Properties

Label 1638.2.dm.c.415.1
Level $1638$
Weight $2$
Character 1638.415
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(415,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.415"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.1
Root \(-0.385124 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.415
Dual form 1638.2.dm.c.1117.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-2.25312 - 1.30084i) q^{5} +(-1.49160 - 2.18521i) q^{7} -1.00000i q^{8} +(1.30084 + 2.25312i) q^{10} +(-3.11915 + 1.80084i) q^{11} +(3.60168 - 0.167055i) q^{13} +(0.199160 + 2.63824i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.41647 - 2.45340i) q^{17} +(-1.15537 - 0.667055i) q^{19} -2.60168i q^{20} +3.60168 q^{22} +(1.46789 - 2.54247i) q^{23} +(0.884367 + 1.53177i) q^{25} +(-3.20267 - 1.65617i) q^{26} +(1.14664 - 2.38437i) q^{28} -8.97209 q^{29} +(-3.46410 + 2.00000i) q^{31} +(0.866025 - 0.500000i) q^{32} +2.83294i q^{34} +(0.518152 + 6.86387i) q^{35} +(-0.144674 - 0.0835276i) q^{37} +(0.667055 + 1.15537i) q^{38} +(-1.30084 + 2.25312i) q^{40} +3.03630i q^{41} +2.33411 q^{43} +(-3.11915 - 1.80084i) q^{44} +(-2.54247 + 1.46789i) q^{46} +(8.43580 + 4.87041i) q^{47} +(-2.55026 + 6.51891i) q^{49} -1.76873i q^{50} +(1.94551 + 3.03562i) q^{52} +(1.50000 + 2.59808i) q^{53} +9.37041 q^{55} +(-2.18521 + 1.49160i) q^{56} +(7.77006 + 4.48605i) q^{58} +(10.0232 - 5.78689i) q^{59} +(-2.01815 + 3.49554i) q^{61} +4.00000 q^{62} -1.00000 q^{64} +(-8.33233 - 4.30881i) q^{65} +(10.1679 - 5.87041i) q^{67} +(1.41647 - 2.45340i) q^{68} +(2.98320 - 6.20336i) q^{70} +5.76873i q^{71} +(-9.93411 + 5.73546i) q^{73} +(0.0835276 + 0.144674i) q^{74} -1.33411i q^{76} +(8.58773 + 4.12985i) q^{77} +(-3.37041 + 5.83773i) q^{79} +(2.25312 - 1.30084i) q^{80} +(1.51815 - 2.62952i) q^{82} +8.10051i q^{83} +7.37041i q^{85} +(-2.02140 - 1.16706i) q^{86} +(1.80084 + 3.11915i) q^{88} +(7.07288 + 4.08353i) q^{89} +(-5.73732 - 7.62123i) q^{91} +2.93579 q^{92} +(-4.87041 - 8.43580i) q^{94} +(1.73546 + 3.00591i) q^{95} +0.139148i q^{97} +(5.46804 - 4.37041i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} + 12 q^{13} + 18 q^{14} - 6 q^{16} - 18 q^{17} + 12 q^{22} - 6 q^{25} - 12 q^{29} - 24 q^{35} + 6 q^{38} + 24 q^{43} - 18 q^{49} + 6 q^{52} + 18 q^{53} + 48 q^{55} + 6 q^{56} + 6 q^{61} + 48 q^{62}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.25312 1.30084i −1.00763 0.581753i −0.0971303 0.995272i \(-0.530966\pi\)
−0.910496 + 0.413519i \(0.864300\pi\)
\(6\) 0 0
\(7\) −1.49160 2.18521i −0.563772 0.825931i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.30084 + 2.25312i 0.411362 + 0.712499i
\(11\) −3.11915 + 1.80084i −0.940458 + 0.542974i −0.890104 0.455758i \(-0.849368\pi\)
−0.0503540 + 0.998731i \(0.516035\pi\)
\(12\) 0 0
\(13\) 3.60168 0.167055i 0.998926 0.0463328i
\(14\) 0.199160 + 2.63824i 0.0532279 + 0.705101i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.41647 2.45340i −0.343545 0.595037i 0.641543 0.767087i \(-0.278294\pi\)
−0.985088 + 0.172049i \(0.944961\pi\)
\(18\) 0 0
\(19\) −1.15537 0.667055i −0.265061 0.153033i 0.361580 0.932341i \(-0.382237\pi\)
−0.626641 + 0.779308i \(0.715571\pi\)
\(20\) 2.60168i 0.581753i
\(21\) 0 0
\(22\) 3.60168 0.767881
\(23\) 1.46789 2.54247i 0.306077 0.530141i −0.671423 0.741074i \(-0.734317\pi\)
0.977501 + 0.210933i \(0.0676501\pi\)
\(24\) 0 0
\(25\) 0.884367 + 1.53177i 0.176873 + 0.306354i
\(26\) −3.20267 1.65617i −0.628096 0.324801i
\(27\) 0 0
\(28\) 1.14664 2.38437i 0.216695 0.450603i
\(29\) −8.97209 −1.66608 −0.833038 0.553216i \(-0.813400\pi\)
−0.833038 + 0.553216i \(0.813400\pi\)
\(30\) 0 0
\(31\) −3.46410 + 2.00000i −0.622171 + 0.359211i −0.777714 0.628619i \(-0.783621\pi\)
0.155543 + 0.987829i \(0.450287\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 2.83294i 0.485846i
\(35\) 0.518152 + 6.86387i 0.0875836 + 1.16021i
\(36\) 0 0
\(37\) −0.144674 0.0835276i −0.0237843 0.0137319i 0.488061 0.872810i \(-0.337704\pi\)
−0.511845 + 0.859078i \(0.671038\pi\)
\(38\) 0.667055 + 1.15537i 0.108211 + 0.187426i
\(39\) 0 0
\(40\) −1.30084 + 2.25312i −0.205681 + 0.356250i
\(41\) 3.03630i 0.474191i 0.971486 + 0.237095i \(0.0761954\pi\)
−0.971486 + 0.237095i \(0.923805\pi\)
\(42\) 0 0
\(43\) 2.33411 0.355948 0.177974 0.984035i \(-0.443046\pi\)
0.177974 + 0.984035i \(0.443046\pi\)
\(44\) −3.11915 1.80084i −0.470229 0.271487i
\(45\) 0 0
\(46\) −2.54247 + 1.46789i −0.374866 + 0.216429i
\(47\) 8.43580 + 4.87041i 1.23049 + 0.710423i 0.967132 0.254276i \(-0.0818371\pi\)
0.263357 + 0.964699i \(0.415170\pi\)
\(48\) 0 0
\(49\) −2.55026 + 6.51891i −0.364322 + 0.931273i
\(50\) 1.76873i 0.250137i
\(51\) 0 0
\(52\) 1.94551 + 3.03562i 0.269794 + 0.420964i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) 9.37041 1.26351
\(56\) −2.18521 + 1.49160i −0.292011 + 0.199323i
\(57\) 0 0
\(58\) 7.77006 + 4.48605i 1.02026 + 0.589047i
\(59\) 10.0232 5.78689i 1.30491 0.753388i 0.323666 0.946172i \(-0.395085\pi\)
0.981241 + 0.192783i \(0.0617514\pi\)
\(60\) 0 0
\(61\) −2.01815 + 3.49554i −0.258398 + 0.447558i −0.965813 0.259240i \(-0.916528\pi\)
0.707415 + 0.706798i \(0.249861\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −8.33233 4.30881i −1.03350 0.534442i
\(66\) 0 0
\(67\) 10.1679 5.87041i 1.24220 0.717185i 0.272659 0.962111i \(-0.412097\pi\)
0.969542 + 0.244926i \(0.0787635\pi\)
\(68\) 1.41647 2.45340i 0.171773 0.297519i
\(69\) 0 0
\(70\) 2.98320 6.20336i 0.356561 0.741443i
\(71\) 5.76873i 0.684623i 0.939587 + 0.342311i \(0.111210\pi\)
−0.939587 + 0.342311i \(0.888790\pi\)
\(72\) 0 0
\(73\) −9.93411 + 5.73546i −1.16270 + 0.671285i −0.951950 0.306255i \(-0.900924\pi\)
−0.210751 + 0.977540i \(0.567591\pi\)
\(74\) 0.0835276 + 0.144674i 0.00970988 + 0.0168180i
\(75\) 0 0
\(76\) 1.33411i 0.153033i
\(77\) 8.58773 + 4.12985i 0.978662 + 0.470640i
\(78\) 0 0
\(79\) −3.37041 + 5.83773i −0.379201 + 0.656796i −0.990946 0.134259i \(-0.957134\pi\)
0.611745 + 0.791055i \(0.290468\pi\)
\(80\) 2.25312 1.30084i 0.251906 0.145438i
\(81\) 0 0
\(82\) 1.51815 2.62952i 0.167652 0.290381i
\(83\) 8.10051i 0.889147i 0.895742 + 0.444573i \(0.146645\pi\)
−0.895742 + 0.444573i \(0.853355\pi\)
\(84\) 0 0
\(85\) 7.37041i 0.799434i
\(86\) −2.02140 1.16706i −0.217973 0.125847i
\(87\) 0 0
\(88\) 1.80084 + 3.11915i 0.191970 + 0.332502i
\(89\) 7.07288 + 4.08353i 0.749723 + 0.432853i 0.825594 0.564265i \(-0.190840\pi\)
−0.0758705 + 0.997118i \(0.524174\pi\)
\(90\) 0 0
\(91\) −5.73732 7.62123i −0.601434 0.798922i
\(92\) 2.93579 0.306077
\(93\) 0 0
\(94\) −4.87041 8.43580i −0.502345 0.870087i
\(95\) 1.73546 + 3.00591i 0.178055 + 0.308400i
\(96\) 0 0
\(97\) 0.139148i 0.0141283i 0.999975 + 0.00706416i \(0.00224861\pi\)
−0.999975 + 0.00706416i \(0.997751\pi\)
\(98\) 5.46804 4.37041i 0.552356 0.441478i
\(99\) 0 0
\(100\) −0.884367 + 1.53177i −0.0884367 + 0.153177i
\(101\) 1.78269 + 3.08771i 0.177384 + 0.307238i 0.940984 0.338452i \(-0.109903\pi\)
−0.763600 + 0.645690i \(0.776570\pi\)
\(102\) 0 0
\(103\) −9.53747 + 16.5194i −0.939755 + 1.62770i −0.173827 + 0.984776i \(0.555613\pi\)
−0.765928 + 0.642927i \(0.777720\pi\)
\(104\) −0.167055 3.60168i −0.0163811 0.353174i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) −4.03630 + 6.99108i −0.390204 + 0.675853i −0.992476 0.122437i \(-0.960929\pi\)
0.602272 + 0.798291i \(0.294262\pi\)
\(108\) 0 0
\(109\) −11.1451 + 6.43462i −1.06751 + 0.616325i −0.927499 0.373825i \(-0.878046\pi\)
−0.140007 + 0.990150i \(0.544713\pi\)
\(110\) −8.11502 4.68521i −0.773736 0.446717i
\(111\) 0 0
\(112\) 2.63824 0.199160i 0.249291 0.0188189i
\(113\) 19.8800 1.87015 0.935075 0.354449i \(-0.115332\pi\)
0.935075 + 0.354449i \(0.115332\pi\)
\(114\) 0 0
\(115\) −6.61469 + 3.81899i −0.616823 + 0.356123i
\(116\) −4.48605 7.77006i −0.416519 0.721432i
\(117\) 0 0
\(118\) −11.5738 −1.06545
\(119\) −3.24838 + 6.75478i −0.297779 + 0.619210i
\(120\) 0 0
\(121\) 0.986046 1.70788i 0.0896406 0.155262i
\(122\) 3.49554 2.01815i 0.316471 0.182715i
\(123\) 0 0
\(124\) −3.46410 2.00000i −0.311086 0.179605i
\(125\) 8.40672i 0.751920i
\(126\) 0 0
\(127\) −10.0386 −0.890785 −0.445392 0.895335i \(-0.646936\pi\)
−0.445392 + 0.895335i \(0.646936\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 5.06160 + 7.89770i 0.443932 + 0.692674i
\(131\) 4.05562 7.02454i 0.354341 0.613737i −0.632664 0.774427i \(-0.718038\pi\)
0.987005 + 0.160690i \(0.0513718\pi\)
\(132\) 0 0
\(133\) 0.265702 + 3.51971i 0.0230393 + 0.305198i
\(134\) −11.7408 −1.01425
\(135\) 0 0
\(136\) −2.45340 + 1.41647i −0.210378 + 0.121462i
\(137\) −4.00934 + 2.31479i −0.342541 + 0.197766i −0.661395 0.750038i \(-0.730035\pi\)
0.318854 + 0.947804i \(0.396702\pi\)
\(138\) 0 0
\(139\) −0.935789 −0.0793726 −0.0396863 0.999212i \(-0.512636\pi\)
−0.0396863 + 0.999212i \(0.512636\pi\)
\(140\) −5.68521 + 3.88067i −0.480488 + 0.327976i
\(141\) 0 0
\(142\) 2.88437 4.99587i 0.242051 0.419244i
\(143\) −10.9333 + 7.00712i −0.914290 + 0.585964i
\(144\) 0 0
\(145\) 20.2152 + 11.6713i 1.67878 + 0.969245i
\(146\) 11.4709 0.949341
\(147\) 0 0
\(148\) 0.167055i 0.0137319i
\(149\) −7.04871 4.06957i −0.577453 0.333392i 0.182668 0.983175i \(-0.441527\pi\)
−0.760120 + 0.649782i \(0.774860\pi\)
\(150\) 0 0
\(151\) 17.3278 10.0042i 1.41011 0.814130i 0.414716 0.909951i \(-0.363881\pi\)
0.995399 + 0.0958208i \(0.0305476\pi\)
\(152\) −0.667055 + 1.15537i −0.0541053 + 0.0937132i
\(153\) 0 0
\(154\) −5.37227 7.87041i −0.432910 0.634216i
\(155\) 10.4067 0.835888
\(156\) 0 0
\(157\) −10.6724 18.4852i −0.851752 1.47528i −0.879626 0.475666i \(-0.842207\pi\)
0.0278743 0.999611i \(-0.491126\pi\)
\(158\) 5.83773 3.37041i 0.464425 0.268136i
\(159\) 0 0
\(160\) −2.60168 −0.205681
\(161\) −7.74533 + 0.584693i −0.610418 + 0.0460803i
\(162\) 0 0
\(163\) −0.890194 0.513954i −0.0697254 0.0402560i 0.464732 0.885451i \(-0.346151\pi\)
−0.534457 + 0.845195i \(0.679484\pi\)
\(164\) −2.62952 + 1.51815i −0.205331 + 0.118548i
\(165\) 0 0
\(166\) 4.05026 7.01525i 0.314361 0.544489i
\(167\) 5.96976i 0.461954i 0.972959 + 0.230977i \(0.0741922\pi\)
−0.972959 + 0.230977i \(0.925808\pi\)
\(168\) 0 0
\(169\) 12.9442 1.20336i 0.995707 0.0925660i
\(170\) 3.68521 6.38297i 0.282642 0.489551i
\(171\) 0 0
\(172\) 1.16706 + 2.02140i 0.0889871 + 0.154130i
\(173\) −8.29108 + 14.3606i −0.630359 + 1.09181i 0.357119 + 0.934059i \(0.383759\pi\)
−0.987478 + 0.157756i \(0.949574\pi\)
\(174\) 0 0
\(175\) 2.02811 4.21731i 0.153311 0.318799i
\(176\) 3.60168i 0.271487i
\(177\) 0 0
\(178\) −4.08353 7.07288i −0.306073 0.530135i
\(179\) −9.37041 16.2300i −0.700378 1.21309i −0.968334 0.249659i \(-0.919682\pi\)
0.267956 0.963431i \(-0.413652\pi\)
\(180\) 0 0
\(181\) −0.426228 −0.0316813 −0.0158406 0.999875i \(-0.505042\pi\)
−0.0158406 + 0.999875i \(0.505042\pi\)
\(182\) 1.15804 + 9.46884i 0.0858400 + 0.701877i
\(183\) 0 0
\(184\) −2.54247 1.46789i −0.187433 0.108215i
\(185\) 0.217312 + 0.376395i 0.0159771 + 0.0276731i
\(186\) 0 0
\(187\) 8.83637 + 5.10168i 0.646179 + 0.373072i
\(188\) 9.74083i 0.710423i
\(189\) 0 0
\(190\) 3.47093i 0.251808i
\(191\) −4.43462 + 7.68099i −0.320878 + 0.555777i −0.980669 0.195672i \(-0.937311\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(192\) 0 0
\(193\) −6.06945 + 3.50420i −0.436888 + 0.252238i −0.702277 0.711904i \(-0.747833\pi\)
0.265388 + 0.964142i \(0.414500\pi\)
\(194\) 0.0695739 0.120505i 0.00499511 0.00865179i
\(195\) 0 0
\(196\) −6.92067 + 1.05087i −0.494334 + 0.0750620i
\(197\) 17.8050i 1.26856i −0.773105 0.634278i \(-0.781297\pi\)
0.773105 0.634278i \(-0.218703\pi\)
\(198\) 0 0
\(199\) 13.5545 + 23.4770i 0.960850 + 1.66424i 0.720374 + 0.693585i \(0.243970\pi\)
0.240475 + 0.970655i \(0.422697\pi\)
\(200\) 1.53177 0.884367i 0.108312 0.0625342i
\(201\) 0 0
\(202\) 3.56538i 0.250859i
\(203\) 13.3828 + 19.6059i 0.939287 + 1.37606i
\(204\) 0 0
\(205\) 3.94974 6.84116i 0.275862 0.477807i
\(206\) 16.5194 9.53747i 1.15096 0.664507i
\(207\) 0 0
\(208\) −1.65617 + 3.20267i −0.114834 + 0.222065i
\(209\) 4.80504 0.332371
\(210\) 0 0
\(211\) 22.6743 1.56096 0.780481 0.625179i \(-0.214974\pi\)
0.780481 + 0.625179i \(0.214974\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) 6.99108 4.03630i 0.477901 0.275916i
\(215\) −5.25903 3.03630i −0.358663 0.207074i
\(216\) 0 0
\(217\) 9.53747 + 4.58658i 0.647446 + 0.311357i
\(218\) 12.8692 0.871615
\(219\) 0 0
\(220\) 4.68521 + 8.11502i 0.315877 + 0.547114i
\(221\) −5.51153 8.59974i −0.370746 0.578481i
\(222\) 0 0
\(223\) 9.19496i 0.615740i 0.951428 + 0.307870i \(0.0996162\pi\)
−0.951428 + 0.307870i \(0.900384\pi\)
\(224\) −2.38437 1.14664i −0.159312 0.0766134i
\(225\) 0 0
\(226\) −17.2166 9.93999i −1.14523 0.661198i
\(227\) 11.7238 6.76873i 0.778135 0.449257i −0.0576337 0.998338i \(-0.518356\pi\)
0.835769 + 0.549081i \(0.185022\pi\)
\(228\) 0 0
\(229\) 15.9407 + 9.20336i 1.05339 + 0.608175i 0.923597 0.383366i \(-0.125235\pi\)
0.129794 + 0.991541i \(0.458569\pi\)
\(230\) 7.63798 0.503634
\(231\) 0 0
\(232\) 8.97209i 0.589047i
\(233\) −5.86505 + 10.1586i −0.384232 + 0.665510i −0.991662 0.128863i \(-0.958867\pi\)
0.607430 + 0.794373i \(0.292200\pi\)
\(234\) 0 0
\(235\) −12.6713 21.9473i −0.826581 1.43168i
\(236\) 10.0232 + 5.78689i 0.652453 + 0.376694i
\(237\) 0 0
\(238\) 6.19057 4.22562i 0.401275 0.273906i
\(239\) 11.1731i 0.722729i −0.932425 0.361365i \(-0.882311\pi\)
0.932425 0.361365i \(-0.117689\pi\)
\(240\) 0 0
\(241\) −12.7659 + 7.37041i −0.822326 + 0.474770i −0.851218 0.524812i \(-0.824135\pi\)
0.0288920 + 0.999583i \(0.490802\pi\)
\(242\) −1.70788 + 0.986046i −0.109787 + 0.0633855i
\(243\) 0 0
\(244\) −4.03630 −0.258398
\(245\) 14.2261 11.3704i 0.908872 0.726429i
\(246\) 0 0
\(247\) −4.27272 2.20951i −0.271867 0.140588i
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) 0 0
\(250\) 4.20336 7.28043i 0.265844 0.460455i
\(251\) −22.9465 −1.44837 −0.724186 0.689605i \(-0.757784\pi\)
−0.724186 + 0.689605i \(0.757784\pi\)
\(252\) 0 0
\(253\) 10.5738i 0.664767i
\(254\) 8.69371 + 5.01932i 0.545492 + 0.314940i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.370413 + 0.641575i −0.0231058 + 0.0400203i −0.877347 0.479856i \(-0.840689\pi\)
0.854241 + 0.519877i \(0.174022\pi\)
\(258\) 0 0
\(259\) 0.0332708 + 0.440732i 0.00206735 + 0.0273858i
\(260\) −0.434624 9.37041i −0.0269542 0.581128i
\(261\) 0 0
\(262\) −7.02454 + 4.05562i −0.433978 + 0.250557i
\(263\) −10.5042 18.1938i −0.647717 1.12188i −0.983667 0.179998i \(-0.942391\pi\)
0.335950 0.941880i \(-0.390943\pi\)
\(264\) 0 0
\(265\) 7.80504i 0.479460i
\(266\) 1.52975 3.18101i 0.0937950 0.195040i
\(267\) 0 0
\(268\) 10.1679 + 5.87041i 0.621101 + 0.358593i
\(269\) −15.5587 26.9484i −0.948628 1.64307i −0.748319 0.663339i \(-0.769139\pi\)
−0.200308 0.979733i \(-0.564194\pi\)
\(270\) 0 0
\(271\) 1.73932 + 1.00420i 0.105656 + 0.0610007i 0.551897 0.833912i \(-0.313904\pi\)
−0.446241 + 0.894913i \(0.647237\pi\)
\(272\) 2.83294 0.171773
\(273\) 0 0
\(274\) 4.62959 0.279684
\(275\) −5.51694 3.18521i −0.332684 0.192075i
\(276\) 0 0
\(277\) −7.68404 13.3091i −0.461689 0.799669i 0.537356 0.843356i \(-0.319423\pi\)
−0.999045 + 0.0436862i \(0.986090\pi\)
\(278\) 0.810417 + 0.467895i 0.0486056 + 0.0280625i
\(279\) 0 0
\(280\) 6.86387 0.518152i 0.410194 0.0309655i
\(281\) 16.6682i 0.994343i 0.867652 + 0.497171i \(0.165628\pi\)
−0.867652 + 0.497171i \(0.834372\pi\)
\(282\) 0 0
\(283\) −8.90252 15.4196i −0.529200 0.916601i −0.999420 0.0340519i \(-0.989159\pi\)
0.470220 0.882549i \(-0.344174\pi\)
\(284\) −4.99587 + 2.88437i −0.296450 + 0.171156i
\(285\) 0 0
\(286\) 12.9721 0.601679i 0.767056 0.0355780i
\(287\) 6.63495 4.52895i 0.391649 0.267336i
\(288\) 0 0
\(289\) 4.48721 7.77208i 0.263954 0.457181i
\(290\) −11.6713 20.2152i −0.685360 1.18708i
\(291\) 0 0
\(292\) −9.93411 5.73546i −0.581350 0.335643i
\(293\) 26.4733i 1.54658i 0.634050 + 0.773292i \(0.281391\pi\)
−0.634050 + 0.773292i \(0.718609\pi\)
\(294\) 0 0
\(295\) −30.1112 −1.75314
\(296\) −0.0835276 + 0.144674i −0.00485494 + 0.00840901i
\(297\) 0 0
\(298\) 4.06957 + 7.04871i 0.235744 + 0.408321i
\(299\) 4.86215 9.40237i 0.281186 0.543753i
\(300\) 0 0
\(301\) −3.48156 5.10051i −0.200674 0.293989i
\(302\) −20.0084 −1.15135
\(303\) 0 0
\(304\) 1.15537 0.667055i 0.0662652 0.0382582i
\(305\) 9.09428 5.25058i 0.520737 0.300647i
\(306\) 0 0
\(307\) 23.2783i 1.32856i 0.747483 + 0.664281i \(0.231262\pi\)
−0.747483 + 0.664281i \(0.768738\pi\)
\(308\) 0.717312 + 9.50211i 0.0408726 + 0.541433i
\(309\) 0 0
\(310\) −9.01248 5.20336i −0.511875 0.295531i
\(311\) 8.27293 + 14.3291i 0.469115 + 0.812531i 0.999377 0.0353031i \(-0.0112397\pi\)
−0.530262 + 0.847834i \(0.677906\pi\)
\(312\) 0 0
\(313\) 5.01395 8.68442i 0.283405 0.490873i −0.688816 0.724936i \(-0.741869\pi\)
0.972221 + 0.234064i \(0.0752025\pi\)
\(314\) 21.3448i 1.20456i
\(315\) 0 0
\(316\) −6.74083 −0.379201
\(317\) −18.5408 10.7045i −1.04135 0.601226i −0.121137 0.992636i \(-0.538654\pi\)
−0.920216 + 0.391410i \(0.871988\pi\)
\(318\) 0 0
\(319\) 27.9853 16.1573i 1.56687 0.904635i
\(320\) 2.25312 + 1.30084i 0.125953 + 0.0727191i
\(321\) 0 0
\(322\) 7.00000 + 3.36631i 0.390095 + 0.187597i
\(323\) 3.77946i 0.210295i
\(324\) 0 0
\(325\) 3.44110 + 5.36920i 0.190878 + 0.297830i
\(326\) 0.513954 + 0.890194i 0.0284653 + 0.0493033i
\(327\) 0 0
\(328\) 3.03630 0.167652
\(329\) −1.93999 25.6987i −0.106955 1.41681i
\(330\) 0 0
\(331\) −31.0561 17.9302i −1.70700 0.985535i −0.938235 0.345998i \(-0.887540\pi\)
−0.768761 0.639536i \(-0.779126\pi\)
\(332\) −7.01525 + 4.05026i −0.385012 + 0.222287i
\(333\) 0 0
\(334\) 2.98488 5.16997i 0.163325 0.282888i
\(335\) −30.5459 −1.66890
\(336\) 0 0
\(337\) 6.73850 0.367069 0.183535 0.983013i \(-0.441246\pi\)
0.183535 + 0.983013i \(0.441246\pi\)
\(338\) −11.8117 5.42995i −0.642470 0.295351i
\(339\) 0 0
\(340\) −6.38297 + 3.68521i −0.346165 + 0.199858i
\(341\) 7.20336 12.4766i 0.390084 0.675645i
\(342\) 0 0
\(343\) 18.0491 4.15077i 0.974561 0.224121i
\(344\) 2.33411i 0.125847i
\(345\) 0 0
\(346\) 14.3606 8.29108i 0.772029 0.445731i
\(347\) 17.2869 + 29.9418i 0.928009 + 1.60736i 0.786650 + 0.617400i \(0.211814\pi\)
0.141359 + 0.989958i \(0.454853\pi\)
\(348\) 0 0
\(349\) 21.7771i 1.16570i 0.812579 + 0.582852i \(0.198063\pi\)
−0.812579 + 0.582852i \(0.801937\pi\)
\(350\) −3.86505 + 2.63824i −0.206596 + 0.141020i
\(351\) 0 0
\(352\) −1.80084 + 3.11915i −0.0959851 + 0.166251i
\(353\) −17.6244 + 10.1755i −0.938052 + 0.541585i −0.889349 0.457229i \(-0.848842\pi\)
−0.0487029 + 0.998813i \(0.515509\pi\)
\(354\) 0 0
\(355\) 7.50420 12.9977i 0.398281 0.689844i
\(356\) 8.16706i 0.432853i
\(357\) 0 0
\(358\) 18.7408i 0.990483i
\(359\) −1.24040 0.716146i −0.0654659 0.0377968i 0.466910 0.884305i \(-0.345367\pi\)
−0.532376 + 0.846508i \(0.678701\pi\)
\(360\) 0 0
\(361\) −8.61007 14.9131i −0.453162 0.784899i
\(362\) 0.369125 + 0.213114i 0.0194008 + 0.0112010i
\(363\) 0 0
\(364\) 3.73152 8.77928i 0.195585 0.460159i
\(365\) 29.8437 1.56209
\(366\) 0 0
\(367\) −12.1755 21.0885i −0.635553 1.10081i −0.986398 0.164377i \(-0.947439\pi\)
0.350844 0.936434i \(-0.385895\pi\)
\(368\) 1.46789 + 2.54247i 0.0765193 + 0.132535i
\(369\) 0 0
\(370\) 0.434624i 0.0225950i
\(371\) 3.43993 7.15310i 0.178592 0.371371i
\(372\) 0 0
\(373\) −15.9763 + 27.6717i −0.827221 + 1.43279i 0.0729891 + 0.997333i \(0.476746\pi\)
−0.900210 + 0.435456i \(0.856587\pi\)
\(374\) −5.10168 8.83637i −0.263802 0.456918i
\(375\) 0 0
\(376\) 4.87041 8.43580i 0.251172 0.435043i
\(377\) −32.3146 + 1.49883i −1.66429 + 0.0771939i
\(378\) 0 0
\(379\) 2.79664i 0.143654i −0.997417 0.0718269i \(-0.977117\pi\)
0.997417 0.0718269i \(-0.0228829\pi\)
\(380\) −1.73546 + 3.00591i −0.0890274 + 0.154200i
\(381\) 0 0
\(382\) 7.68099 4.43462i 0.392994 0.226895i
\(383\) −8.52487 4.92184i −0.435600 0.251494i 0.266129 0.963937i \(-0.414255\pi\)
−0.701730 + 0.712443i \(0.747589\pi\)
\(384\) 0 0
\(385\) −13.9769 20.4763i −0.712329 1.04357i
\(386\) 7.00840 0.356718
\(387\) 0 0
\(388\) −0.120505 + 0.0695739i −0.00611774 + 0.00353208i
\(389\) 8.19057 + 14.1865i 0.415278 + 0.719283i 0.995458 0.0952056i \(-0.0303508\pi\)
−0.580179 + 0.814489i \(0.697018\pi\)
\(390\) 0 0
\(391\) −8.31693 −0.420605
\(392\) 6.51891 + 2.55026i 0.329255 + 0.128807i
\(393\) 0 0
\(394\) −8.90252 + 15.4196i −0.448502 + 0.776829i
\(395\) 15.1879 8.76873i 0.764186 0.441203i
\(396\) 0 0
\(397\) −4.71379 2.72151i −0.236579 0.136589i 0.377025 0.926203i \(-0.376947\pi\)
−0.613603 + 0.789615i \(0.710281\pi\)
\(398\) 27.1089i 1.35885i
\(399\) 0 0
\(400\) −1.76873 −0.0884367
\(401\) −15.2214 8.78805i −0.760118 0.438854i 0.0692201 0.997601i \(-0.477949\pi\)
−0.829338 + 0.558747i \(0.811282\pi\)
\(402\) 0 0
\(403\) −12.1425 + 7.78205i −0.604860 + 0.387652i
\(404\) −1.78269 + 3.08771i −0.0886920 + 0.153619i
\(405\) 0 0
\(406\) −1.78689 23.6706i −0.0886817 1.17475i
\(407\) 0.601679 0.0298241
\(408\) 0 0
\(409\) −16.4618 + 9.50420i −0.813981 + 0.469952i −0.848337 0.529457i \(-0.822396\pi\)
0.0343552 + 0.999410i \(0.489062\pi\)
\(410\) −6.84116 + 3.94974i −0.337861 + 0.195064i
\(411\) 0 0
\(412\) −19.0749 −0.939755
\(413\) −27.5961 13.2710i −1.35792 0.653023i
\(414\) 0 0
\(415\) 10.5375 18.2514i 0.517264 0.895928i
\(416\) 3.03562 1.94551i 0.148833 0.0953867i
\(417\) 0 0
\(418\) −4.16128 2.40252i −0.203535 0.117511i
\(419\) −5.48165 −0.267796 −0.133898 0.990995i \(-0.542750\pi\)
−0.133898 + 0.990995i \(0.542750\pi\)
\(420\) 0 0
\(421\) 3.16472i 0.154239i −0.997022 0.0771196i \(-0.975428\pi\)
0.997022 0.0771196i \(-0.0245723\pi\)
\(422\) −19.6365 11.3371i −0.955890 0.551883i
\(423\) 0 0
\(424\) 2.59808 1.50000i 0.126174 0.0728464i
\(425\) 2.50536 4.33942i 0.121528 0.210493i
\(426\) 0 0
\(427\) 10.6488 0.803872i 0.515329 0.0389021i
\(428\) −8.07261 −0.390204
\(429\) 0 0
\(430\) 3.03630 + 5.25903i 0.146424 + 0.253613i
\(431\) 13.3688 7.71848i 0.643952 0.371786i −0.142183 0.989840i \(-0.545412\pi\)
0.786135 + 0.618054i \(0.212079\pi\)
\(432\) 0 0
\(433\) 13.9419 0.670003 0.335001 0.942218i \(-0.391263\pi\)
0.335001 + 0.942218i \(0.391263\pi\)
\(434\) −5.96640 8.74083i −0.286396 0.419573i
\(435\) 0 0
\(436\) −11.1451 6.43462i −0.533753 0.308163i
\(437\) −3.39193 + 1.95833i −0.162258 + 0.0936798i
\(438\) 0 0
\(439\) 13.6936 23.7180i 0.653560 1.13200i −0.328693 0.944437i \(-0.606608\pi\)
0.982253 0.187562i \(-0.0600586\pi\)
\(440\) 9.37041i 0.446717i
\(441\) 0 0
\(442\) 0.473258 + 10.2034i 0.0225106 + 0.485324i
\(443\) 12.0556 20.8809i 0.572780 0.992084i −0.423499 0.905896i \(-0.639198\pi\)
0.996279 0.0861872i \(-0.0274683\pi\)
\(444\) 0 0
\(445\) −10.6240 18.4014i −0.503627 0.872308i
\(446\) 4.59748 7.96307i 0.217697 0.377062i
\(447\) 0 0
\(448\) 1.49160 + 2.18521i 0.0704715 + 0.103241i
\(449\) 2.59095i 0.122275i −0.998129 0.0611373i \(-0.980527\pi\)
0.998129 0.0611373i \(-0.0194728\pi\)
\(450\) 0 0
\(451\) −5.46789 9.47067i −0.257473 0.445957i
\(452\) 9.93999 + 17.2166i 0.467538 + 0.809799i
\(453\) 0 0
\(454\) −13.5375 −0.635345
\(455\) 3.01286 + 24.6349i 0.141245 + 1.15490i
\(456\) 0 0
\(457\) −9.06607 5.23430i −0.424093 0.244850i 0.272734 0.962089i \(-0.412072\pi\)
−0.696827 + 0.717239i \(0.745405\pi\)
\(458\) −9.20336 15.9407i −0.430045 0.744859i
\(459\) 0 0
\(460\) −6.61469 3.81899i −0.308411 0.178061i
\(461\) 30.0168i 1.39802i −0.715111 0.699011i \(-0.753624\pi\)
0.715111 0.699011i \(-0.246376\pi\)
\(462\) 0 0
\(463\) 19.4649i 0.904609i −0.891864 0.452304i \(-0.850602\pi\)
0.891864 0.452304i \(-0.149398\pi\)
\(464\) 4.48605 7.77006i 0.208259 0.360716i
\(465\) 0 0
\(466\) 10.1586 5.86505i 0.470586 0.271693i
\(467\) −0.150069 + 0.259927i −0.00694437 + 0.0120280i −0.869477 0.493974i \(-0.835544\pi\)
0.862532 + 0.506002i \(0.168877\pi\)
\(468\) 0 0
\(469\) −27.9944 13.4626i −1.29266 0.621643i
\(470\) 25.3425i 1.16896i
\(471\) 0 0
\(472\) −5.78689 10.0232i −0.266363 0.461354i
\(473\) −7.28043 + 4.20336i −0.334755 + 0.193271i
\(474\) 0 0
\(475\) 2.35969i 0.108270i
\(476\) −7.47400 + 0.564211i −0.342570 + 0.0258605i
\(477\) 0 0
\(478\) −5.58656 + 9.67621i −0.255523 + 0.442579i
\(479\) −20.4248 + 11.7922i −0.933232 + 0.538802i −0.887832 0.460167i \(-0.847789\pi\)
−0.0453996 + 0.998969i \(0.514456\pi\)
\(480\) 0 0
\(481\) −0.535023 0.276671i −0.0243950 0.0126151i
\(482\) 14.7408 0.671426
\(483\) 0 0
\(484\) 1.97209 0.0896406
\(485\) 0.181009 0.313517i 0.00821919 0.0142361i
\(486\) 0 0
\(487\) 29.6544 17.1210i 1.34377 0.775826i 0.356412 0.934329i \(-0.384000\pi\)
0.987359 + 0.158502i \(0.0506666\pi\)
\(488\) 3.49554 + 2.01815i 0.158236 + 0.0913574i
\(489\) 0 0
\(490\) −18.0054 + 2.73402i −0.813399 + 0.123510i
\(491\) 39.7553 1.79413 0.897065 0.441898i \(-0.145695\pi\)
0.897065 + 0.441898i \(0.145695\pi\)
\(492\) 0 0
\(493\) 12.7087 + 22.0122i 0.572372 + 0.991377i
\(494\) 2.59553 + 4.04985i 0.116778 + 0.182211i
\(495\) 0 0
\(496\) 4.00000i 0.179605i
\(497\) 12.6059 8.60465i 0.565451 0.385971i
\(498\) 0 0
\(499\) 10.6091 + 6.12519i 0.474931 + 0.274201i 0.718301 0.695732i \(-0.244920\pi\)
−0.243371 + 0.969933i \(0.578253\pi\)
\(500\) −7.28043 + 4.20336i −0.325591 + 0.187980i
\(501\) 0 0
\(502\) 19.8723 + 11.4733i 0.886943 + 0.512077i
\(503\) −2.12842 −0.0949016 −0.0474508 0.998874i \(-0.515110\pi\)
−0.0474508 + 0.998874i \(0.515110\pi\)
\(504\) 0 0
\(505\) 9.27596i 0.412775i
\(506\) 5.28689 9.15715i 0.235031 0.407085i
\(507\) 0 0
\(508\) −5.01932 8.69371i −0.222696 0.385721i
\(509\) −29.1741 16.8437i −1.29312 0.746583i −0.313913 0.949452i \(-0.601640\pi\)
−0.979206 + 0.202869i \(0.934973\pi\)
\(510\) 0 0
\(511\) 27.3509 + 13.1531i 1.20993 + 0.581858i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 0.641575 0.370413i 0.0282987 0.0163382i
\(515\) 42.9781 24.8134i 1.89384 1.09341i
\(516\) 0 0
\(517\) −35.0833 −1.54296
\(518\) 0.191553 0.398321i 0.00841635 0.0175012i
\(519\) 0 0
\(520\) −4.30881 + 8.33233i −0.188954 + 0.365397i
\(521\) −0.130752 0.226469i −0.00572835 0.00992180i 0.863147 0.504953i \(-0.168490\pi\)
−0.868875 + 0.495031i \(0.835157\pi\)
\(522\) 0 0
\(523\) −5.23966 + 9.07536i −0.229114 + 0.396838i −0.957546 0.288281i \(-0.906916\pi\)
0.728432 + 0.685119i \(0.240250\pi\)
\(524\) 8.11124 0.354341
\(525\) 0 0
\(526\) 21.0084i 0.916010i
\(527\) 9.81361 + 5.66589i 0.427488 + 0.246810i
\(528\) 0 0
\(529\) 7.19057 + 12.4544i 0.312633 + 0.541497i
\(530\) −3.90252 + 6.75936i −0.169515 + 0.293608i
\(531\) 0 0
\(532\) −2.91531 + 1.98996i −0.126395 + 0.0862757i
\(533\) 0.507230 + 10.9358i 0.0219706 + 0.473682i
\(534\) 0 0
\(535\) 18.1886 10.5012i 0.786360 0.454005i
\(536\) −5.87041 10.1679i −0.253563 0.439184i
\(537\) 0 0
\(538\) 31.1173i 1.34156i
\(539\) −3.78489 24.9260i −0.163027 1.07364i
\(540\) 0 0
\(541\) −18.8112 10.8607i −0.808757 0.466936i 0.0377670 0.999287i \(-0.487976\pi\)
−0.846524 + 0.532350i \(0.821309\pi\)
\(542\) −1.00420 1.73932i −0.0431340 0.0747103i
\(543\) 0 0
\(544\) −2.45340 1.41647i −0.105189 0.0607308i
\(545\) 33.4817 1.43420
\(546\) 0 0
\(547\) −33.3593 −1.42634 −0.713170 0.700991i \(-0.752741\pi\)
−0.713170 + 0.700991i \(0.752741\pi\)
\(548\) −4.00934 2.31479i −0.171270 0.0988831i
\(549\) 0 0
\(550\) 3.18521 + 5.51694i 0.135818 + 0.235243i
\(551\) 10.3661 + 5.98488i 0.441611 + 0.254964i
\(552\) 0 0
\(553\) 17.7840 1.34251i 0.756251 0.0570892i
\(554\) 15.3681i 0.652927i
\(555\) 0 0
\(556\) −0.467895 0.810417i −0.0198432 0.0343694i
\(557\) −33.2612 + 19.2034i −1.40932 + 0.813672i −0.995323 0.0966049i \(-0.969202\pi\)
−0.413999 + 0.910277i \(0.635868\pi\)
\(558\) 0 0
\(559\) 8.40672 0.389925i 0.355566 0.0164921i
\(560\) −6.20336 2.98320i −0.262140 0.126063i
\(561\) 0 0
\(562\) 8.33411 14.4351i 0.351553 0.608908i
\(563\) 1.93346 + 3.34885i 0.0814856 + 0.141137i 0.903888 0.427769i \(-0.140700\pi\)
−0.822403 + 0.568906i \(0.807367\pi\)
\(564\) 0 0
\(565\) −44.7920 25.8607i −1.88441 1.08797i
\(566\) 17.8050i 0.748402i
\(567\) 0 0
\(568\) 5.76873 0.242051
\(569\) −13.8371 + 23.9666i −0.580083 + 1.00473i 0.415386 + 0.909645i \(0.363647\pi\)
−0.995469 + 0.0950882i \(0.969687\pi\)
\(570\) 0 0
\(571\) 20.0470 + 34.7225i 0.838942 + 1.45309i 0.890780 + 0.454435i \(0.150159\pi\)
−0.0518379 + 0.998656i \(0.516508\pi\)
\(572\) −11.5350 5.96498i −0.482303 0.249408i
\(573\) 0 0
\(574\) −8.01051 + 0.604711i −0.334352 + 0.0252402i
\(575\) 5.19263 0.216548
\(576\) 0 0
\(577\) 0.352227 0.203358i 0.0146634 0.00846592i −0.492650 0.870227i \(-0.663972\pi\)
0.507314 + 0.861761i \(0.330639\pi\)
\(578\) −7.77208 + 4.48721i −0.323276 + 0.186643i
\(579\) 0 0
\(580\) 23.3425i 0.969245i
\(581\) 17.7013 12.0827i 0.734374 0.501276i
\(582\) 0 0
\(583\) −9.35744 5.40252i −0.387545 0.223749i
\(584\) 5.73546 + 9.93411i 0.237335 + 0.411077i
\(585\) 0 0
\(586\) 13.2366 22.9265i 0.546800 0.947086i
\(587\) 22.0131i 0.908576i −0.890855 0.454288i \(-0.849894\pi\)
0.890855 0.454288i \(-0.150106\pi\)
\(588\) 0 0
\(589\) 5.33644 0.219884
\(590\) 26.0771 + 15.0556i 1.07358 + 0.619830i
\(591\) 0 0
\(592\) 0.144674 0.0835276i 0.00594607 0.00343296i
\(593\) 27.0080 + 15.5931i 1.10909 + 0.640331i 0.938593 0.345027i \(-0.112130\pi\)
0.170494 + 0.985359i \(0.445464\pi\)
\(594\) 0 0
\(595\) 16.1059 10.9937i 0.660277 0.450698i
\(596\) 8.13915i 0.333392i
\(597\) 0 0
\(598\) −8.91194 + 5.71162i −0.364436 + 0.233565i
\(599\) −3.17009 5.49075i −0.129526 0.224346i 0.793967 0.607961i \(-0.208012\pi\)
−0.923493 + 0.383615i \(0.874679\pi\)
\(600\) 0 0
\(601\) −23.5566 −0.960893 −0.480447 0.877024i \(-0.659525\pi\)
−0.480447 + 0.877024i \(0.659525\pi\)
\(602\) 0.464862 + 6.15795i 0.0189464 + 0.250979i
\(603\) 0 0
\(604\) 17.3278 + 10.0042i 0.705057 + 0.407065i
\(605\) −4.44336 + 2.56538i −0.180648 + 0.104297i
\(606\) 0 0
\(607\) −8.01932 + 13.8899i −0.325494 + 0.563772i −0.981612 0.190886i \(-0.938864\pi\)
0.656118 + 0.754658i \(0.272197\pi\)
\(608\) −1.33411 −0.0541053
\(609\) 0 0
\(610\) −10.5012 −0.425180
\(611\) 31.1967 + 16.1324i 1.26208 + 0.652648i
\(612\) 0 0
\(613\) −7.37710 + 4.25917i −0.297958 + 0.172026i −0.641525 0.767102i \(-0.721698\pi\)
0.343567 + 0.939128i \(0.388365\pi\)
\(614\) 11.6391 20.1596i 0.469718 0.813575i
\(615\) 0 0
\(616\) 4.12985 8.58773i 0.166396 0.346009i
\(617\) 1.40905i 0.0567261i −0.999598 0.0283631i \(-0.990971\pi\)
0.999598 0.0283631i \(-0.00902945\pi\)
\(618\) 0 0
\(619\) −39.3641 + 22.7269i −1.58218 + 0.913470i −0.587635 + 0.809126i \(0.699941\pi\)
−0.994541 + 0.104344i \(0.966726\pi\)
\(620\) 5.20336 + 9.01248i 0.208972 + 0.361950i
\(621\) 0 0
\(622\) 16.5459i 0.663429i
\(623\) −1.62655 21.5467i −0.0651665 0.863250i
\(624\) 0 0
\(625\) 15.3576 26.6002i 0.614305 1.06401i
\(626\) −8.68442 + 5.01395i −0.347099 + 0.200398i
\(627\) 0 0
\(628\) 10.6724 18.4852i 0.425876 0.737639i
\(629\) 0.473258i 0.0188700i
\(630\) 0 0
\(631\) 35.2313i 1.40253i 0.712898 + 0.701267i \(0.247382\pi\)
−0.712898 + 0.701267i \(0.752618\pi\)
\(632\) 5.83773 + 3.37041i 0.232212 + 0.134068i
\(633\) 0 0
\(634\) 10.7045 + 18.5408i 0.425131 + 0.736348i
\(635\) 22.6182 + 13.0587i 0.897578 + 0.518217i
\(636\) 0 0
\(637\) −8.09619 + 23.9051i −0.320783 + 0.947153i
\(638\) −32.3146 −1.27935
\(639\) 0 0
\(640\) −1.30084 2.25312i −0.0514202 0.0890624i
\(641\) 11.1168 + 19.2549i 0.439087 + 0.760521i 0.997619 0.0689616i \(-0.0219686\pi\)
−0.558532 + 0.829483i \(0.688635\pi\)
\(642\) 0 0
\(643\) 3.64031i 0.143560i −0.997420 0.0717800i \(-0.977132\pi\)
0.997420 0.0717800i \(-0.0228679\pi\)
\(644\) −4.37902 6.41531i −0.172558 0.252799i
\(645\) 0 0
\(646\) 1.88973 3.27311i 0.0743505 0.128779i
\(647\) 7.02791 + 12.1727i 0.276296 + 0.478558i 0.970461 0.241257i \(-0.0775598\pi\)
−0.694166 + 0.719815i \(0.744226\pi\)
\(648\) 0 0
\(649\) −20.8425 + 36.1003i −0.818140 + 1.41706i
\(650\) −0.295476 6.37041i −0.0115895 0.249868i
\(651\) 0 0
\(652\) 1.02791i 0.0402560i
\(653\) −8.62403 + 14.9373i −0.337484 + 0.584540i −0.983959 0.178396i \(-0.942909\pi\)
0.646475 + 0.762936i \(0.276243\pi\)
\(654\) 0 0
\(655\) −18.2756 + 10.5514i −0.714087 + 0.412278i
\(656\) −2.62952 1.51815i −0.102665 0.0592739i
\(657\) 0 0
\(658\) −11.1693 + 23.2257i −0.435423 + 0.905432i
\(659\) 21.6999 0.845307 0.422653 0.906291i \(-0.361099\pi\)
0.422653 + 0.906291i \(0.361099\pi\)
\(660\) 0 0
\(661\) 20.0758 11.5908i 0.780857 0.450828i −0.0558767 0.998438i \(-0.517795\pi\)
0.836734 + 0.547609i \(0.184462\pi\)
\(662\) 17.9302 + 31.0561i 0.696878 + 1.20703i
\(663\) 0 0
\(664\) 8.10051 0.314361
\(665\) 3.97992 8.27596i 0.154335 0.320928i
\(666\) 0 0
\(667\) −13.1701 + 22.8113i −0.509948 + 0.883256i
\(668\) −5.16997 + 2.98488i −0.200032 + 0.115489i
\(669\) 0 0
\(670\) 26.4535 + 15.2729i 1.02199 + 0.590045i
\(671\) 14.5375i 0.561213i
\(672\) 0 0
\(673\) 7.56538 0.291624 0.145812 0.989312i \(-0.453421\pi\)
0.145812 + 0.989312i \(0.453421\pi\)
\(674\) −5.83571 3.36925i −0.224783 0.129779i
\(675\) 0 0
\(676\) 7.51423 + 10.6083i 0.289009 + 0.408012i
\(677\) −10.4581 + 18.1140i −0.401939 + 0.696179i −0.993960 0.109744i \(-0.964997\pi\)
0.592021 + 0.805923i \(0.298330\pi\)
\(678\) 0 0
\(679\) 0.304067 0.207553i 0.0116690 0.00796515i
\(680\) 7.37041 0.282642
\(681\) 0 0
\(682\) −12.4766 + 7.20336i −0.477753 + 0.275831i
\(683\) 17.0981 9.87158i 0.654240 0.377725i −0.135839 0.990731i \(-0.543373\pi\)
0.790079 + 0.613005i \(0.210040\pi\)
\(684\) 0 0
\(685\) 12.0447 0.460204
\(686\) −17.7064 5.42989i −0.676033 0.207314i
\(687\) 0 0
\(688\) −1.16706 + 2.02140i −0.0444936 + 0.0770651i
\(689\) 5.83654 + 9.10685i 0.222354 + 0.346944i
\(690\) 0 0
\(691\) −23.4013 13.5107i −0.890226 0.513972i −0.0162096 0.999869i \(-0.505160\pi\)
−0.874016 + 0.485896i \(0.838493\pi\)
\(692\) −16.5822 −0.630359
\(693\) 0 0
\(694\) 34.5738i 1.31240i
\(695\) 2.10845 + 1.21731i 0.0799779 + 0.0461753i
\(696\) 0 0
\(697\) 7.44927 4.30084i 0.282161 0.162906i
\(698\) 10.8886 18.8595i 0.412138 0.713844i
\(699\) 0 0
\(700\) 4.66635 0.352262i 0.176372 0.0133142i
\(701\) −46.3956 −1.75234 −0.876169 0.482004i \(-0.839909\pi\)
−0.876169 + 0.482004i \(0.839909\pi\)
\(702\) 0 0
\(703\) 0.111435 + 0.193011i 0.00420285 + 0.00727955i
\(704\) 3.11915 1.80084i 0.117557 0.0678717i
\(705\) 0 0
\(706\) 20.3509 0.765916
\(707\) 4.08822 8.50117i 0.153753 0.319719i
\(708\) 0 0
\(709\) −35.7795 20.6573i −1.34373 0.775801i −0.356375 0.934343i \(-0.615987\pi\)
−0.987352 + 0.158542i \(0.949321\pi\)
\(710\) −12.9977 + 7.50420i −0.487793 + 0.281628i
\(711\) 0 0
\(712\) 4.08353 7.07288i 0.153037 0.265067i
\(713\) 11.7432i 0.439785i
\(714\) 0 0
\(715\) 33.7492 1.56538i 1.26215 0.0585417i
\(716\) 9.37041 16.2300i 0.350189 0.606545i
\(717\) 0 0
\(718\) 0.716146 + 1.24040i 0.0267263 + 0.0462914i
\(719\) −14.9721 + 25.9324i −0.558365 + 0.967116i 0.439268 + 0.898356i \(0.355238\pi\)
−0.997633 + 0.0687604i \(0.978096\pi\)
\(720\) 0 0
\(721\) 50.3244 3.79897i 1.87418 0.141481i
\(722\) 17.2201i 0.640868i
\(723\) 0 0
\(724\) −0.213114 0.369125i −0.00792032 0.0137184i
\(725\) −7.93462 13.7432i −0.294685 0.510409i
\(726\) 0 0
\(727\) 22.8860 0.848796 0.424398 0.905476i \(-0.360486\pi\)
0.424398 + 0.905476i \(0.360486\pi\)
\(728\) −7.62123 + 5.73732i −0.282462 + 0.212639i
\(729\) 0 0
\(730\) −25.8454 14.9218i −0.956580 0.552282i
\(731\) −3.30620 5.72651i −0.122284 0.211803i
\(732\) 0 0
\(733\) 33.8210 + 19.5265i 1.24921 + 0.721229i 0.970951 0.239278i \(-0.0769107\pi\)
0.278255 + 0.960507i \(0.410244\pi\)
\(734\) 24.3509i 0.898808i
\(735\) 0 0
\(736\) 2.93579i 0.108215i
\(737\) −21.1433 + 36.6213i −0.778825 + 1.34896i
\(738\) 0 0
\(739\) 42.8282 24.7269i 1.57546 0.909593i 0.579980 0.814631i \(-0.303060\pi\)
0.995481 0.0949620i \(-0.0302729\pi\)
\(740\) −0.217312 + 0.376395i −0.00798855 + 0.0138366i
\(741\) 0 0
\(742\) −6.55562 + 4.47480i −0.240664 + 0.164275i
\(743\) 0.203358i 0.00746049i −0.999993 0.00373025i \(-0.998813\pi\)
0.999993 0.00373025i \(-0.00118738\pi\)
\(744\) 0 0
\(745\) 10.5877 + 18.3385i 0.387904 + 0.671870i
\(746\) 27.6717 15.9763i 1.01313 0.584934i
\(747\) 0 0
\(748\) 10.2034i 0.373072i
\(749\) 21.2975 1.60774i 0.778194 0.0587457i
\(750\) 0 0
\(751\) 21.4733 37.1928i 0.783570 1.35718i −0.146279 0.989243i \(-0.546730\pi\)
0.929849 0.367940i \(-0.119937\pi\)
\(752\) −8.43580 + 4.87041i −0.307622 + 0.177606i
\(753\) 0 0
\(754\) 28.7347 + 14.8593i 1.04646 + 0.541143i
\(755\) −52.0554 −1.89449
\(756\) 0 0
\(757\) −19.5180 −0.709392 −0.354696 0.934982i \(-0.615416\pi\)
−0.354696 + 0.934982i \(0.615416\pi\)
\(758\) −1.39832 + 2.42196i −0.0507893 + 0.0879696i
\(759\) 0 0
\(760\) 3.00591 1.73546i 0.109036 0.0629519i
\(761\) 36.3876 + 21.0084i 1.31905 + 0.761554i 0.983576 0.180496i \(-0.0577702\pi\)
0.335474 + 0.942049i \(0.391104\pi\)
\(762\) 0 0
\(763\) 30.6850 + 14.7565i 1.11087 + 0.534219i
\(764\) −8.86925 −0.320878
\(765\) 0 0
\(766\) 4.92184 + 8.52487i 0.177833 + 0.308016i
\(767\) 35.1336 22.5169i 1.26860 0.813039i
\(768\) 0 0
\(769\) 51.9502i 1.87337i 0.350168 + 0.936687i \(0.386125\pi\)
−0.350168 + 0.936687i \(0.613875\pi\)
\(770\) 1.86622 + 24.7214i 0.0672537 + 0.890899i
\(771\) 0 0
\(772\) −6.06945 3.50420i −0.218444 0.126119i
\(773\) −36.4022 + 21.0168i −1.30929 + 0.755921i −0.981978 0.188993i \(-0.939477\pi\)
−0.327316 + 0.944915i \(0.606144\pi\)
\(774\) 0 0
\(775\) −6.12708 3.53747i −0.220091 0.127070i
\(776\) 0.139148 0.00499511
\(777\) 0 0
\(778\) 16.3811i 0.587292i
\(779\) 2.02538 3.50806i 0.0725668 0.125689i
\(780\) 0 0
\(781\) −10.3886 17.9935i −0.371732 0.643859i
\(782\) 7.20267 + 4.15846i 0.257567 + 0.148706i
\(783\) 0 0
\(784\) −4.37041 5.46804i −0.156086 0.195287i
\(785\) 55.5324i 1.98204i
\(786\) 0 0
\(787\) −7.61610 + 4.39716i −0.271485 + 0.156742i −0.629562 0.776950i \(-0.716766\pi\)
0.358078 + 0.933692i \(0.383432\pi\)
\(788\) 15.4196 8.90252i 0.549301 0.317139i
\(789\) 0 0
\(790\) −17.5375 −0.623955
\(791\) −29.6530 43.4419i −1.05434 1.54461i
\(792\) 0 0
\(793\) −6.68479 + 12.9270i −0.237384 + 0.459050i
\(794\) 2.72151 + 4.71379i 0.0965828 + 0.167286i
\(795\) 0 0
\(796\) −13.5545 + 23.4770i −0.480425 + 0.832120i
\(797\) 6.25039 0.221400 0.110700 0.993854i \(-0.464691\pi\)
0.110700 + 0.993854i \(0.464691\pi\)
\(798\) 0 0
\(799\) 27.5952i 0.976249i
\(800\) 1.53177 + 0.884367i 0.0541562 + 0.0312671i
\(801\) 0 0
\(802\) 8.78805 + 15.2214i 0.310317 + 0.537485i
\(803\) 20.6573 35.7795i 0.728980 1.26263i
\(804\) 0 0
\(805\) 18.2118 + 8.75805i 0.641880 + 0.308681i
\(806\) 14.4067 0.668221i 0.507455 0.0235371i
\(807\) 0 0
\(808\) 3.08771 1.78269i 0.108625 0.0627147i
\(809\) −22.9260 39.7091i −0.806036 1.39610i −0.915589 0.402115i \(-0.868275\pi\)
0.109553 0.993981i \(-0.465058\pi\)
\(810\) 0 0
\(811\) 29.5096i 1.03622i 0.855314 + 0.518110i \(0.173364\pi\)
−0.855314 + 0.518110i \(0.826636\pi\)
\(812\) −10.2878 + 21.3928i −0.361031 + 0.750739i
\(813\) 0 0
\(814\) −0.521069 0.300840i −0.0182635 0.0105444i
\(815\) 1.33714 + 2.31600i 0.0468381 + 0.0811259i
\(816\) 0 0
\(817\) −2.69677 1.55698i −0.0943480 0.0544718i
\(818\) 19.0084 0.664613
\(819\) 0 0
\(820\) 7.89949 0.275862
\(821\) −20.9197 12.0780i −0.730101 0.421524i 0.0883581 0.996089i \(-0.471838\pi\)
−0.818459 + 0.574565i \(0.805171\pi\)
\(822\) 0 0
\(823\) 15.3511 + 26.5889i 0.535106 + 0.926830i 0.999158 + 0.0410224i \(0.0130615\pi\)
−0.464053 + 0.885808i \(0.653605\pi\)
\(824\) 16.5194 + 9.53747i 0.575480 + 0.332253i
\(825\) 0 0
\(826\) 17.2634 + 25.2911i 0.600672 + 0.879989i
\(827\) 3.32338i 0.115565i 0.998329 + 0.0577827i \(0.0184031\pi\)
−0.998329 + 0.0577827i \(0.981597\pi\)
\(828\) 0 0
\(829\) 14.8232 + 25.6745i 0.514831 + 0.891713i 0.999852 + 0.0172105i \(0.00547853\pi\)
−0.485021 + 0.874502i \(0.661188\pi\)
\(830\) −18.2514 + 10.5375i −0.633516 + 0.365761i
\(831\) 0 0
\(832\) −3.60168 + 0.167055i −0.124866 + 0.00579160i
\(833\) 19.6059 2.97705i 0.679303 0.103149i
\(834\) 0 0
\(835\) 7.76570 13.4506i 0.268743 0.465477i
\(836\) 2.40252 + 4.16128i 0.0830928 + 0.143921i
\(837\) 0 0
\(838\) 4.74725 + 2.74083i 0.163991 + 0.0946803i
\(839\) 5.51189i 0.190292i −0.995463 0.0951458i \(-0.969668\pi\)
0.995463 0.0951458i \(-0.0303317\pi\)
\(840\) 0 0
\(841\) 51.4984 1.77581
\(842\) −1.58236 + 2.74073i −0.0545318 + 0.0944518i
\(843\) 0 0
\(844\) 11.3371 + 19.6365i 0.390241 + 0.675916i
\(845\) −30.7302 14.1270i −1.05715 0.485983i
\(846\) 0 0
\(847\) −5.20286 + 0.392763i −0.178772 + 0.0134955i
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) −4.33942 + 2.50536i −0.148841 + 0.0859333i
\(851\) −0.424732 + 0.245219i −0.0145596 + 0.00840601i
\(852\) 0 0
\(853\) 34.2611i 1.17308i −0.809921 0.586539i \(-0.800490\pi\)
0.809921 0.586539i \(-0.199510\pi\)
\(854\) −9.62403 4.62820i −0.329327 0.158374i
\(855\) 0 0
\(856\) 6.99108 + 4.03630i 0.238950 + 0.137958i
\(857\) 18.2299 + 31.5751i 0.622722 + 1.07859i 0.988977 + 0.148071i \(0.0473065\pi\)
−0.366255 + 0.930515i \(0.619360\pi\)
\(858\) 0 0
\(859\) −21.6743 + 37.5410i −0.739517 + 1.28088i 0.213196 + 0.977009i \(0.431613\pi\)
−0.952713 + 0.303872i \(0.901721\pi\)
\(860\) 6.07261i 0.207074i
\(861\) 0 0
\(862\) −15.4370 −0.525785
\(863\) 11.7907 + 6.80737i 0.401360 + 0.231726i 0.687071 0.726590i \(-0.258896\pi\)
−0.285710 + 0.958316i \(0.592230\pi\)
\(864\) 0 0
\(865\) 37.3616 21.5707i 1.27033 0.733427i
\(866\) −12.0740 6.97093i −0.410291 0.236882i
\(867\) 0 0
\(868\) 0.796642 + 10.5530i 0.0270398 + 0.358191i
\(869\) 24.2783i 0.823585i
\(870\) 0 0
\(871\) 35.6407 22.8419i 1.20764 0.773970i
\(872\) 6.43462 + 11.1451i 0.217904 + 0.377421i
\(873\) 0 0
\(874\) 3.91667 0.132483
\(875\) 18.3704 12.5395i 0.621033 0.423911i
\(876\) 0 0
\(877\) −23.8292 13.7578i −0.804656 0.464568i 0.0404407 0.999182i \(-0.487124\pi\)
−0.845097 + 0.534614i \(0.820457\pi\)
\(878\) −23.7180 + 13.6936i −0.800444 + 0.462137i
\(879\) 0 0
\(880\) −4.68521 + 8.11502i −0.157938 + 0.273557i
\(881\) 22.3341 0.752455 0.376228 0.926527i \(-0.377221\pi\)
0.376228 + 0.926527i \(0.377221\pi\)
\(882\) 0 0
\(883\) 9.28669 0.312522 0.156261 0.987716i \(-0.450056\pi\)
0.156261 + 0.987716i \(0.450056\pi\)
\(884\) 4.69183 9.07300i 0.157803 0.305158i
\(885\) 0 0
\(886\) −20.8809 + 12.0556i −0.701509 + 0.405016i
\(887\) −6.97209 + 12.0760i −0.234100 + 0.405473i −0.959011 0.283370i \(-0.908548\pi\)
0.724911 + 0.688843i \(0.241881\pi\)
\(888\) 0 0
\(889\) 14.9736 + 21.9365i 0.502199 + 0.735726i
\(890\) 21.2481i 0.712236i
\(891\) 0 0
\(892\) −7.96307 + 4.59748i −0.266623 + 0.153935i
\(893\) −6.49767 11.2543i −0.217436 0.376611i
\(894\) 0 0
\(895\) 48.7576i 1.62979i
\(896\) −0.199160 2.63824i −0.00665348 0.0881376i
\(897\) 0 0
\(898\) −1.29548 + 2.24383i −0.0432306 + 0.0748776i
\(899\) 31.0802 17.9442i 1.03658 0.598472i
\(900\) 0 0
\(901\) 4.24942 7.36021i 0.141569 0.245204i
\(902\) 10.9358i 0.364122i
\(903\) 0 0
\(904\) 19.8800i 0.661198i
\(905\) 0.960344 + 0.554455i 0.0319229 + 0.0184307i
\(906\) 0 0
\(907\) −2.06957 3.58461i −0.0687191 0.119025i 0.829619 0.558330i \(-0.188558\pi\)
−0.898338 + 0.439306i \(0.855225\pi\)
\(908\) 11.7238 + 6.76873i 0.389068 + 0.224628i
\(909\) 0 0
\(910\) 9.70823 22.8409i 0.321825 0.757167i
\(911\) −18.5566 −0.614807 −0.307404 0.951579i \(-0.599460\pi\)
−0.307404 + 0.951579i \(0.599460\pi\)
\(912\) 0 0
\(913\) −14.5877 25.2667i −0.482783 0.836205i
\(914\) 5.23430 + 9.06607i 0.173135 + 0.299879i
\(915\) 0 0
\(916\) 18.4067i 0.608175i
\(917\) −21.3994 + 1.61544i −0.706672 + 0.0533465i
\(918\) 0 0
\(919\) −25.6743 + 44.4692i −0.846917 + 1.46690i 0.0370298 + 0.999314i \(0.488210\pi\)
−0.883946 + 0.467588i \(0.845123\pi\)
\(920\) 3.81899 + 6.61469i 0.125908 + 0.218080i
\(921\) 0 0
\(922\) −15.0084 + 25.9953i −0.494275 + 0.856110i
\(923\) 0.963697 + 20.7771i 0.0317205 + 0.683888i
\(924\) 0 0
\(925\) 0.295476i 0.00971520i
\(926\) −9.73243 + 16.8571i −0.319828 + 0.553958i
\(927\) 0 0
\(928\) −7.77006 + 4.48605i −0.255065 + 0.147262i
\(929\) −6.01182 3.47093i −0.197241 0.113877i 0.398127 0.917330i \(-0.369660\pi\)
−0.595368 + 0.803453i \(0.702994\pi\)
\(930\) 0 0
\(931\) 7.29497 5.83061i 0.239083 0.191091i
\(932\) −11.7301 −0.384232
\(933\) 0 0
\(934\) 0.259927 0.150069i 0.00850508 0.00491041i
\(935\) −13.2729 22.9894i −0.434071 0.751834i
\(936\) 0 0
\(937\) 37.1005 1.21202 0.606010 0.795457i \(-0.292769\pi\)
0.606010 + 0.795457i \(0.292769\pi\)
\(938\) 17.5126 + 25.6561i 0.571807 + 0.837702i
\(939\) 0 0
\(940\) 12.6713 21.9473i 0.413291 0.715840i
\(941\) −7.28447 + 4.20569i −0.237467 + 0.137102i −0.614012 0.789297i \(-0.710445\pi\)
0.376545 + 0.926398i \(0.377112\pi\)
\(942\) 0 0
\(943\) 7.71970 + 4.45697i 0.251388 + 0.145139i
\(944\) 11.5738i 0.376694i
\(945\) 0 0
\(946\) 8.40672 0.273326
\(947\) −21.7953 12.5835i −0.708252 0.408910i 0.102161 0.994768i \(-0.467424\pi\)
−0.810414 + 0.585858i \(0.800758\pi\)
\(948\) 0 0
\(949\) −34.8214 + 22.3168i −1.13035 + 0.724435i
\(950\) −1.17984 + 2.04355i −0.0382792 + 0.0663015i
\(951\) 0 0
\(952\) 6.75478 + 3.24838i 0.218924 + 0.105281i
\(953\) −35.3681 −1.14568 −0.572842 0.819666i \(-0.694159\pi\)
−0.572842 + 0.819666i \(0.694159\pi\)
\(954\) 0 0
\(955\) 19.9835 11.5375i 0.646650 0.373344i
\(956\) 9.67621 5.58656i 0.312951 0.180682i
\(957\) 0 0
\(958\) 23.5845 0.761981
\(959\) 11.0386 + 5.30849i 0.356456 + 0.171420i
\(960\) 0 0
\(961\) −7.50000 + 12.9904i −0.241935 + 0.419045i
\(962\) 0.325008 + 0.507116i 0.0104787 + 0.0163501i
\(963\) 0 0
\(964\) −12.7659 7.37041i −0.411163 0.237385i
\(965\) 18.2336 0.586960
\(966\) 0 0
\(967\) 17.3123i 0.556725i 0.960476 + 0.278362i \(0.0897917\pi\)
−0.960476 + 0.278362i \(0.910208\pi\)
\(968\) −1.70788 0.986046i −0.0548934 0.0316927i
\(969\) 0 0
\(970\) −0.313517 + 0.181009i −0.0100664 + 0.00581185i
\(971\) −26.6959 + 46.2387i −0.856713 + 1.48387i 0.0183332 + 0.999832i \(0.494164\pi\)
−0.875046 + 0.484039i \(0.839169\pi\)
\(972\) 0 0
\(973\) 1.39582 + 2.04489i 0.0447481 + 0.0655563i
\(974\) −34.2420 −1.09718
\(975\) 0 0
\(976\) −2.01815 3.49554i −0.0645995 0.111890i
\(977\) 28.4656 16.4346i 0.910695 0.525790i 0.0300405 0.999549i \(-0.490436\pi\)
0.880655 + 0.473758i \(0.157103\pi\)
\(978\) 0 0
\(979\) −29.4151 −0.940111
\(980\) 16.9601 + 6.63495i 0.541771 + 0.211946i
\(981\) 0 0
\(982\) −34.4291 19.8776i −1.09868 0.634321i
\(983\) −8.42126 + 4.86202i −0.268597 + 0.155074i −0.628250 0.778012i \(-0.716228\pi\)
0.359653 + 0.933086i \(0.382895\pi\)
\(984\) 0 0
\(985\) −23.1615 + 40.1169i −0.737987 + 1.27823i
\(986\) 25.4174i 0.809456i
\(987\) 0 0
\(988\) −0.222870 4.80504i −0.00709044 0.152869i
\(989\) 3.42623 5.93440i 0.108948 0.188703i
\(990\) 0 0
\(991\) −16.2057 28.0691i −0.514791 0.891644i −0.999853 0.0171639i \(-0.994536\pi\)
0.485062 0.874480i \(-0.338797\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) −15.2193 + 1.14890i −0.482728 + 0.0364410i
\(995\) 70.5287i 2.23591i
\(996\) 0 0
\(997\) 22.8395 + 39.5591i 0.723333 + 1.25285i 0.959656 + 0.281176i \(0.0907243\pi\)
−0.236323 + 0.971675i \(0.575942\pi\)
\(998\) −6.12519 10.6091i −0.193890 0.335827i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dm.c.415.1 12
3.2 odd 2 546.2.bk.b.415.6 yes 12
7.4 even 3 inner 1638.2.dm.c.1117.6 12
13.12 even 2 inner 1638.2.dm.c.415.6 12
21.2 odd 6 3822.2.c.k.883.1 6
21.5 even 6 3822.2.c.j.883.3 6
21.11 odd 6 546.2.bk.b.25.1 12
39.38 odd 2 546.2.bk.b.415.1 yes 12
91.25 even 6 inner 1638.2.dm.c.1117.1 12
273.116 odd 6 546.2.bk.b.25.6 yes 12
273.194 even 6 3822.2.c.j.883.4 6
273.233 odd 6 3822.2.c.k.883.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.1 12 21.11 odd 6
546.2.bk.b.25.6 yes 12 273.116 odd 6
546.2.bk.b.415.1 yes 12 39.38 odd 2
546.2.bk.b.415.6 yes 12 3.2 odd 2
1638.2.dm.c.415.1 12 1.1 even 1 trivial
1638.2.dm.c.415.6 12 13.12 even 2 inner
1638.2.dm.c.1117.1 12 91.25 even 6 inner
1638.2.dm.c.1117.6 12 7.4 even 3 inner
3822.2.c.j.883.3 6 21.5 even 6
3822.2.c.j.883.4 6 273.194 even 6
3822.2.c.k.883.1 6 21.2 odd 6
3822.2.c.k.883.6 6 273.233 odd 6