226\) 19.8800i 1.32240i
\(227\) 13.5375i 0.898513i −0.893403 0.449257i \(-0.851689\pi\)
0.893403 0.449257i \(-0.148311\pi\)
\(228\) 1.33411i 0.0883536i
\(229\) 18.4067i 1.21635i −0.793803 0.608175i \(-0.791902\pi\)
0.793803 0.608175i \(-0.208098\pi\)
\(230\) −7.63798 −0.503634
\(231\) 0 0
\(232\) 8.97209i 0.589047i
\(233\) −11.7301 −0.768464 −0.384232 0.923236i \(-0.625534\pi\)
−0.384232 + 0.923236i \(0.625534\pi\)
\(234\) −0.167055 3.60168i −0.0109207 0.235449i
\(235\) 25.3425 1.65316
\(236\) 11.5738i 0.753388i
\(237\) 6.74083 0.437864
\(238\) 0 0
\(239\) 11.1731i 0.722729i 0.932425 + 0.361365i \(0.117689\pi\)
−0.932425 + 0.361365i \(0.882311\pi\)
\(240\) 2.60168i 0.167938i
\(241\) 14.7408i 0.949540i −0.880110 0.474770i \(-0.842531\pi\)
0.880110 0.474770i \(-0.157469\pi\)
\(242\) 1.97209i 0.126771i
\(243\) 1.00000 0.0641500
\(244\) −4.03630 −0.258398
\(245\) 0 0
\(246\) −3.03630 −0.193588
\(247\) 0.222870 + 4.80504i 0.0141809 + 0.305737i
\(248\) 4.00000 0.254000
\(249\) 8.10051i 0.513349i
\(250\) −8.40672 −0.531687
\(251\) 22.9465 1.44837 0.724186 0.689605i \(-0.242216\pi\)
0.724186 + 0.689605i \(0.242216\pi\)
\(252\) 0 0
\(253\) 10.5738i 0.664767i
\(254\) 10.0386i 0.629880i
\(255\) 7.37041i 0.461553i
\(256\) 1.00000 0.0625000
\(257\) −0.740827 −0.0462115 −0.0231058 0.999733i \(-0.507355\pi\)
−0.0231058 + 0.999733i \(0.507355\pi\)
\(258\) 2.33411i 0.145315i
\(259\) 0 0
\(260\) 0.434624 + 9.37041i 0.0269542 + 0.581128i
\(261\) 8.97209 0.555359
\(262\) 8.11124i 0.501114i
\(263\) −21.0084 −1.29543 −0.647717 0.761881i \(-0.724276\pi\)
−0.647717 + 0.761881i \(0.724276\pi\)
\(264\) −3.60168 −0.221668
\(265\) 7.80504i 0.479460i
\(266\) 0 0
\(267\) 8.16706i 0.499816i
\(268\) 11.7408i 0.717185i
\(269\) −31.1173 −1.89726 −0.948628 0.316394i \(-0.897528\pi\)
−0.948628 + 0.316394i \(0.897528\pi\)
\(270\) −2.60168 −0.158333
\(271\) 2.00840i 0.122001i −0.998138 0.0610007i \(-0.980571\pi\)
0.998138 0.0610007i \(-0.0194292\pi\)
\(272\) −2.83294 −0.171773
\(273\) 0 0
\(274\) 4.62959 0.279684
\(275\) 6.37041i 0.384150i
\(276\) −2.93579 −0.176714
\(277\) 15.3681 0.923379 0.461689 0.887042i \(-0.347244\pi\)
0.461689 + 0.887042i \(0.347244\pi\)
\(278\) 0.935789i 0.0561249i
\(279\) 4.00000i 0.239474i
\(280\) 0 0
\(281\) 16.6682i 0.994343i −0.867652 0.497171i \(-0.834372\pi\)
0.867652 0.497171i \(-0.165628\pi\)
\(282\) 9.74083 0.580058
\(283\) 17.8050 1.05840 0.529200 0.848497i \(-0.322492\pi\)
0.529200 + 0.848497i \(0.322492\pi\)
\(284\) 5.76873i 0.342311i
\(285\) 3.47093 0.205600
\(286\) 12.9721 0.601679i 0.767056 0.0355780i
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) −8.97442 −0.527907
\(290\) −23.3425 −1.37072
\(291\) 0.139148i 0.00815699i
\(292\) 11.4709i 0.671285i
\(293\) 26.4733i 1.54658i −0.634050 0.773292i \(-0.718609\pi\)
0.634050 0.773292i \(-0.281391\pi\)
\(294\) 0 0
\(295\) −30.1112 −1.75314
\(296\) −0.167055 −0.00970988
\(297\) 3.60168i 0.208991i
\(298\) −8.13915 −0.471488
\(299\) 10.5738 0.490439i 0.611497 0.0283628i
\(300\) 1.76873 0.102118
\(301\) 0 0
\(302\) 20.0084 1.15135
\(303\) 3.56538 0.204826
\(304\) 1.33411i 0.0765165i
\(305\) 10.5012i 0.601295i
\(306\) 2.83294i 0.161949i
\(307\) 23.2783i 1.32856i 0.747483 + 0.664281i \(0.231262\pi\)
−0.747483 + 0.664281i \(0.768738\pi\)
\(308\) 0 0
\(309\) 19.0749 1.08514
\(310\) 10.4067i 0.591062i
\(311\) 16.5459 0.938230 0.469115 0.883137i \(-0.344573\pi\)
0.469115 + 0.883137i \(0.344573\pi\)
\(312\) 0.167055 + 3.60168i 0.00945764 + 0.203905i
\(313\) −10.0279 −0.566811 −0.283405 0.959000i \(-0.591464\pi\)
−0.283405 + 0.959000i \(0.591464\pi\)
\(314\) 21.3448i 1.20456i
\(315\) 0 0
\(316\) −6.74083 −0.379201
\(317\) 21.4090i 1.20245i −0.799079 0.601226i \(-0.794679\pi\)
0.799079 0.601226i \(-0.205321\pi\)
\(318\) 3.00000i 0.168232i
\(319\) 32.3146i 1.80927i
\(320\) 2.60168i 0.145438i
\(321\) −8.07261 −0.450569
\(322\) 0 0
\(323\) 3.77946i 0.210295i
\(324\) −1.00000 −0.0555556
\(325\) −6.37041 + 0.295476i −0.353367 + 0.0163901i
\(326\) 1.02791 0.0569305
\(327\) 12.8692i 0.711671i
\(328\) 3.03630 0.167652
\(329\) 0 0
\(330\) 9.37041i 0.515824i
\(331\) 35.8605i 1.97107i 0.169474 + 0.985535i \(0.445793\pi\)
−0.169474 + 0.985535i \(0.554207\pi\)
\(332\) 8.10051i 0.444573i
\(333\) 0.167055i 0.00915457i
\(334\) −5.96976 −0.326651
\(335\) 30.5459 1.66890
\(336\) 0 0
\(337\) 6.73850 0.367069 0.183535 0.983013i \(-0.441246\pi\)
0.183535 + 0.983013i \(0.441246\pi\)
\(338\) −1.20336 12.9442i −0.0654541 0.704071i
\(339\) −19.8800 −1.07973
\(340\) 7.37041i 0.399717i
\(341\) 14.4067 0.780167
\(342\) 1.33411 0.0721404
\(343\) 0 0
\(344\) 2.33411i 0.125847i
\(345\) 7.63798i 0.411215i
\(346\) 16.5822i 0.891463i
\(347\) 34.5738 1.85602 0.928009 0.372559i \(-0.121519\pi\)
0.928009 + 0.372559i \(0.121519\pi\)
\(348\) −8.97209 −0.480955
\(349\) 21.7771i 1.16570i 0.812579 + 0.582852i \(0.198063\pi\)
−0.812579 + 0.582852i \(0.801937\pi\)
\(350\) 0 0
\(351\) 3.60168 0.167055i 0.192243 0.00891675i
\(352\) 3.60168 0.191970
\(353\) 20.3509i 1.08317i 0.840646 + 0.541585i \(0.182175\pi\)
−0.840646 + 0.541585i \(0.817825\pi\)
\(354\) −11.5738 −0.615139
\(355\) −15.0084 −0.796563
\(356\) 8.16706i 0.432853i
\(357\) 0 0
\(358\) 18.7408i 0.990483i
\(359\) 1.43229i 0.0755935i −0.999285 0.0377968i \(-0.987966\pi\)
0.999285 0.0377968i \(-0.0120340\pi\)
\(360\) 2.60168 0.137121
\(361\) 17.2201 0.906324
\(362\) 0.426228i 0.0224021i
\(363\) −1.97209 −0.103508
\(364\) 0 0
\(365\) −29.8437 −1.56209
\(366\) 4.03630i 0.210981i
\(367\) 24.3509 1.27111 0.635553 0.772057i \(-0.280772\pi\)
0.635553 + 0.772057i \(0.280772\pi\)
\(368\) 2.93579 0.153039
\(369\) 3.03630i 0.158064i
\(370\) 0.434624i 0.0225950i
\(371\) 0 0
\(372\) 4.00000i 0.207390i
\(373\) 31.9526 1.65444 0.827221 0.561877i \(-0.189920\pi\)
0.827221 + 0.561877i \(0.189920\pi\)
\(374\) −10.2034 −0.527603
\(375\) 8.40672i 0.434121i
\(376\) −9.74083 −0.502345
\(377\) 32.3146 1.49883i 1.66429 0.0771939i
\(378\) 0 0
\(379\) 2.79664i 0.143654i −0.997417 0.0718269i \(-0.977117\pi\)
0.997417 0.0718269i \(-0.0228829\pi\)
\(380\) −3.47093 −0.178055
\(381\) −10.0386 −0.514295
\(382\) 8.86925i 0.453790i
\(383\) 9.84367i 0.502988i −0.967859 0.251494i \(-0.919078\pi\)
0.967859 0.251494i \(-0.0809219\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0 0
\(386\) −7.00840 −0.356718
\(387\) 2.33411 0.118649
\(388\) 0.139148i 0.00706416i
\(389\) 16.3811 0.830557 0.415278 0.909694i \(-0.363684\pi\)
0.415278 + 0.909694i \(0.363684\pi\)
\(390\) −9.37041 + 0.434624i −0.474489 + 0.0220080i
\(391\) −8.31693 −0.420605
\(392\) 0 0
\(393\) 8.11124 0.409158
\(394\) 17.8050 0.897005
\(395\) 17.5375i 0.882406i
\(396\) 3.60168i 0.180991i
\(397\) 5.44302i 0.273177i 0.990628 + 0.136589i \(0.0436139\pi\)
−0.990628 + 0.136589i \(0.956386\pi\)
\(398\) 27.1089i 1.35885i
\(399\) 0 0
\(400\) −1.76873 −0.0884367
\(401\) 17.5761i 0.877709i −0.898558 0.438854i \(-0.855384\pi\)
0.898558 0.438854i \(-0.144616\pi\)
\(402\) 11.7408 0.585579
\(403\) −0.668221 14.4067i −0.0332864 0.717650i
\(404\) −3.56538 −0.177384
\(405\) 2.60168i 0.129278i
\(406\) 0 0
\(407\) −0.601679 −0.0298241
\(408\) 2.83294i 0.140252i
\(409\) 19.0084i 0.939905i −0.882692 0.469952i \(-0.844271\pi\)
0.882692 0.469952i \(-0.155729\pi\)
\(410\) 7.89949i 0.390128i
\(411\) 4.62959i 0.228361i
\(412\) −19.0749 −0.939755
\(413\) 0 0
\(414\) 2.93579i 0.144286i
\(415\) −21.0749 −1.03453
\(416\) −0.167055 3.60168i −0.00819055 0.176587i
\(417\) −0.935789 −0.0458258
\(418\) 4.80504i 0.235022i
\(419\) 5.48165 0.267796 0.133898 0.990995i \(-0.457250\pi\)
0.133898 + 0.990995i \(0.457250\pi\)
\(420\) 0 0
\(421\) 3.16472i 0.154239i −0.997022 0.0771196i \(-0.975428\pi\)
0.997022 0.0771196i \(-0.0245723\pi\)
\(422\) 22.6743i 1.10377i
\(423\) 9.74083i 0.473615i
\(424\) 3.00000i 0.145693i
\(425\) 5.01073 0.243056
\(426\) −5.76873 −0.279496
\(427\) 0 0
\(428\) 8.07261 0.390204
\(429\) 0.601679 + 12.9721i 0.0290493 + 0.626299i
\(430\) −6.07261 −0.292847
\(431\) 15.4370i 0.743572i −0.928318 0.371786i \(-0.878746\pi\)
0.928318 0.371786i \(-0.121254\pi\)
\(432\) 1.00000 0.0481125
\(433\) 13.9419 0.670003 0.335001 0.942218i \(-0.391263\pi\)
0.335001 + 0.942218i \(0.391263\pi\)
\(434\) 0 0
\(435\) 23.3425i 1.11919i
\(436\) 12.8692i 0.616325i
\(437\) 3.91667i 0.187360i
\(438\) −11.4709 −0.548102
\(439\) −27.3872 −1.30712 −0.653560 0.756875i \(-0.726725\pi\)
−0.653560 + 0.756875i \(0.726725\pi\)
\(440\) 9.37041i 0.446717i
\(441\) 0 0
\(442\) 0.473258 + 10.2034i 0.0225106 + 0.485324i
\(443\) 24.1112 1.14556 0.572780 0.819709i \(-0.305865\pi\)
0.572780 + 0.819709i \(0.305865\pi\)
\(444\) 0.167055i 0.00792809i
\(445\) 21.2481 1.00725
\(446\) 9.19496 0.435394
\(447\) 8.13915i 0.384968i
\(448\) 0 0
\(449\) 2.59095i 0.122275i 0.998129 + 0.0611373i \(0.0194728\pi\)
−0.998129 + 0.0611373i \(0.980527\pi\)
\(450\) 1.76873i 0.0833789i
\(451\) 10.9358 0.514946
\(452\) 19.8800 0.935075
\(453\) 20.0084i 0.940076i
\(454\) −13.5375 −0.635345
\(455\) 0 0
\(456\) −1.33411 −0.0624754
\(457\) 10.4686i 0.489700i 0.969561 + 0.244850i \(0.0787388\pi\)
−0.969561 + 0.244850i \(0.921261\pi\)
\(458\) −18.4067 −0.860089
\(459\) −2.83294 −0.132231
\(460\) 7.63798i 0.356123i
\(461\) 30.0168i 1.39802i 0.715111 + 0.699011i \(0.246376\pi\)
−0.715111 + 0.699011i \(0.753624\pi\)
\(462\) 0 0
\(463\) 19.4649i 0.904609i −0.891864 0.452304i \(-0.850602\pi\)
0.891864 0.452304i \(-0.149398\pi\)
\(464\) 8.97209 0.416519
\(465\) −10.4067 −0.482600
\(466\) 11.7301i 0.543386i
\(467\) −0.300138 −0.0138887 −0.00694437 0.999976i \(-0.502210\pi\)
−0.00694437 + 0.999976i \(0.502210\pi\)
\(468\) −3.60168 + 0.167055i −0.166488 + 0.00772213i
\(469\) 0 0
\(470\) 25.3425i 1.16896i
\(471\) 21.3448 0.983518
\(472\) 11.5738 0.532726
\(473\) 8.40672i 0.386541i
\(474\) 6.74083i 0.309616i
\(475\) 2.35969i 0.108270i
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 11.1731 0.511047
\(479\) 23.5845i 1.07760i 0.842433 + 0.538802i \(0.181123\pi\)
−0.842433 + 0.538802i \(0.818877\pi\)
\(480\) −2.60168 −0.118750
\(481\) 0.0279074 + 0.601679i 0.00127247 + 0.0274342i
\(482\) −14.7408 −0.671426
\(483\) 0 0
\(484\) 1.97209 0.0896406
\(485\) 0.362018 0.0164384
\(486\) 1.00000i 0.0453609i
\(487\) 34.2420i 1.55165i 0.630946 + 0.775826i \(0.282667\pi\)
−0.630946 + 0.775826i \(0.717333\pi\)
\(488\) 4.03630i 0.182715i
\(489\) 1.02791i 0.0464836i
\(490\) 0 0
\(491\) −39.7553 −1.79413 −0.897065 0.441898i \(-0.854305\pi\)
−0.897065 + 0.441898i \(0.854305\pi\)
\(492\) 3.03630i 0.136887i
\(493\) −25.4174 −1.14474
\(494\) 4.80504 0.222870i 0.216189 0.0100274i
\(495\) 9.37041 0.421169
\(496\) 4.00000i 0.179605i
\(497\) 0 0
\(498\) −8.10051 −0.362993
\(499\) 12.2504i 0.548403i −0.961672 0.274201i \(-0.911587\pi\)
0.961672 0.274201i \(-0.0884135\pi\)
\(500\) 8.40672i 0.375960i
\(501\) 5.96976i 0.266709i
\(502\) 22.9465i 1.02415i
\(503\) 2.12842 0.0949016 0.0474508 0.998874i \(-0.484890\pi\)
0.0474508 + 0.998874i \(0.484890\pi\)
\(504\) 0 0
\(505\) 9.27596i 0.412775i
\(506\) 10.5738 0.470061
\(507\) 12.9442 1.20336i 0.574871 0.0534430i
\(508\) 10.0386 0.445392
\(509\) 33.6873i 1.49317i −0.665293 0.746583i \(-0.731693\pi\)
0.665293 0.746583i \(-0.268307\pi\)
\(510\) 7.37041 0.326367
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 1.33411i 0.0589024i
\(514\) 0.740827i 0.0326765i
\(515\) 49.6269i 2.18682i
\(516\) −2.33411 −0.102753
\(517\) −35.0833 −1.54296
\(518\) 0 0
\(519\) −16.5822 −0.727876
\(520\) 9.37041 0.434624i 0.410920 0.0190595i
\(521\) −0.261504 −0.0114567 −0.00572835 0.999984i \(-0.501823\pi\)
−0.00572835 + 0.999984i \(0.501823\pi\)
\(522\) 8.97209i 0.392698i
\(523\) 10.4793 0.458229 0.229114 0.973400i \(-0.426417\pi\)
0.229114 + 0.973400i \(0.426417\pi\)
\(524\) −8.11124 −0.354341
\(525\) 0 0
\(526\) 21.0084i 0.916010i
\(527\) 11.3318i 0.493620i
\(528\) 3.60168i 0.156743i
\(529\) −14.3811 −0.625267
\(530\) −7.80504 −0.339029
\(531\) 11.5738i 0.502259i
\(532\) 0 0
\(533\) −0.507230 10.9358i −0.0219706 0.473682i
\(534\) 8.16706 0.353423
\(535\) 21.0023i 0.908010i
\(536\) −11.7408 −0.507126
\(537\) −18.7408 −0.808726
\(538\) 31.1173i 1.34156i
\(539\) 0 0
\(540\) 2.60168i 0.111958i
\(541\) 21.7213i 0.933872i 0.884291 + 0.466936i \(0.154642\pi\)
−0.884291 + 0.466936i \(0.845358\pi\)
\(542\) −2.00840 −0.0862680
\(543\) −0.426228 −0.0182912
\(544\) 2.83294i 0.121462i
\(545\) −33.4817 −1.43420
\(546\) 0 0
\(547\) −33.3593 −1.42634 −0.713170 0.700991i \(-0.752741\pi\)
−0.713170 + 0.700991i \(0.752741\pi\)
\(548\) 4.62959i 0.197766i
\(549\) 4.03630 0.172265
\(550\) −6.37041 −0.271635
\(551\) 11.9698i 0.509929i
\(552\) 2.93579i 0.124955i
\(553\) 0 0
\(554\) 15.3681i 0.652927i
\(555\) 0.434624 0.0184488
\(556\) 0.935789 0.0396863
\(557\) 38.4067i 1.62734i 0.581324 + 0.813672i \(0.302535\pi\)
−0.581324 + 0.813672i \(0.697465\pi\)
\(558\) −4.00000 −0.169334
\(559\) 8.40672 0.389925i 0.355566 0.0164921i
\(560\) 0 0
\(561\) 10.2034i 0.430786i
\(562\) −16.6682 −0.703106
\(563\) 3.86692 0.162971 0.0814856 0.996675i \(-0.474034\pi\)
0.0814856 + 0.996675i \(0.474034\pi\)
\(564\) 9.74083i 0.410163i
\(565\) 51.7213i 2.17593i
\(566\) 17.8050i 0.748402i
\(567\) 0 0
\(568\) 5.76873 0.242051
\(569\) −27.6743 −1.16017 −0.580083 0.814557i \(-0.696980\pi\)
−0.580083 + 0.814557i \(0.696980\pi\)
\(570\) 3.47093i 0.145381i
\(571\) −40.0941 −1.67788 −0.838942 0.544221i \(-0.816825\pi\)
−0.838942 + 0.544221i \(0.816825\pi\)
\(572\) −0.601679 12.9721i −0.0251575 0.542390i
\(573\) −8.86925 −0.370518
\(574\) 0 0
\(575\) −5.19263 −0.216548
\(576\) −1.00000 −0.0416667
\(577\) 0.406717i 0.0169318i 0.999964 + 0.00846592i \(0.00269482\pi\)
−0.999964 + 0.00846592i \(0.997305\pi\)
\(578\) 8.97442i 0.373287i
\(579\) 7.00840i 0.291259i
\(580\) 23.3425i 0.969245i
\(581\) 0 0
\(582\) 0.139148 0.00576786
\(583\) 10.8050i 0.447499i
\(584\) 11.4709 0.474670
\(585\) −0.434624 9.37041i −0.0179695 0.387419i
\(586\) −26.4733 −1.09360
\(587\) 22.0131i 0.908576i 0.890855 + 0.454288i \(0.150106\pi\)
−0.890855 + 0.454288i \(0.849894\pi\)
\(588\) 0 0
\(589\) 5.33644 0.219884
\(590\) 30.1112i 1.23966i
\(591\) 17.8050i 0.732401i
\(592\) 0.167055i 0.00686593i
\(593\) 31.1862i 1.28066i 0.768099 + 0.640331i \(0.221203\pi\)
−0.768099 + 0.640331i \(0.778797\pi\)
\(594\) 3.60168 0.147779
\(595\) 0 0
\(596\) 8.13915i 0.333392i
\(597\) −27.1089 −1.10949
\(598\) −0.490439 10.5738i −0.0200555 0.432394i
\(599\) −6.34017 −0.259053 −0.129526 0.991576i \(-0.541346\pi\)
−0.129526 + 0.991576i \(0.541346\pi\)
\(600\) 1.76873i 0.0722083i
\(601\) −23.5566 −0.960893 −0.480447 0.877024i \(-0.659525\pi\)
−0.480447 + 0.877024i \(0.659525\pi\)
\(602\) 0 0
\(603\) 11.7408i 0.478123i
\(604\) 20.0084i 0.814130i
\(605\) 5.13075i 0.208595i
\(606\) 3.56538i 0.144834i
\(607\) 16.0386 0.650988 0.325494 0.945544i \(-0.394469\pi\)
0.325494 + 0.945544i \(0.394469\pi\)
\(608\) 1.33411 0.0541053
\(609\) 0 0
\(610\) −10.5012 −0.425180
\(611\) 1.62726 + 35.0833i 0.0658317 + 1.41932i
\(612\) 2.83294 0.114515
\(613\) 8.51835i 0.344053i −0.985092 0.172026i \(-0.944969\pi\)
0.985092 0.172026i \(-0.0550314\pi\)
\(614\) 23.2783 0.939436
\(615\) −7.89949 −0.318538
\(616\) 0 0
\(617\) 1.40905i 0.0567261i 0.999598 + 0.0283631i \(0.00902945\pi\)
−0.999598 + 0.0283631i \(0.990971\pi\)
\(618\) 19.0749i 0.767307i
\(619\) 45.4537i 1.82694i −0.406906 0.913470i \(-0.633392\pi\)
0.406906 0.913470i \(-0.366608\pi\)
\(620\) 10.4067 0.417944
\(621\) 2.93579 0.117809
\(622\) 16.5459i 0.663429i
\(623\) 0 0
\(624\) 3.60168 0.167055i 0.144183 0.00668756i
\(625\) −30.7153 −1.22861
\(626\) 10.0279i 0.400796i
\(627\) −4.80504 −0.191895
\(628\) −21.3448 −0.851752
\(629\) 0.473258i 0.0188700i
\(630\) 0 0
\(631\) 35.2313i 1.40253i 0.712898 + 0.701267i \(0.247382\pi\)
−0.712898 + 0.701267i \(0.752618\pi\)
\(632\) 6.74083i 0.268136i
\(633\) 22.6743 0.901222
\(634\) −21.4090 −0.850262
\(635\) 26.1173i 1.03643i
\(636\) −3.00000 −0.118958
\(637\) 0 0
\(638\) 32.3146 1.27935
\(639\) 5.76873i 0.228208i
\(640\) 2.60168 0.102840
\(641\) 22.2336 0.878174 0.439087 0.898444i \(-0.355302\pi\)
0.439087 + 0.898444i \(0.355302\pi\)
\(642\) 8.07261i 0.318600i
\(643\) 3.64031i 0.143560i −0.997420 0.0717800i \(-0.977132\pi\)
0.997420 0.0717800i \(-0.0228679\pi\)
\(644\) 0 0
\(645\) 6.07261i 0.239109i
\(646\) −3.77946 −0.148701
\(647\) 14.0558 0.552591 0.276296 0.961073i \(-0.410893\pi\)
0.276296 + 0.961073i \(0.410893\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 41.6850 1.63628
\(650\) 0.295476 + 6.37041i 0.0115895 + 0.249868i
\(651\) 0 0
\(652\) 1.02791i 0.0402560i
\(653\) −17.2481 −0.674969 −0.337484 0.941331i \(-0.609576\pi\)
−0.337484 + 0.941331i \(0.609576\pi\)
\(654\) −12.8692 −0.503227
\(655\) 21.1028i 0.824556i
\(656\) 3.03630i 0.118548i
\(657\) 11.4709i 0.447523i
\(658\) 0 0
\(659\) −21.6999 −0.845307 −0.422653 0.906291i \(-0.638901\pi\)
−0.422653 + 0.906291i \(0.638901\pi\)
\(660\) −9.37041 −0.364743
\(661\) 23.1815i 0.901656i 0.892611 + 0.450828i \(0.148871\pi\)
−0.892611 + 0.450828i \(0.851129\pi\)
\(662\) 35.8605 1.39376
\(663\) −10.2034 + 0.473258i −0.396266 + 0.0183798i
\(664\) 8.10051 0.314361
\(665\) 0 0
\(666\) 0.167055 0.00647326
\(667\) 26.3402 1.01990
\(668\) 5.96976i 0.230977i
\(669\) 9.19496i 0.355498i
\(670\) 30.5459i 1.18009i
\(671\) 14.5375i 0.561213i
\(672\) 0 0
\(673\) 7.56538 0.291624 0.145812 0.989312i \(-0.453421\pi\)
0.145812 + 0.989312i \(0.453421\pi\)
\(674\) 6.73850i 0.259557i
\(675\) −1.76873 −0.0680786
\(676\) −12.9442 + 1.20336i −0.497853 + 0.0462830i
\(677\) −20.9163 −0.803878 −0.401939 0.915666i \(-0.631664\pi\)
−0.401939 + 0.915666i \(0.631664\pi\)
\(678\) 19.8800i 0.763486i
\(679\) 0 0
\(680\) −7.37041 −0.282642
\(681\) 13.5375i 0.518757i
\(682\) 14.4067i 0.551662i
\(683\) 19.7432i 0.755451i −0.925918 0.377725i \(-0.876706\pi\)
0.925918 0.377725i \(-0.123294\pi\)
\(684\) 1.33411i 0.0510110i
\(685\) 12.0447 0.460204
\(686\) 0 0
\(687\) 18.4067i 0.702260i
\(688\) 2.33411 0.0889871
\(689\) 10.8050 0.501166i 0.411639 0.0190929i
\(690\) −7.63798 −0.290773
\(691\) 27.0215i 1.02794i 0.857807 + 0.513972i \(0.171827\pi\)
−0.857807 + 0.513972i \(0.828173\pi\)
\(692\) 16.5822 0.630359
\(693\) 0 0
\(694\) 34.5738i 1.31240i
\(695\) 2.43462i 0.0923506i
\(696\) 8.97209i 0.340086i
\(697\) 8.60168i 0.325812i
\(698\) 21.7771 0.824277
\(699\) −11.7301 −0.443673
\(700\) 0 0
\(701\) 46.3956 1.75234 0.876169 0.482004i \(-0.160091\pi\)
0.876169 + 0.482004i \(0.160091\pi\)
\(702\) −0.167055 3.60168i −0.00630509 0.135937i
\(703\) −0.222870 −0.00840570
\(704\) 3.60168i 0.135743i
\(705\) 25.3425 0.954454
\(706\) 20.3509 0.765916
\(707\) 0 0
\(708\) 11.5738i 0.434969i
\(709\) 41.3146i 1.55160i 0.630977 + 0.775801i \(0.282654\pi\)
−0.630977 + 0.775801i \(0.717346\pi\)
\(710\) 15.0084i 0.563255i
\(711\) 6.74083 0.252801
\(712\) −8.16706 −0.306073
\(713\) 11.7432i 0.439785i
\(714\) 0 0
\(715\) 33.7492 1.56538i 1.26215 0.0585417i
\(716\) 18.7408 0.700378
\(717\) 11.1731i 0.417268i
\(718\) −1.43229 −0.0534527
\(719\) −29.9442 −1.11673 −0.558365 0.829596i \(-0.688571\pi\)
−0.558365 + 0.829596i \(0.688571\pi\)
\(720\) 2.60168i 0.0969589i
\(721\) 0 0
\(722\) 17.2201i 0.640868i
\(723\) 14.7408i 0.548217i
\(724\) 0.426228 0.0158406
\(725\) −15.8692 −0.589369
\(726\) 1.97209i 0.0731912i
\(727\) 22.8860 0.848796 0.424398 0.905476i \(-0.360486\pi\)
0.424398 + 0.905476i \(0.360486\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 29.8437i 1.10456i
\(731\) −6.61241 −0.244569
\(732\) −4.03630 −0.149186
\(733\) 39.0531i 1.44246i −0.692696 0.721229i \(-0.743577\pi\)
0.692696 0.721229i \(-0.256423\pi\)
\(734\) 24.3509i 0.898808i
\(735\) 0 0
\(736\) 2.93579i 0.108215i
\(737\) −42.2867 −1.55765
\(738\) −3.03630 −0.111768
\(739\) 49.4537i 1.81919i 0.415501 + 0.909593i \(0.363606\pi\)
−0.415501 + 0.909593i \(0.636394\pi\)
\(740\) −0.434624 −0.0159771
\(741\) 0.222870 + 4.80504i 0.00818734 + 0.176517i
\(742\) 0 0
\(743\) 0.203358i 0.00746049i 0.999993 + 0.00373025i \(0.00118738\pi\)
−0.999993 + 0.00373025i \(0.998813\pi\)
\(744\) 4.00000 0.146647
\(745\) −21.1755 −0.775808
\(746\) 31.9526i 1.16987i
\(747\) 8.10051i 0.296382i
\(748\) 10.2034i 0.373072i
\(749\) 0 0
\(750\) −8.40672 −0.306970
\(751\) −42.9465 −1.56714 −0.783570 0.621303i \(-0.786604\pi\)
−0.783570 + 0.621303i \(0.786604\pi\)
\(752\) 9.74083i 0.355211i
\(753\) 22.9465 0.836218
\(754\) −1.49883 32.3146i −0.0545843 1.17683i
\(755\) 52.0554 1.89449
\(756\) 0 0
\(757\) −19.5180 −0.709392 −0.354696 0.934982i \(-0.615416\pi\)
−0.354696 + 0.934982i \(0.615416\pi\)
\(758\) −2.79664 −0.101579
\(759\) 10.5738i 0.383804i
\(760\) 3.47093i 0.125904i
\(761\) 42.0168i 1.52311i 0.648102 + 0.761554i \(0.275563\pi\)
−0.648102 + 0.761554i \(0.724437\pi\)
\(762\) 10.0386i 0.363661i
\(763\) 0 0
\(764\) 8.86925 0.320878
\(765\) 7.37041i 0.266478i
\(766\) −9.84367 −0.355666
\(767\) −1.93346 41.6850i −0.0698131 1.50516i
\(768\) 1.00000 0.0360844
\(769\) 51.9502i 1.87337i 0.350168 + 0.936687i \(0.386125\pi\)
−0.350168 + 0.936687i \(0.613875\pi\)
\(770\) 0 0
\(771\) −0.740827 −0.0266802
\(772\) 7.00840i 0.252238i
\(773\) 42.0336i 1.51184i 0.654662 + 0.755921i \(0.272811\pi\)
−0.654662 + 0.755921i \(0.727189\pi\)
\(774\) 2.33411i 0.0838979i
\(775\) 7.07494i 0.254139i
\(776\) −0.139148 −0.00499511
\(777\) 0 0
\(778\) 16.3811i 0.587292i
\(779\) 4.05076 0.145134
\(780\) 0.434624 + 9.37041i 0.0155620 + 0.335515i
\(781\) 20.7771 0.743464
\(782\) 8.31693i 0.297413i
\(783\) 8.97209 0.320636
\(784\) 0 0
\(785\) 55.5324i 1.98204i
\(786\) 8.11124i 0.289318i
\(787\) 8.79431i 0.313483i −0.987640 0.156742i \(-0.949901\pi\)
0.987640 0.156742i \(-0.0500990\pi\)
\(788\) 17.8050i 0.634278i
\(789\) −21.0084 −0.747919
\(790\) −17.5375 −0.623955
\(791\) 0 0
\(792\) −3.60168 −0.127980
\(793\) 14.5375 0.674285i 0.516241 0.0239446i
\(794\) 5.44302 0.193166
\(795\) 7.80504i 0.276816i
\(796\) 27.1089 0.960850
\(797\) −6.25039 −0.221400 −0.110700 0.993854i \(-0.535309\pi\)
−0.110700 + 0.993854i \(0.535309\pi\)
\(798\) 0 0
\(799\) 27.5952i 0.976249i
\(800\) 1.76873i 0.0625342i
\(801\) 8.16706i 0.288569i
\(802\) −17.5761 −0.620634
\(803\) 41.3146 1.45796
\(804\) 11.7408i 0.414067i
\(805\) 0 0
\(806\) −14.4067 + 0.668221i −0.507455 + 0.0235371i
\(807\) −31.1173 −1.09538
\(808\) 3.56538i 0.125429i
\(809\) −45.8521 −1.61207 −0.806036 0.591866i \(-0.798391\pi\)
−0.806036 + 0.591866i \(0.798391\pi\)
\(810\) −2.60168 −0.0914137
\(811\) 29.5096i 1.03622i 0.855314 + 0.518110i \(0.173364\pi\)
−0.855314 + 0.518110i \(0.826636\pi\)
\(812\) 0 0
\(813\) 2.00840i 0.0704375i
\(814\) 0.601679i 0.0210888i
\(815\) 2.67429 0.0936761
\(816\) −2.83294 −0.0991729
\(817\) 3.11396i 0.108944i
\(818\) −19.0084 −0.664613
\(819\) 0 0
\(820\) 7.89949 0.275862
\(821\) 24.1559i 0.843048i −0.906817 0.421524i \(-0.861495\pi\)
0.906817 0.421524i \(-0.138505\pi\)
\(822\) 4.62959 0.161475
\(823\) −30.7022 −1.07021 −0.535106 0.844785i \(-0.679728\pi\)
−0.535106 + 0.844785i \(0.679728\pi\)
\(824\) 19.0749i 0.664507i
\(825\) 6.37041i 0.221789i
\(826\) 0 0
\(827\) 3.32338i 0.115565i −0.998329 0.0577827i \(-0.981597\pi\)
0.998329 0.0577827i \(-0.0184031\pi\)
\(828\) −2.93579 −0.102026
\(829\) −29.6464 −1.02966 −0.514831 0.857292i \(-0.672145\pi\)
−0.514831 + 0.857292i \(0.672145\pi\)
\(830\) 21.0749i 0.731522i
\(831\) 15.3681 0.533113
\(832\) −3.60168 + 0.167055i −0.124866 + 0.00579160i
\(833\) 0 0
\(834\) 0.935789i 0.0324037i
\(835\) −15.5314 −0.537486
\(836\) 4.80504 0.166186
\(837\) 4.00000i 0.138260i
\(838\) 5.48165i 0.189361i
\(839\) 5.51189i 0.190292i 0.995463 + 0.0951458i \(0.0303317\pi\)
−0.995463 + 0.0951458i \(0.969668\pi\)
\(840\) 0 0
\(841\) 51.4984 1.77581
\(842\) −3.16472 −0.109064
\(843\) 16.6682i 0.574084i
\(844\) −22.6743 −0.780481
\(845\) −3.13075 33.6766i −0.107701 1.15851i
\(846\) 9.74083 0.334897
\(847\) 0 0
\(848\) 3.00000 0.103020
\(849\) 17.8050 0.611067
\(850\) 5.01073i 0.171867i
\(851\) 0.490439i 0.0168120i
\(852\) 5.76873i 0.197634i
\(853\) 34.2611i 1.17308i −0.809921 0.586539i \(-0.800490\pi\)
0.809921 0.586539i \(-0.199510\pi\)
\(854\) 0 0
\(855\) 3.47093 0.118703
\(856\) 8.07261i 0.275916i
\(857\) 36.4598 1.24544 0.622722 0.782443i \(-0.286027\pi\)
0.622722 + 0.782443i \(0.286027\pi\)
\(858\) 12.9721 0.601679i 0.442860 0.0205410i
\(859\) 43.3486 1.47903 0.739517 0.673138i \(-0.235054\pi\)
0.739517 + 0.673138i \(0.235054\pi\)
\(860\) 6.07261i 0.207074i
\(861\) 0 0
\(862\) −15.4370 −0.525785
\(863\) 13.6147i 0.463451i 0.972781 + 0.231726i \(0.0744371\pi\)
−0.972781 + 0.231726i \(0.925563\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 43.1415i 1.46685i
\(866\) 13.9419i 0.473763i
\(867\) −8.97442 −0.304787
\(868\) 0 0
\(869\) 24.2783i 0.823585i
\(870\) −23.3425 −0.791385
\(871\) 1.96137 + 42.2867i 0.0664583 + 1.43283i
\(872\) 12.8692 0.435808
\(873\) 0.139148i 0.00470944i
\(874\) 3.91667 0.132483
\(875\) 0 0
\(876\) 11.4709i 0.387567i
\(877\) 27.5156i 0.929137i 0.885537 + 0.464568i \(0.153790\pi\)
−0.885537 + 0.464568i \(0.846210\pi\)
\(878\) 27.3872i 0.924273i
\(879\) 26.4733i 0.892921i
\(880\) 9.37041 0.315877
\(881\) −22.3341 −0.752455 −0.376228 0.926527i \(-0.622779\pi\)
−0.376228 + 0.926527i \(0.622779\pi\)
\(882\) 0 0
\(883\) 9.28669 0.312522 0.156261 0.987716i \(-0.450056\pi\)
0.156261 + 0.987716i \(0.450056\pi\)
\(884\) 10.2034 0.473258i 0.343176 0.0159174i
\(885\) −30.1112 −1.01218
\(886\) 24.1112i 0.810033i
\(887\) −13.9442 −0.468200 −0.234100 0.972213i \(-0.575214\pi\)
−0.234100 + 0.972213i \(0.575214\pi\)
\(888\) −0.167055 −0.00560600
\(889\) 0 0
\(890\) 21.2481i 0.712236i
\(891\) 3.60168i 0.120661i
\(892\) 9.19496i 0.307870i
\(893\) −12.9953 −0.434872
\(894\) −8.13915 −0.272214
\(895\) 48.7576i 1.62979i
\(896\) 0 0
\(897\) 10.5738 0.490439i 0.353048 0.0163753i
\(898\) 2.59095 0.0864612
\(899\) 35.8884i 1.19694i
\(900\) 1.76873 0.0589578
\(901\) −8.49883 −0.283137
\(902\) 10.9358i 0.364122i
\(903\) 0 0
\(904\) 19.8800i 0.661198i
\(905\) 1.10891i 0.0368614i
\(906\) 20.0084 0.664734
\(907\) 4.13915 0.137438 0.0687191 0.997636i \(-0.478109\pi\)
0.0687191 + 0.997636i \(0.478109\pi\)
\(908\) 13.5375i 0.449257i
\(909\) 3.56538 0.118256
\(910\) 0 0
\(911\) 18.5566 0.614807 0.307404 0.951579i \(-0.400540\pi\)
0.307404 + 0.951579i \(0.400540\pi\)
\(912\) 1.33411i 0.0441768i
\(913\) 29.1755 0.965566
\(914\) 10.4686 0.346270
\(915\) 10.5012i 0.347158i
\(916\) 18.4067i 0.608175i
\(917\) 0 0
\(918\) 2.83294i 0.0935011i
\(919\) 51.3486 1.69383 0.846917 0.531726i \(-0.178456\pi\)
0.846917 + 0.531726i \(0.178456\pi\)
\(920\) 7.63798 0.251817
\(921\) 23.2783i 0.767046i
\(922\) 30.0168 0.988550
\(923\) −0.963697 20.7771i −0.0317205 0.683888i
\(924\) 0 0
\(925\) 0.295476i 0.00971520i
\(926\) −19.4649 −0.639655
\(927\) 19.0749 0.626503
\(928\) 8.97209i 0.294523i
\(929\) 6.94185i 0.227755i −0.993495 0.113877i \(-0.963673\pi\)
0.993495 0.113877i \(-0.0363271\pi\)
\(930\) 10.4067i 0.341250i
\(931\) 0 0
\(932\) 11.7301 0.384232
\(933\) 16.5459 0.541687
\(934\) 0.300138i 0.00982083i
\(935\) −26.5459 −0.868143
\(936\) 0.167055 + 3.60168i 0.00546037 + 0.117725i
\(937\) 37.1005 1.21202 0.606010 0.795457i \(-0.292769\pi\)
0.606010 + 0.795457i \(0.292769\pi\)
\(938\) 0 0
\(939\) −10.0279 −0.327248
\(940\) −25.3425 −0.826581
\(941\) 8.41138i 0.274203i 0.990557 + 0.137102i \(0.0437787\pi\)
−0.990557 + 0.137102i \(0.956221\pi\)
\(942\) 21.3448i 0.695452i
\(943\) 8.91395i 0.290278i
\(944\) 11.5738i 0.376694i
\(945\) 0 0
\(946\) 8.40672 0.273326
\(947\) 25.1671i 0.817819i −0.912575 0.408910i \(-0.865909\pi\)
0.912575 0.408910i \(-0.134091\pi\)
\(948\) −6.74083 −0.218932
\(949\) −1.91628 41.3146i −0.0622050 1.34113i
\(950\) −2.35969 −0.0765583
\(951\) 21.4090i 0.694236i
\(952\) 0 0
\(953\) 35.3681 1.14568 0.572842 0.819666i \(-0.305841\pi\)
0.572842 + 0.819666i \(0.305841\pi\)
\(954\) 3.00000i 0.0971286i
\(955\) 23.0749i 0.746687i
\(956\) 11.1731i 0.361365i
\(957\) 32.3146i 1.04458i
\(958\) 23.5845 0.761981
\(959\) 0 0
\(960\) 2.60168i 0.0839688i
\(961\) 15.0000 0.483871
\(962\) 0.601679 0.0279074i 0.0193989 0.000899772i
\(963\) −8.07261 −0.260136
\(964\) 14.7408i 0.474770i
\(965\) −18.2336 −0.586960
\(966\) 0 0
\(967\) 17.3123i 0.556725i 0.960476 + 0.278362i \(0.0897917\pi\)
−0.960476 + 0.278362i \(0.910208\pi\)
\(968\) 1.97209i 0.0633855i
\(969\) 3.77946i 0.121414i
\(970\) 0.362018i 0.0116237i
\(971\) −53.3919 −1.71343 −0.856713 0.515793i \(-0.827497\pi\)
−0.856713 + 0.515793i \(0.827497\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 34.2420 1.09718
\(975\) −6.37041 + 0.295476i −0.204017 + 0.00946281i
\(976\) 4.03630 0.129199
\(977\) 32.8692i 1.05158i −0.850614 0.525790i \(-0.823770\pi\)
0.850614 0.525790i \(-0.176230\pi\)
\(978\) 1.02791 0.0328689
\(979\) −29.4151 −0.940111
\(980\) 0 0
\(981\) 12.8692i 0.410883i
\(982\) 39.7553i 1.26864i
\(983\) 9.72404i 0.310149i 0.987903 + 0.155074i \(0.0495617\pi\)
−0.987903 + 0.155074i \(0.950438\pi\)
\(984\) 3.03630 0.0967938
\(985\) 46.3230 1.47597
\(986\) 25.4174i 0.809456i
\(987\) 0 0
\(988\) −0.222870 4.80504i −0.00709044 0.152869i
\(989\) 6.85246 0.217895
\(990\) 9.37041i 0.297811i
\(991\) 32.4114 1.02958 0.514791 0.857316i \(-0.327870\pi\)
0.514791 + 0.857316i \(0.327870\pi\)
\(992\) −4.00000 −0.127000
\(993\) 35.8605i 1.13800i
\(994\) 0 0
\(995\) 70.5287i 2.23591i
\(996\) 8.10051i 0.256675i
\(997\) −45.6789 −1.44667 −0.723333 0.690499i \(-0.757391\pi\)
−0.723333 + 0.690499i \(0.757391\pi\)
\(998\) −12.2504 −0.387779
\(999\) 0.167055i 0.00528539i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3822.2.c.k.883.1 6
7.2 even 3 546.2.bk.b.25.1 12
7.4 even 3 546.2.bk.b.415.6 yes 12
7.6 odd 2 3822.2.c.j.883.3 6
13.12 even 2 inner 3822.2.c.k.883.6 6
21.2 odd 6 1638.2.dm.c.1117.6 12
21.11 odd 6 1638.2.dm.c.415.1 12
91.25 even 6 546.2.bk.b.415.1 yes 12
91.51 even 6 546.2.bk.b.25.6 yes 12
91.90 odd 2 3822.2.c.j.883.4 6
273.116 odd 6 1638.2.dm.c.415.6 12
273.233 odd 6 1638.2.dm.c.1117.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.1 12 7.2 even 3
546.2.bk.b.25.6 yes 12 91.51 even 6
546.2.bk.b.415.1 yes 12 91.25 even 6
546.2.bk.b.415.6 yes 12 7.4 even 3
1638.2.dm.c.415.1 12 21.11 odd 6
1638.2.dm.c.415.6 12 273.116 odd 6
1638.2.dm.c.1117.1 12 273.233 odd 6
1638.2.dm.c.1117.6 12 21.2 odd 6
3822.2.c.j.883.3 6 7.6 odd 2
3822.2.c.j.883.4 6 91.90 odd 2
3822.2.c.k.883.1 6 1.1 even 1 trivial
3822.2.c.k.883.6 6 13.12 even 2 inner