Properties

Label 1638.2.dm.c.415.6
Level $1638$
Weight $2$
Character 1638.415
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(415,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.415"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.6
Root \(0.385124 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.415
Dual form 1638.2.dm.c.1117.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(2.25312 + 1.30084i) q^{5} +(1.49160 + 2.18521i) q^{7} +1.00000i q^{8} +(1.30084 + 2.25312i) q^{10} +(3.11915 - 1.80084i) q^{11} +(3.60168 + 0.167055i) q^{13} +(0.199160 + 2.63824i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.41647 - 2.45340i) q^{17} +(1.15537 + 0.667055i) q^{19} +2.60168i q^{20} +3.60168 q^{22} +(1.46789 - 2.54247i) q^{23} +(0.884367 + 1.53177i) q^{25} +(3.03562 + 1.94551i) q^{26} +(-1.14664 + 2.38437i) q^{28} -8.97209 q^{29} +(3.46410 - 2.00000i) q^{31} +(-0.866025 + 0.500000i) q^{32} -2.83294i q^{34} +(0.518152 + 6.86387i) q^{35} +(0.144674 + 0.0835276i) q^{37} +(0.667055 + 1.15537i) q^{38} +(-1.30084 + 2.25312i) q^{40} -3.03630i q^{41} +2.33411 q^{43} +(3.11915 + 1.80084i) q^{44} +(2.54247 - 1.46789i) q^{46} +(-8.43580 - 4.87041i) q^{47} +(-2.55026 + 6.51891i) q^{49} +1.76873i q^{50} +(1.65617 + 3.20267i) q^{52} +(1.50000 + 2.59808i) q^{53} +9.37041 q^{55} +(-2.18521 + 1.49160i) q^{56} +(-7.77006 - 4.48605i) q^{58} +(-10.0232 + 5.78689i) q^{59} +(-2.01815 + 3.49554i) q^{61} +4.00000 q^{62} -1.00000 q^{64} +(7.89770 + 5.06160i) q^{65} +(-10.1679 + 5.87041i) q^{67} +(1.41647 - 2.45340i) q^{68} +(-2.98320 + 6.20336i) q^{70} -5.76873i q^{71} +(9.93411 - 5.73546i) q^{73} +(0.0835276 + 0.144674i) q^{74} +1.33411i q^{76} +(8.58773 + 4.12985i) q^{77} +(-3.37041 + 5.83773i) q^{79} +(-2.25312 + 1.30084i) q^{80} +(1.51815 - 2.62952i) q^{82} -8.10051i q^{83} -7.37041i q^{85} +(2.02140 + 1.16706i) q^{86} +(1.80084 + 3.11915i) q^{88} +(-7.07288 - 4.08353i) q^{89} +(5.00722 + 8.11959i) q^{91} +2.93579 q^{92} +(-4.87041 - 8.43580i) q^{94} +(1.73546 + 3.00591i) q^{95} -0.139148i q^{97} +(-5.46804 + 4.37041i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} + 12 q^{13} + 18 q^{14} - 6 q^{16} - 18 q^{17} + 12 q^{22} - 6 q^{25} - 12 q^{29} - 24 q^{35} + 6 q^{38} + 24 q^{43} - 18 q^{49} + 6 q^{52} + 18 q^{53} + 48 q^{55} + 6 q^{56} + 6 q^{61} + 48 q^{62}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.25312 + 1.30084i 1.00763 + 0.581753i 0.910496 0.413519i \(-0.135700\pi\)
0.0971303 + 0.995272i \(0.469034\pi\)
\(6\) 0 0
\(7\) 1.49160 + 2.18521i 0.563772 + 0.825931i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.30084 + 2.25312i 0.411362 + 0.712499i
\(11\) 3.11915 1.80084i 0.940458 0.542974i 0.0503540 0.998731i \(-0.483965\pi\)
0.890104 + 0.455758i \(0.150632\pi\)
\(12\) 0 0
\(13\) 3.60168 + 0.167055i 0.998926 + 0.0463328i
\(14\) 0.199160 + 2.63824i 0.0532279 + 0.705101i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.41647 2.45340i −0.343545 0.595037i 0.641543 0.767087i \(-0.278294\pi\)
−0.985088 + 0.172049i \(0.944961\pi\)
\(18\) 0 0
\(19\) 1.15537 + 0.667055i 0.265061 + 0.153033i 0.626641 0.779308i \(-0.284429\pi\)
−0.361580 + 0.932341i \(0.617763\pi\)
\(20\) 2.60168i 0.581753i
\(21\) 0 0
\(22\) 3.60168 0.767881
\(23\) 1.46789 2.54247i 0.306077 0.530141i −0.671423 0.741074i \(-0.734317\pi\)
0.977501 + 0.210933i \(0.0676501\pi\)
\(24\) 0 0
\(25\) 0.884367 + 1.53177i 0.176873 + 0.306354i
\(26\) 3.03562 + 1.94551i 0.595334 + 0.381547i
\(27\) 0 0
\(28\) −1.14664 + 2.38437i −0.216695 + 0.450603i
\(29\) −8.97209 −1.66608 −0.833038 0.553216i \(-0.813400\pi\)
−0.833038 + 0.553216i \(0.813400\pi\)
\(30\) 0 0
\(31\) 3.46410 2.00000i 0.622171 0.359211i −0.155543 0.987829i \(-0.549713\pi\)
0.777714 + 0.628619i \(0.216379\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 2.83294i 0.485846i
\(35\) 0.518152 + 6.86387i 0.0875836 + 1.16021i
\(36\) 0 0
\(37\) 0.144674 + 0.0835276i 0.0237843 + 0.0137319i 0.511845 0.859078i \(-0.328962\pi\)
−0.488061 + 0.872810i \(0.662296\pi\)
\(38\) 0.667055 + 1.15537i 0.108211 + 0.187426i
\(39\) 0 0
\(40\) −1.30084 + 2.25312i −0.205681 + 0.356250i
\(41\) 3.03630i 0.474191i −0.971486 0.237095i \(-0.923805\pi\)
0.971486 0.237095i \(-0.0761954\pi\)
\(42\) 0 0
\(43\) 2.33411 0.355948 0.177974 0.984035i \(-0.443046\pi\)
0.177974 + 0.984035i \(0.443046\pi\)
\(44\) 3.11915 + 1.80084i 0.470229 + 0.271487i
\(45\) 0 0
\(46\) 2.54247 1.46789i 0.374866 0.216429i
\(47\) −8.43580 4.87041i −1.23049 0.710423i −0.263357 0.964699i \(-0.584830\pi\)
−0.967132 + 0.254276i \(0.918163\pi\)
\(48\) 0 0
\(49\) −2.55026 + 6.51891i −0.364322 + 0.931273i
\(50\) 1.76873i 0.250137i
\(51\) 0 0
\(52\) 1.65617 + 3.20267i 0.229669 + 0.444131i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) 9.37041 1.26351
\(56\) −2.18521 + 1.49160i −0.292011 + 0.199323i
\(57\) 0 0
\(58\) −7.77006 4.48605i −1.02026 0.589047i
\(59\) −10.0232 + 5.78689i −1.30491 + 0.753388i −0.981241 0.192783i \(-0.938249\pi\)
−0.323666 + 0.946172i \(0.604915\pi\)
\(60\) 0 0
\(61\) −2.01815 + 3.49554i −0.258398 + 0.447558i −0.965813 0.259240i \(-0.916528\pi\)
0.707415 + 0.706798i \(0.249861\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.89770 + 5.06160i 0.979590 + 0.627814i
\(66\) 0 0
\(67\) −10.1679 + 5.87041i −1.24220 + 0.717185i −0.969542 0.244926i \(-0.921236\pi\)
−0.272659 + 0.962111i \(0.587903\pi\)
\(68\) 1.41647 2.45340i 0.171773 0.297519i
\(69\) 0 0
\(70\) −2.98320 + 6.20336i −0.356561 + 0.741443i
\(71\) 5.76873i 0.684623i −0.939587 0.342311i \(-0.888790\pi\)
0.939587 0.342311i \(-0.111210\pi\)
\(72\) 0 0
\(73\) 9.93411 5.73546i 1.16270 0.671285i 0.210751 0.977540i \(-0.432409\pi\)
0.951950 + 0.306255i \(0.0990759\pi\)
\(74\) 0.0835276 + 0.144674i 0.00970988 + 0.0168180i
\(75\) 0 0
\(76\) 1.33411i 0.153033i
\(77\) 8.58773 + 4.12985i 0.978662 + 0.470640i
\(78\) 0 0
\(79\) −3.37041 + 5.83773i −0.379201 + 0.656796i −0.990946 0.134259i \(-0.957134\pi\)
0.611745 + 0.791055i \(0.290468\pi\)
\(80\) −2.25312 + 1.30084i −0.251906 + 0.145438i
\(81\) 0 0
\(82\) 1.51815 2.62952i 0.167652 0.290381i
\(83\) 8.10051i 0.889147i −0.895742 0.444573i \(-0.853355\pi\)
0.895742 0.444573i \(-0.146645\pi\)
\(84\) 0 0
\(85\) 7.37041i 0.799434i
\(86\) 2.02140 + 1.16706i 0.217973 + 0.125847i
\(87\) 0 0
\(88\) 1.80084 + 3.11915i 0.191970 + 0.332502i
\(89\) −7.07288 4.08353i −0.749723 0.432853i 0.0758705 0.997118i \(-0.475826\pi\)
−0.825594 + 0.564265i \(0.809160\pi\)
\(90\) 0 0
\(91\) 5.00722 + 8.11959i 0.524899 + 0.851165i
\(92\) 2.93579 0.306077
\(93\) 0 0
\(94\) −4.87041 8.43580i −0.502345 0.870087i
\(95\) 1.73546 + 3.00591i 0.178055 + 0.308400i
\(96\) 0 0
\(97\) 0.139148i 0.0141283i −0.999975 0.00706416i \(-0.997751\pi\)
0.999975 0.00706416i \(-0.00224861\pi\)
\(98\) −5.46804 + 4.37041i −0.552356 + 0.441478i
\(99\) 0 0
\(100\) −0.884367 + 1.53177i −0.0884367 + 0.153177i
\(101\) 1.78269 + 3.08771i 0.177384 + 0.307238i 0.940984 0.338452i \(-0.109903\pi\)
−0.763600 + 0.645690i \(0.776570\pi\)
\(102\) 0 0
\(103\) −9.53747 + 16.5194i −0.939755 + 1.62770i −0.173827 + 0.984776i \(0.555613\pi\)
−0.765928 + 0.642927i \(0.777720\pi\)
\(104\) −0.167055 + 3.60168i −0.0163811 + 0.353174i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) −4.03630 + 6.99108i −0.390204 + 0.675853i −0.992476 0.122437i \(-0.960929\pi\)
0.602272 + 0.798291i \(0.294262\pi\)
\(108\) 0 0
\(109\) 11.1451 6.43462i 1.06751 0.616325i 0.140007 0.990150i \(-0.455287\pi\)
0.927499 + 0.373825i \(0.121954\pi\)
\(110\) 8.11502 + 4.68521i 0.773736 + 0.446717i
\(111\) 0 0
\(112\) −2.63824 + 0.199160i −0.249291 + 0.0188189i
\(113\) 19.8800 1.87015 0.935075 0.354449i \(-0.115332\pi\)
0.935075 + 0.354449i \(0.115332\pi\)
\(114\) 0 0
\(115\) 6.61469 3.81899i 0.616823 0.356123i
\(116\) −4.48605 7.77006i −0.416519 0.721432i
\(117\) 0 0
\(118\) −11.5738 −1.06545
\(119\) 3.24838 6.75478i 0.297779 0.619210i
\(120\) 0 0
\(121\) 0.986046 1.70788i 0.0896406 0.155262i
\(122\) −3.49554 + 2.01815i −0.316471 + 0.182715i
\(123\) 0 0
\(124\) 3.46410 + 2.00000i 0.311086 + 0.179605i
\(125\) 8.40672i 0.751920i
\(126\) 0 0
\(127\) −10.0386 −0.890785 −0.445392 0.895335i \(-0.646936\pi\)
−0.445392 + 0.895335i \(0.646936\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 4.30881 + 8.33233i 0.377908 + 0.730794i
\(131\) 4.05562 7.02454i 0.354341 0.613737i −0.632664 0.774427i \(-0.718038\pi\)
0.987005 + 0.160690i \(0.0513718\pi\)
\(132\) 0 0
\(133\) 0.265702 + 3.51971i 0.0230393 + 0.305198i
\(134\) −11.7408 −1.01425
\(135\) 0 0
\(136\) 2.45340 1.41647i 0.210378 0.121462i
\(137\) 4.00934 2.31479i 0.342541 0.197766i −0.318854 0.947804i \(-0.603298\pi\)
0.661395 + 0.750038i \(0.269965\pi\)
\(138\) 0 0
\(139\) −0.935789 −0.0793726 −0.0396863 0.999212i \(-0.512636\pi\)
−0.0396863 + 0.999212i \(0.512636\pi\)
\(140\) −5.68521 + 3.88067i −0.480488 + 0.327976i
\(141\) 0 0
\(142\) 2.88437 4.99587i 0.242051 0.419244i
\(143\) 11.5350 5.96498i 0.964605 0.498816i
\(144\) 0 0
\(145\) −20.2152 11.6713i −1.67878 0.969245i
\(146\) 11.4709 0.949341
\(147\) 0 0
\(148\) 0.167055i 0.0137319i
\(149\) 7.04871 + 4.06957i 0.577453 + 0.333392i 0.760120 0.649782i \(-0.225140\pi\)
−0.182668 + 0.983175i \(0.558473\pi\)
\(150\) 0 0
\(151\) −17.3278 + 10.0042i −1.41011 + 0.814130i −0.995399 0.0958208i \(-0.969452\pi\)
−0.414716 + 0.909951i \(0.636119\pi\)
\(152\) −0.667055 + 1.15537i −0.0541053 + 0.0937132i
\(153\) 0 0
\(154\) 5.37227 + 7.87041i 0.432910 + 0.634216i
\(155\) 10.4067 0.835888
\(156\) 0 0
\(157\) −10.6724 18.4852i −0.851752 1.47528i −0.879626 0.475666i \(-0.842207\pi\)
0.0278743 0.999611i \(-0.491126\pi\)
\(158\) −5.83773 + 3.37041i −0.464425 + 0.268136i
\(159\) 0 0
\(160\) −2.60168 −0.205681
\(161\) 7.74533 0.584693i 0.610418 0.0460803i
\(162\) 0 0
\(163\) 0.890194 + 0.513954i 0.0697254 + 0.0402560i 0.534457 0.845195i \(-0.320516\pi\)
−0.464732 + 0.885451i \(0.653849\pi\)
\(164\) 2.62952 1.51815i 0.205331 0.118548i
\(165\) 0 0
\(166\) 4.05026 7.01525i 0.314361 0.544489i
\(167\) 5.96976i 0.461954i −0.972959 0.230977i \(-0.925808\pi\)
0.972959 0.230977i \(-0.0741922\pi\)
\(168\) 0 0
\(169\) 12.9442 + 1.20336i 0.995707 + 0.0925660i
\(170\) 3.68521 6.38297i 0.282642 0.489551i
\(171\) 0 0
\(172\) 1.16706 + 2.02140i 0.0889871 + 0.154130i
\(173\) −8.29108 + 14.3606i −0.630359 + 1.09181i 0.357119 + 0.934059i \(0.383759\pi\)
−0.987478 + 0.157756i \(0.949574\pi\)
\(174\) 0 0
\(175\) −2.02811 + 4.21731i −0.153311 + 0.318799i
\(176\) 3.60168i 0.271487i
\(177\) 0 0
\(178\) −4.08353 7.07288i −0.306073 0.530135i
\(179\) −9.37041 16.2300i −0.700378 1.21309i −0.968334 0.249659i \(-0.919682\pi\)
0.267956 0.963431i \(-0.413652\pi\)
\(180\) 0 0
\(181\) −0.426228 −0.0316813 −0.0158406 0.999875i \(-0.505042\pi\)
−0.0158406 + 0.999875i \(0.505042\pi\)
\(182\) 0.276580 + 9.53538i 0.0205014 + 0.706810i
\(183\) 0 0
\(184\) 2.54247 + 1.46789i 0.187433 + 0.108215i
\(185\) 0.217312 + 0.376395i 0.0159771 + 0.0276731i
\(186\) 0 0
\(187\) −8.83637 5.10168i −0.646179 0.373072i
\(188\) 9.74083i 0.710423i
\(189\) 0 0
\(190\) 3.47093i 0.251808i
\(191\) −4.43462 + 7.68099i −0.320878 + 0.555777i −0.980669 0.195672i \(-0.937311\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(192\) 0 0
\(193\) 6.06945 3.50420i 0.436888 0.252238i −0.265388 0.964142i \(-0.585500\pi\)
0.702277 + 0.711904i \(0.252167\pi\)
\(194\) 0.0695739 0.120505i 0.00499511 0.00865179i
\(195\) 0 0
\(196\) −6.92067 + 1.05087i −0.494334 + 0.0750620i
\(197\) 17.8050i 1.26856i 0.773105 + 0.634278i \(0.218703\pi\)
−0.773105 + 0.634278i \(0.781297\pi\)
\(198\) 0 0
\(199\) 13.5545 + 23.4770i 0.960850 + 1.66424i 0.720374 + 0.693585i \(0.243970\pi\)
0.240475 + 0.970655i \(0.422697\pi\)
\(200\) −1.53177 + 0.884367i −0.108312 + 0.0625342i
\(201\) 0 0
\(202\) 3.56538i 0.250859i
\(203\) −13.3828 19.6059i −0.939287 1.37606i
\(204\) 0 0
\(205\) 3.94974 6.84116i 0.275862 0.477807i
\(206\) −16.5194 + 9.53747i −1.15096 + 0.664507i
\(207\) 0 0
\(208\) −1.94551 + 3.03562i −0.134897 + 0.210482i
\(209\) 4.80504 0.332371
\(210\) 0 0
\(211\) 22.6743 1.56096 0.780481 0.625179i \(-0.214974\pi\)
0.780481 + 0.625179i \(0.214974\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) −6.99108 + 4.03630i −0.477901 + 0.275916i
\(215\) 5.25903 + 3.03630i 0.358663 + 0.207074i
\(216\) 0 0
\(217\) 9.53747 + 4.58658i 0.647446 + 0.311357i
\(218\) 12.8692 0.871615
\(219\) 0 0
\(220\) 4.68521 + 8.11502i 0.315877 + 0.547114i
\(221\) −4.69183 9.07300i −0.315606 0.610316i
\(222\) 0 0
\(223\) 9.19496i 0.615740i −0.951428 0.307870i \(-0.900384\pi\)
0.951428 0.307870i \(-0.0996162\pi\)
\(224\) −2.38437 1.14664i −0.159312 0.0766134i
\(225\) 0 0
\(226\) 17.2166 + 9.93999i 1.14523 + 0.661198i
\(227\) −11.7238 + 6.76873i −0.778135 + 0.449257i −0.835769 0.549081i \(-0.814978\pi\)
0.0576337 + 0.998338i \(0.481644\pi\)
\(228\) 0 0
\(229\) −15.9407 9.20336i −1.05339 0.608175i −0.129794 0.991541i \(-0.541431\pi\)
−0.923597 + 0.383366i \(0.874765\pi\)
\(230\) 7.63798 0.503634
\(231\) 0 0
\(232\) 8.97209i 0.589047i
\(233\) −5.86505 + 10.1586i −0.384232 + 0.665510i −0.991662 0.128863i \(-0.958867\pi\)
0.607430 + 0.794373i \(0.292200\pi\)
\(234\) 0 0
\(235\) −12.6713 21.9473i −0.826581 1.43168i
\(236\) −10.0232 5.78689i −0.652453 0.376694i
\(237\) 0 0
\(238\) 6.19057 4.22562i 0.401275 0.273906i
\(239\) 11.1731i 0.722729i 0.932425 + 0.361365i \(0.117689\pi\)
−0.932425 + 0.361365i \(0.882311\pi\)
\(240\) 0 0
\(241\) 12.7659 7.37041i 0.822326 0.474770i −0.0288920 0.999583i \(-0.509198\pi\)
0.851218 + 0.524812i \(0.175865\pi\)
\(242\) 1.70788 0.986046i 0.109787 0.0633855i
\(243\) 0 0
\(244\) −4.03630 −0.258398
\(245\) −14.2261 + 11.3704i −0.908872 + 0.726429i
\(246\) 0 0
\(247\) 4.04985 + 2.59553i 0.257686 + 0.165150i
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) 0 0
\(250\) 4.20336 7.28043i 0.265844 0.460455i
\(251\) −22.9465 −1.44837 −0.724186 0.689605i \(-0.757784\pi\)
−0.724186 + 0.689605i \(0.757784\pi\)
\(252\) 0 0
\(253\) 10.5738i 0.664767i
\(254\) −8.69371 5.01932i −0.545492 0.314940i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.370413 + 0.641575i −0.0231058 + 0.0400203i −0.877347 0.479856i \(-0.840689\pi\)
0.854241 + 0.519877i \(0.174022\pi\)
\(258\) 0 0
\(259\) 0.0332708 + 0.440732i 0.00206735 + 0.0273858i
\(260\) −0.434624 + 9.37041i −0.0269542 + 0.581128i
\(261\) 0 0
\(262\) 7.02454 4.05562i 0.433978 0.250557i
\(263\) −10.5042 18.1938i −0.647717 1.12188i −0.983667 0.179998i \(-0.942391\pi\)
0.335950 0.941880i \(-0.390943\pi\)
\(264\) 0 0
\(265\) 7.80504i 0.479460i
\(266\) −1.52975 + 3.18101i −0.0937950 + 0.195040i
\(267\) 0 0
\(268\) −10.1679 5.87041i −0.621101 0.358593i
\(269\) −15.5587 26.9484i −0.948628 1.64307i −0.748319 0.663339i \(-0.769139\pi\)
−0.200308 0.979733i \(-0.564194\pi\)
\(270\) 0 0
\(271\) −1.73932 1.00420i −0.105656 0.0610007i 0.446241 0.894913i \(-0.352763\pi\)
−0.551897 + 0.833912i \(0.686096\pi\)
\(272\) 2.83294 0.171773
\(273\) 0 0
\(274\) 4.62959 0.279684
\(275\) 5.51694 + 3.18521i 0.332684 + 0.192075i
\(276\) 0 0
\(277\) −7.68404 13.3091i −0.461689 0.799669i 0.537356 0.843356i \(-0.319423\pi\)
−0.999045 + 0.0436862i \(0.986090\pi\)
\(278\) −0.810417 0.467895i −0.0486056 0.0280625i
\(279\) 0 0
\(280\) −6.86387 + 0.518152i −0.410194 + 0.0309655i
\(281\) 16.6682i 0.994343i −0.867652 0.497171i \(-0.834372\pi\)
0.867652 0.497171i \(-0.165628\pi\)
\(282\) 0 0
\(283\) −8.90252 15.4196i −0.529200 0.916601i −0.999420 0.0340519i \(-0.989159\pi\)
0.470220 0.882549i \(-0.344174\pi\)
\(284\) 4.99587 2.88437i 0.296450 0.171156i
\(285\) 0 0
\(286\) 12.9721 + 0.601679i 0.767056 + 0.0355780i
\(287\) 6.63495 4.52895i 0.391649 0.267336i
\(288\) 0 0
\(289\) 4.48721 7.77208i 0.263954 0.457181i
\(290\) −11.6713 20.2152i −0.685360 1.18708i
\(291\) 0 0
\(292\) 9.93411 + 5.73546i 0.581350 + 0.335643i
\(293\) 26.4733i 1.54658i −0.634050 0.773292i \(-0.718609\pi\)
0.634050 0.773292i \(-0.281391\pi\)
\(294\) 0 0
\(295\) −30.1112 −1.75314
\(296\) −0.0835276 + 0.144674i −0.00485494 + 0.00840901i
\(297\) 0 0
\(298\) 4.06957 + 7.04871i 0.235744 + 0.408321i
\(299\) 5.71162 8.91194i 0.330311 0.515391i
\(300\) 0 0
\(301\) 3.48156 + 5.10051i 0.200674 + 0.293989i
\(302\) −20.0084 −1.15135
\(303\) 0 0
\(304\) −1.15537 + 0.667055i −0.0662652 + 0.0382582i
\(305\) −9.09428 + 5.25058i −0.520737 + 0.300647i
\(306\) 0 0
\(307\) 23.2783i 1.32856i −0.747483 0.664281i \(-0.768738\pi\)
0.747483 0.664281i \(-0.231262\pi\)
\(308\) 0.717312 + 9.50211i 0.0408726 + 0.541433i
\(309\) 0 0
\(310\) 9.01248 + 5.20336i 0.511875 + 0.295531i
\(311\) 8.27293 + 14.3291i 0.469115 + 0.812531i 0.999377 0.0353031i \(-0.0112397\pi\)
−0.530262 + 0.847834i \(0.677906\pi\)
\(312\) 0 0
\(313\) 5.01395 8.68442i 0.283405 0.490873i −0.688816 0.724936i \(-0.741869\pi\)
0.972221 + 0.234064i \(0.0752025\pi\)
\(314\) 21.3448i 1.20456i
\(315\) 0 0
\(316\) −6.74083 −0.379201
\(317\) 18.5408 + 10.7045i 1.04135 + 0.601226i 0.920216 0.391410i \(-0.128012\pi\)
0.121137 + 0.992636i \(0.461346\pi\)
\(318\) 0 0
\(319\) −27.9853 + 16.1573i −1.56687 + 0.904635i
\(320\) −2.25312 1.30084i −0.125953 0.0727191i
\(321\) 0 0
\(322\) 7.00000 + 3.36631i 0.390095 + 0.187597i
\(323\) 3.77946i 0.210295i
\(324\) 0 0
\(325\) 2.92932 + 5.66468i 0.162489 + 0.314220i
\(326\) 0.513954 + 0.890194i 0.0284653 + 0.0493033i
\(327\) 0 0
\(328\) 3.03630 0.167652
\(329\) −1.93999 25.6987i −0.106955 1.41681i
\(330\) 0 0
\(331\) 31.0561 + 17.9302i 1.70700 + 0.985535i 0.938235 + 0.345998i \(0.112460\pi\)
0.768761 + 0.639536i \(0.220874\pi\)
\(332\) 7.01525 4.05026i 0.385012 0.222287i
\(333\) 0 0
\(334\) 2.98488 5.16997i 0.163325 0.282888i
\(335\) −30.5459 −1.66890
\(336\) 0 0
\(337\) 6.73850 0.367069 0.183535 0.983013i \(-0.441246\pi\)
0.183535 + 0.983013i \(0.441246\pi\)
\(338\) 10.6083 + 7.51423i 0.577016 + 0.408720i
\(339\) 0 0
\(340\) 6.38297 3.68521i 0.346165 0.199858i
\(341\) 7.20336 12.4766i 0.390084 0.675645i
\(342\) 0 0
\(343\) −18.0491 + 4.15077i −0.974561 + 0.224121i
\(344\) 2.33411i 0.125847i
\(345\) 0 0
\(346\) −14.3606 + 8.29108i −0.772029 + 0.445731i
\(347\) 17.2869 + 29.9418i 0.928009 + 1.60736i 0.786650 + 0.617400i \(0.211814\pi\)
0.141359 + 0.989958i \(0.454853\pi\)
\(348\) 0 0
\(349\) 21.7771i 1.16570i −0.812579 0.582852i \(-0.801937\pi\)
0.812579 0.582852i \(-0.198063\pi\)
\(350\) −3.86505 + 2.63824i −0.206596 + 0.141020i
\(351\) 0 0
\(352\) −1.80084 + 3.11915i −0.0959851 + 0.166251i
\(353\) 17.6244 10.1755i 0.938052 0.541585i 0.0487029 0.998813i \(-0.484491\pi\)
0.889349 + 0.457229i \(0.151158\pi\)
\(354\) 0 0
\(355\) 7.50420 12.9977i 0.398281 0.689844i
\(356\) 8.16706i 0.432853i
\(357\) 0 0
\(358\) 18.7408i 0.990483i
\(359\) 1.24040 + 0.716146i 0.0654659 + 0.0377968i 0.532376 0.846508i \(-0.321299\pi\)
−0.466910 + 0.884305i \(0.654633\pi\)
\(360\) 0 0
\(361\) −8.61007 14.9131i −0.453162 0.784899i
\(362\) −0.369125 0.213114i −0.0194008 0.0112010i
\(363\) 0 0
\(364\) −4.52817 + 8.39617i −0.237340 + 0.440079i
\(365\) 29.8437 1.56209
\(366\) 0 0
\(367\) −12.1755 21.0885i −0.635553 1.10081i −0.986398 0.164377i \(-0.947439\pi\)
0.350844 0.936434i \(-0.385895\pi\)
\(368\) 1.46789 + 2.54247i 0.0765193 + 0.132535i
\(369\) 0 0
\(370\) 0.434624i 0.0225950i
\(371\) −3.43993 + 7.15310i −0.178592 + 0.371371i
\(372\) 0 0
\(373\) −15.9763 + 27.6717i −0.827221 + 1.43279i 0.0729891 + 0.997333i \(0.476746\pi\)
−0.900210 + 0.435456i \(0.856587\pi\)
\(374\) −5.10168 8.83637i −0.263802 0.456918i
\(375\) 0 0
\(376\) 4.87041 8.43580i 0.251172 0.435043i
\(377\) −32.3146 1.49883i −1.66429 0.0771939i
\(378\) 0 0
\(379\) 2.79664i 0.143654i 0.997417 + 0.0718269i \(0.0228829\pi\)
−0.997417 + 0.0718269i \(0.977117\pi\)
\(380\) −1.73546 + 3.00591i −0.0890274 + 0.154200i
\(381\) 0 0
\(382\) −7.68099 + 4.43462i −0.392994 + 0.226895i
\(383\) 8.52487 + 4.92184i 0.435600 + 0.251494i 0.701730 0.712443i \(-0.252411\pi\)
−0.266129 + 0.963937i \(0.585745\pi\)
\(384\) 0 0
\(385\) 13.9769 + 20.4763i 0.712329 + 1.04357i
\(386\) 7.00840 0.356718
\(387\) 0 0
\(388\) 0.120505 0.0695739i 0.00611774 0.00353208i
\(389\) 8.19057 + 14.1865i 0.415278 + 0.719283i 0.995458 0.0952056i \(-0.0303508\pi\)
−0.580179 + 0.814489i \(0.697018\pi\)
\(390\) 0 0
\(391\) −8.31693 −0.420605
\(392\) −6.51891 2.55026i −0.329255 0.128807i
\(393\) 0 0
\(394\) −8.90252 + 15.4196i −0.448502 + 0.776829i
\(395\) −15.1879 + 8.76873i −0.764186 + 0.441203i
\(396\) 0 0
\(397\) 4.71379 + 2.72151i 0.236579 + 0.136589i 0.613603 0.789615i \(-0.289719\pi\)
−0.377025 + 0.926203i \(0.623053\pi\)
\(398\) 27.1089i 1.35885i
\(399\) 0 0
\(400\) −1.76873 −0.0884367
\(401\) 15.2214 + 8.78805i 0.760118 + 0.438854i 0.829338 0.558747i \(-0.188718\pi\)
−0.0692201 + 0.997601i \(0.522051\pi\)
\(402\) 0 0
\(403\) 12.8107 6.62466i 0.638146 0.329998i
\(404\) −1.78269 + 3.08771i −0.0886920 + 0.153619i
\(405\) 0 0
\(406\) −1.78689 23.6706i −0.0886817 1.17475i
\(407\) 0.601679 0.0298241
\(408\) 0 0
\(409\) 16.4618 9.50420i 0.813981 0.469952i −0.0343552 0.999410i \(-0.510938\pi\)
0.848337 + 0.529457i \(0.177604\pi\)
\(410\) 6.84116 3.94974i 0.337861 0.195064i
\(411\) 0 0
\(412\) −19.0749 −0.939755
\(413\) −27.5961 13.2710i −1.35792 0.653023i
\(414\) 0 0
\(415\) 10.5375 18.2514i 0.517264 0.895928i
\(416\) −3.20267 + 1.65617i −0.157024 + 0.0812002i
\(417\) 0 0
\(418\) 4.16128 + 2.40252i 0.203535 + 0.117511i
\(419\) −5.48165 −0.267796 −0.133898 0.990995i \(-0.542750\pi\)
−0.133898 + 0.990995i \(0.542750\pi\)
\(420\) 0 0
\(421\) 3.16472i 0.154239i 0.997022 + 0.0771196i \(0.0245723\pi\)
−0.997022 + 0.0771196i \(0.975428\pi\)
\(422\) 19.6365 + 11.3371i 0.955890 + 0.551883i
\(423\) 0 0
\(424\) −2.59808 + 1.50000i −0.126174 + 0.0728464i
\(425\) 2.50536 4.33942i 0.121528 0.210493i
\(426\) 0 0
\(427\) −10.6488 + 0.803872i −0.515329 + 0.0389021i
\(428\) −8.07261 −0.390204
\(429\) 0 0
\(430\) 3.03630 + 5.25903i 0.146424 + 0.253613i
\(431\) −13.3688 + 7.71848i −0.643952 + 0.371786i −0.786135 0.618054i \(-0.787921\pi\)
0.142183 + 0.989840i \(0.454588\pi\)
\(432\) 0 0
\(433\) 13.9419 0.670003 0.335001 0.942218i \(-0.391263\pi\)
0.335001 + 0.942218i \(0.391263\pi\)
\(434\) 5.96640 + 8.74083i 0.286396 + 0.419573i
\(435\) 0 0
\(436\) 11.1451 + 6.43462i 0.533753 + 0.308163i
\(437\) 3.39193 1.95833i 0.162258 0.0936798i
\(438\) 0 0
\(439\) 13.6936 23.7180i 0.653560 1.13200i −0.328693 0.944437i \(-0.606608\pi\)
0.982253 0.187562i \(-0.0600586\pi\)
\(440\) 9.37041i 0.446717i
\(441\) 0 0
\(442\) 0.473258 10.2034i 0.0225106 0.485324i
\(443\) 12.0556 20.8809i 0.572780 0.992084i −0.423499 0.905896i \(-0.639198\pi\)
0.996279 0.0861872i \(-0.0274683\pi\)
\(444\) 0 0
\(445\) −10.6240 18.4014i −0.503627 0.872308i
\(446\) 4.59748 7.96307i 0.217697 0.377062i
\(447\) 0 0
\(448\) −1.49160 2.18521i −0.0704715 0.103241i
\(449\) 2.59095i 0.122275i 0.998129 + 0.0611373i \(0.0194728\pi\)
−0.998129 + 0.0611373i \(0.980527\pi\)
\(450\) 0 0
\(451\) −5.46789 9.47067i −0.257473 0.445957i
\(452\) 9.93999 + 17.2166i 0.467538 + 0.809799i
\(453\) 0 0
\(454\) −13.5375 −0.635345
\(455\) 0.719571 + 24.8080i 0.0337340 + 1.16302i
\(456\) 0 0
\(457\) 9.06607 + 5.23430i 0.424093 + 0.244850i 0.696827 0.717239i \(-0.254595\pi\)
−0.272734 + 0.962089i \(0.587928\pi\)
\(458\) −9.20336 15.9407i −0.430045 0.744859i
\(459\) 0 0
\(460\) 6.61469 + 3.81899i 0.308411 + 0.178061i
\(461\) 30.0168i 1.39802i 0.715111 + 0.699011i \(0.246376\pi\)
−0.715111 + 0.699011i \(0.753624\pi\)
\(462\) 0 0
\(463\) 19.4649i 0.904609i 0.891864 + 0.452304i \(0.149398\pi\)
−0.891864 + 0.452304i \(0.850602\pi\)
\(464\) 4.48605 7.77006i 0.208259 0.360716i
\(465\) 0 0
\(466\) −10.1586 + 5.86505i −0.470586 + 0.271693i
\(467\) −0.150069 + 0.259927i −0.00694437 + 0.0120280i −0.869477 0.493974i \(-0.835544\pi\)
0.862532 + 0.506002i \(0.168877\pi\)
\(468\) 0 0
\(469\) −27.9944 13.4626i −1.29266 0.621643i
\(470\) 25.3425i 1.16896i
\(471\) 0 0
\(472\) −5.78689 10.0232i −0.266363 0.461354i
\(473\) 7.28043 4.20336i 0.334755 0.193271i
\(474\) 0 0
\(475\) 2.35969i 0.108270i
\(476\) 7.47400 0.564211i 0.342570 0.0258605i
\(477\) 0 0
\(478\) −5.58656 + 9.67621i −0.255523 + 0.442579i
\(479\) 20.4248 11.7922i 0.933232 0.538802i 0.0453996 0.998969i \(-0.485544\pi\)
0.887832 + 0.460167i \(0.152211\pi\)
\(480\) 0 0
\(481\) 0.507116 + 0.325008i 0.0231225 + 0.0148191i
\(482\) 14.7408 0.671426
\(483\) 0 0
\(484\) 1.97209 0.0896406
\(485\) 0.181009 0.313517i 0.00821919 0.0142361i
\(486\) 0 0
\(487\) −29.6544 + 17.1210i −1.34377 + 0.775826i −0.987359 0.158502i \(-0.949333\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(488\) −3.49554 2.01815i −0.158236 0.0913574i
\(489\) 0 0
\(490\) −18.0054 + 2.73402i −0.813399 + 0.123510i
\(491\) 39.7553 1.79413 0.897065 0.441898i \(-0.145695\pi\)
0.897065 + 0.441898i \(0.145695\pi\)
\(492\) 0 0
\(493\) 12.7087 + 22.0122i 0.572372 + 0.991377i
\(494\) 2.20951 + 4.27272i 0.0994104 + 0.192239i
\(495\) 0 0
\(496\) 4.00000i 0.179605i
\(497\) 12.6059 8.60465i 0.565451 0.385971i
\(498\) 0 0
\(499\) −10.6091 6.12519i −0.474931 0.274201i 0.243371 0.969933i \(-0.421747\pi\)
−0.718301 + 0.695732i \(0.755080\pi\)
\(500\) 7.28043 4.20336i 0.325591 0.187980i
\(501\) 0 0
\(502\) −19.8723 11.4733i −0.886943 0.512077i
\(503\) −2.12842 −0.0949016 −0.0474508 0.998874i \(-0.515110\pi\)
−0.0474508 + 0.998874i \(0.515110\pi\)
\(504\) 0 0
\(505\) 9.27596i 0.412775i
\(506\) 5.28689 9.15715i 0.235031 0.407085i
\(507\) 0 0
\(508\) −5.01932 8.69371i −0.222696 0.385721i
\(509\) 29.1741 + 16.8437i 1.29312 + 0.746583i 0.979206 0.202869i \(-0.0650266\pi\)
0.313913 + 0.949452i \(0.398360\pi\)
\(510\) 0 0
\(511\) 27.3509 + 13.1531i 1.20993 + 0.581858i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.641575 + 0.370413i −0.0282987 + 0.0163382i
\(515\) −42.9781 + 24.8134i −1.89384 + 1.09341i
\(516\) 0 0
\(517\) −35.0833 −1.54296
\(518\) −0.191553 + 0.398321i −0.00841635 + 0.0175012i
\(519\) 0 0
\(520\) −5.06160 + 7.89770i −0.221966 + 0.346337i
\(521\) −0.130752 0.226469i −0.00572835 0.00992180i 0.863147 0.504953i \(-0.168490\pi\)
−0.868875 + 0.495031i \(0.835157\pi\)
\(522\) 0 0
\(523\) −5.23966 + 9.07536i −0.229114 + 0.396838i −0.957546 0.288281i \(-0.906916\pi\)
0.728432 + 0.685119i \(0.240250\pi\)
\(524\) 8.11124 0.354341
\(525\) 0 0
\(526\) 21.0084i 0.916010i
\(527\) −9.81361 5.66589i −0.427488 0.246810i
\(528\) 0 0
\(529\) 7.19057 + 12.4544i 0.312633 + 0.541497i
\(530\) −3.90252 + 6.75936i −0.169515 + 0.293608i
\(531\) 0 0
\(532\) −2.91531 + 1.98996i −0.126395 + 0.0862757i
\(533\) 0.507230 10.9358i 0.0219706 0.473682i
\(534\) 0 0
\(535\) −18.1886 + 10.5012i −0.786360 + 0.454005i
\(536\) −5.87041 10.1679i −0.253563 0.439184i
\(537\) 0 0
\(538\) 31.1173i 1.34156i
\(539\) 3.78489 + 24.9260i 0.163027 + 1.07364i
\(540\) 0 0
\(541\) 18.8112 + 10.8607i 0.808757 + 0.466936i 0.846524 0.532350i \(-0.178691\pi\)
−0.0377670 + 0.999287i \(0.512024\pi\)
\(542\) −1.00420 1.73932i −0.0431340 0.0747103i
\(543\) 0 0
\(544\) 2.45340 + 1.41647i 0.105189 + 0.0607308i
\(545\) 33.4817 1.43420
\(546\) 0 0
\(547\) −33.3593 −1.42634 −0.713170 0.700991i \(-0.752741\pi\)
−0.713170 + 0.700991i \(0.752741\pi\)
\(548\) 4.00934 + 2.31479i 0.171270 + 0.0988831i
\(549\) 0 0
\(550\) 3.18521 + 5.51694i 0.135818 + 0.235243i
\(551\) −10.3661 5.98488i −0.441611 0.254964i
\(552\) 0 0
\(553\) −17.7840 + 1.34251i −0.756251 + 0.0570892i
\(554\) 15.3681i 0.652927i
\(555\) 0 0
\(556\) −0.467895 0.810417i −0.0198432 0.0343694i
\(557\) 33.2612 19.2034i 1.40932 0.813672i 0.413999 0.910277i \(-0.364132\pi\)
0.995323 + 0.0966049i \(0.0307983\pi\)
\(558\) 0 0
\(559\) 8.40672 + 0.389925i 0.355566 + 0.0164921i
\(560\) −6.20336 2.98320i −0.262140 0.126063i
\(561\) 0 0
\(562\) 8.33411 14.4351i 0.351553 0.608908i
\(563\) 1.93346 + 3.34885i 0.0814856 + 0.141137i 0.903888 0.427769i \(-0.140700\pi\)
−0.822403 + 0.568906i \(0.807367\pi\)
\(564\) 0 0
\(565\) 44.7920 + 25.8607i 1.88441 + 1.08797i
\(566\) 17.8050i 0.748402i
\(567\) 0 0
\(568\) 5.76873 0.242051
\(569\) −13.8371 + 23.9666i −0.580083 + 1.00473i 0.415386 + 0.909645i \(0.363647\pi\)
−0.995469 + 0.0950882i \(0.969687\pi\)
\(570\) 0 0
\(571\) 20.0470 + 34.7225i 0.838942 + 1.45309i 0.890780 + 0.454435i \(0.150159\pi\)
−0.0518379 + 0.998656i \(0.516508\pi\)
\(572\) 10.9333 + 7.00712i 0.457145 + 0.292982i
\(573\) 0 0
\(574\) 8.01051 0.604711i 0.334352 0.0252402i
\(575\) 5.19263 0.216548
\(576\) 0 0
\(577\) −0.352227 + 0.203358i −0.0146634 + 0.00846592i −0.507314 0.861761i \(-0.669361\pi\)
0.492650 + 0.870227i \(0.336028\pi\)
\(578\) 7.77208 4.48721i 0.323276 0.186643i
\(579\) 0 0
\(580\) 23.3425i 0.969245i
\(581\) 17.7013 12.0827i 0.734374 0.501276i
\(582\) 0 0
\(583\) 9.35744 + 5.40252i 0.387545 + 0.223749i
\(584\) 5.73546 + 9.93411i 0.237335 + 0.411077i
\(585\) 0 0
\(586\) 13.2366 22.9265i 0.546800 0.947086i
\(587\) 22.0131i 0.908576i 0.890855 + 0.454288i \(0.150106\pi\)
−0.890855 + 0.454288i \(0.849894\pi\)
\(588\) 0 0
\(589\) 5.33644 0.219884
\(590\) −26.0771 15.0556i −1.07358 0.619830i
\(591\) 0 0
\(592\) −0.144674 + 0.0835276i −0.00594607 + 0.00343296i
\(593\) −27.0080 15.5931i −1.10909 0.640331i −0.170494 0.985359i \(-0.554536\pi\)
−0.938593 + 0.345027i \(0.887870\pi\)
\(594\) 0 0
\(595\) 16.1059 10.9937i 0.660277 0.450698i
\(596\) 8.13915i 0.333392i
\(597\) 0 0
\(598\) 9.40237 4.86215i 0.384492 0.198828i
\(599\) −3.17009 5.49075i −0.129526 0.224346i 0.793967 0.607961i \(-0.208012\pi\)
−0.923493 + 0.383615i \(0.874679\pi\)
\(600\) 0 0
\(601\) −23.5566 −0.960893 −0.480447 0.877024i \(-0.659525\pi\)
−0.480447 + 0.877024i \(0.659525\pi\)
\(602\) 0.464862 + 6.15795i 0.0189464 + 0.250979i
\(603\) 0 0
\(604\) −17.3278 10.0042i −0.705057 0.407065i
\(605\) 4.44336 2.56538i 0.180648 0.104297i
\(606\) 0 0
\(607\) −8.01932 + 13.8899i −0.325494 + 0.563772i −0.981612 0.190886i \(-0.938864\pi\)
0.656118 + 0.754658i \(0.272197\pi\)
\(608\) −1.33411 −0.0541053
\(609\) 0 0
\(610\) −10.5012 −0.425180
\(611\) −29.5694 18.9509i −1.19625 0.766672i
\(612\) 0 0
\(613\) 7.37710 4.25917i 0.297958 0.172026i −0.343567 0.939128i \(-0.611635\pi\)
0.641525 + 0.767102i \(0.278302\pi\)
\(614\) 11.6391 20.1596i 0.469718 0.813575i
\(615\) 0 0
\(616\) −4.12985 + 8.58773i −0.166396 + 0.346009i
\(617\) 1.40905i 0.0567261i 0.999598 + 0.0283631i \(0.00902945\pi\)
−0.999598 + 0.0283631i \(0.990971\pi\)
\(618\) 0 0
\(619\) 39.3641 22.7269i 1.58218 0.913470i 0.587635 0.809126i \(-0.300059\pi\)
0.994541 0.104344i \(-0.0332744\pi\)
\(620\) 5.20336 + 9.01248i 0.208972 + 0.361950i
\(621\) 0 0
\(622\) 16.5459i 0.663429i
\(623\) −1.62655 21.5467i −0.0651665 0.863250i
\(624\) 0 0
\(625\) 15.3576 26.6002i 0.614305 1.06401i
\(626\) 8.68442 5.01395i 0.347099 0.200398i
\(627\) 0 0
\(628\) 10.6724 18.4852i 0.425876 0.737639i
\(629\) 0.473258i 0.0188700i
\(630\) 0 0
\(631\) 35.2313i 1.40253i −0.712898 0.701267i \(-0.752618\pi\)
0.712898 0.701267i \(-0.247382\pi\)
\(632\) −5.83773 3.37041i −0.232212 0.134068i
\(633\) 0 0
\(634\) 10.7045 + 18.5408i 0.425131 + 0.736348i
\(635\) −22.6182 13.0587i −0.897578 0.518217i
\(636\) 0 0
\(637\) −10.2742 + 23.0530i −0.407080 + 0.913393i
\(638\) −32.3146 −1.27935
\(639\) 0 0
\(640\) −1.30084 2.25312i −0.0514202 0.0890624i
\(641\) 11.1168 + 19.2549i 0.439087 + 0.760521i 0.997619 0.0689616i \(-0.0219686\pi\)
−0.558532 + 0.829483i \(0.688635\pi\)
\(642\) 0 0
\(643\) 3.64031i 0.143560i 0.997420 + 0.0717800i \(0.0228679\pi\)
−0.997420 + 0.0717800i \(0.977132\pi\)
\(644\) 4.37902 + 6.41531i 0.172558 + 0.252799i
\(645\) 0 0
\(646\) 1.88973 3.27311i 0.0743505 0.128779i
\(647\) 7.02791 + 12.1727i 0.276296 + 0.478558i 0.970461 0.241257i \(-0.0775598\pi\)
−0.694166 + 0.719815i \(0.744226\pi\)
\(648\) 0 0
\(649\) −20.8425 + 36.1003i −0.818140 + 1.41706i
\(650\) −0.295476 + 6.37041i −0.0115895 + 0.249868i
\(651\) 0 0
\(652\) 1.02791i 0.0402560i
\(653\) −8.62403 + 14.9373i −0.337484 + 0.584540i −0.983959 0.178396i \(-0.942909\pi\)
0.646475 + 0.762936i \(0.276243\pi\)
\(654\) 0 0
\(655\) 18.2756 10.5514i 0.714087 0.412278i
\(656\) 2.62952 + 1.51815i 0.102665 + 0.0592739i
\(657\) 0 0
\(658\) 11.1693 23.2257i 0.435423 0.905432i
\(659\) 21.6999 0.845307 0.422653 0.906291i \(-0.361099\pi\)
0.422653 + 0.906291i \(0.361099\pi\)
\(660\) 0 0
\(661\) −20.0758 + 11.5908i −0.780857 + 0.450828i −0.836734 0.547609i \(-0.815538\pi\)
0.0558767 + 0.998438i \(0.482205\pi\)
\(662\) 17.9302 + 31.0561i 0.696878 + 1.20703i
\(663\) 0 0
\(664\) 8.10051 0.314361
\(665\) −3.97992 + 8.27596i −0.154335 + 0.320928i
\(666\) 0 0
\(667\) −13.1701 + 22.8113i −0.509948 + 0.883256i
\(668\) 5.16997 2.98488i 0.200032 0.115489i
\(669\) 0 0
\(670\) −26.4535 15.2729i −1.02199 0.590045i
\(671\) 14.5375i 0.561213i
\(672\) 0 0
\(673\) 7.56538 0.291624 0.145812 0.989312i \(-0.453421\pi\)
0.145812 + 0.989312i \(0.453421\pi\)
\(674\) 5.83571 + 3.36925i 0.224783 + 0.129779i
\(675\) 0 0
\(676\) 5.42995 + 11.8117i 0.208844 + 0.454295i
\(677\) −10.4581 + 18.1140i −0.401939 + 0.696179i −0.993960 0.109744i \(-0.964997\pi\)
0.592021 + 0.805923i \(0.298330\pi\)
\(678\) 0 0
\(679\) 0.304067 0.207553i 0.0116690 0.00796515i
\(680\) 7.37041 0.282642
\(681\) 0 0
\(682\) 12.4766 7.20336i 0.477753 0.275831i
\(683\) −17.0981 + 9.87158i −0.654240 + 0.377725i −0.790079 0.613005i \(-0.789960\pi\)
0.135839 + 0.990731i \(0.456627\pi\)
\(684\) 0 0
\(685\) 12.0447 0.460204
\(686\) −17.7064 5.42989i −0.676033 0.207314i
\(687\) 0 0
\(688\) −1.16706 + 2.02140i −0.0444936 + 0.0770651i
\(689\) 4.96850 + 9.60802i 0.189285 + 0.366036i
\(690\) 0 0
\(691\) 23.4013 + 13.5107i 0.890226 + 0.513972i 0.874016 0.485896i \(-0.161507\pi\)
0.0162096 + 0.999869i \(0.494840\pi\)
\(692\) −16.5822 −0.630359
\(693\) 0 0
\(694\) 34.5738i 1.31240i
\(695\) −2.10845 1.21731i −0.0799779 0.0461753i
\(696\) 0 0
\(697\) −7.44927 + 4.30084i −0.282161 + 0.162906i
\(698\) 10.8886 18.8595i 0.412138 0.713844i
\(699\) 0 0
\(700\) −4.66635 + 0.352262i −0.176372 + 0.0133142i
\(701\) −46.3956 −1.75234 −0.876169 0.482004i \(-0.839909\pi\)
−0.876169 + 0.482004i \(0.839909\pi\)
\(702\) 0 0
\(703\) 0.111435 + 0.193011i 0.00420285 + 0.00727955i
\(704\) −3.11915 + 1.80084i −0.117557 + 0.0678717i
\(705\) 0 0
\(706\) 20.3509 0.765916
\(707\) −4.08822 + 8.50117i −0.153753 + 0.319719i
\(708\) 0 0
\(709\) 35.7795 + 20.6573i 1.34373 + 0.775801i 0.987352 0.158542i \(-0.0506793\pi\)
0.356375 + 0.934343i \(0.384013\pi\)
\(710\) 12.9977 7.50420i 0.487793 0.281628i
\(711\) 0 0
\(712\) 4.08353 7.07288i 0.153037 0.265067i
\(713\) 11.7432i 0.439785i
\(714\) 0 0
\(715\) 33.7492 + 1.56538i 1.26215 + 0.0585417i
\(716\) 9.37041 16.2300i 0.350189 0.606545i
\(717\) 0 0
\(718\) 0.716146 + 1.24040i 0.0267263 + 0.0462914i
\(719\) −14.9721 + 25.9324i −0.558365 + 0.967116i 0.439268 + 0.898356i \(0.355238\pi\)
−0.997633 + 0.0687604i \(0.978096\pi\)
\(720\) 0 0
\(721\) −50.3244 + 3.79897i −1.87418 + 0.141481i
\(722\) 17.2201i 0.640868i
\(723\) 0 0
\(724\) −0.213114 0.369125i −0.00792032 0.0137184i
\(725\) −7.93462 13.7432i −0.294685 0.510409i
\(726\) 0 0
\(727\) 22.8860 0.848796 0.424398 0.905476i \(-0.360486\pi\)
0.424398 + 0.905476i \(0.360486\pi\)
\(728\) −8.11959 + 5.00722i −0.300932 + 0.185580i
\(729\) 0 0
\(730\) 25.8454 + 14.9218i 0.956580 + 0.552282i
\(731\) −3.30620 5.72651i −0.122284 0.211803i
\(732\) 0 0
\(733\) −33.8210 19.5265i −1.24921 0.721229i −0.278255 0.960507i \(-0.589756\pi\)
−0.970951 + 0.239278i \(0.923089\pi\)
\(734\) 24.3509i 0.898808i
\(735\) 0 0
\(736\) 2.93579i 0.108215i
\(737\) −21.1433 + 36.6213i −0.778825 + 1.34896i
\(738\) 0 0
\(739\) −42.8282 + 24.7269i −1.57546 + 0.909593i −0.579980 + 0.814631i \(0.696940\pi\)
−0.995481 + 0.0949620i \(0.969727\pi\)
\(740\) −0.217312 + 0.376395i −0.00798855 + 0.0138366i
\(741\) 0 0
\(742\) −6.55562 + 4.47480i −0.240664 + 0.164275i
\(743\) 0.203358i 0.00746049i 0.999993 + 0.00373025i \(0.00118738\pi\)
−0.999993 + 0.00373025i \(0.998813\pi\)
\(744\) 0 0
\(745\) 10.5877 + 18.3385i 0.387904 + 0.671870i
\(746\) −27.6717 + 15.9763i −1.01313 + 0.584934i
\(747\) 0 0
\(748\) 10.2034i 0.373072i
\(749\) −21.2975 + 1.60774i −0.778194 + 0.0587457i
\(750\) 0 0
\(751\) 21.4733 37.1928i 0.783570 1.35718i −0.146279 0.989243i \(-0.546730\pi\)
0.929849 0.367940i \(-0.119937\pi\)
\(752\) 8.43580 4.87041i 0.307622 0.177606i
\(753\) 0 0
\(754\) −27.2358 17.4553i −0.991871 0.635686i
\(755\) −52.0554 −1.89449
\(756\) 0 0
\(757\) −19.5180 −0.709392 −0.354696 0.934982i \(-0.615416\pi\)
−0.354696 + 0.934982i \(0.615416\pi\)
\(758\) −1.39832 + 2.42196i −0.0507893 + 0.0879696i
\(759\) 0 0
\(760\) −3.00591 + 1.73546i −0.109036 + 0.0629519i
\(761\) −36.3876 21.0084i −1.31905 0.761554i −0.335474 0.942049i \(-0.608896\pi\)
−0.983576 + 0.180496i \(0.942230\pi\)
\(762\) 0 0
\(763\) 30.6850 + 14.7565i 1.11087 + 0.534219i
\(764\) −8.86925 −0.320878
\(765\) 0 0
\(766\) 4.92184 + 8.52487i 0.177833 + 0.308016i
\(767\) −37.0670 + 19.1681i −1.33841 + 0.692119i
\(768\) 0 0
\(769\) 51.9502i 1.87337i −0.350168 0.936687i \(-0.613875\pi\)
0.350168 0.936687i \(-0.386125\pi\)
\(770\) 1.86622 + 24.7214i 0.0672537 + 0.890899i
\(771\) 0 0
\(772\) 6.06945 + 3.50420i 0.218444 + 0.126119i
\(773\) 36.4022 21.0168i 1.30929 0.755921i 0.327316 0.944915i \(-0.393856\pi\)
0.981978 + 0.188993i \(0.0605225\pi\)
\(774\) 0 0
\(775\) 6.12708 + 3.53747i 0.220091 + 0.127070i
\(776\) 0.139148 0.00499511
\(777\) 0 0
\(778\) 16.3811i 0.587292i
\(779\) 2.02538 3.50806i 0.0725668 0.125689i
\(780\) 0 0
\(781\) −10.3886 17.9935i −0.371732 0.643859i
\(782\) −7.20267 4.15846i −0.257567 0.148706i
\(783\) 0 0
\(784\) −4.37041 5.46804i −0.156086 0.195287i
\(785\) 55.5324i 1.98204i
\(786\) 0 0
\(787\) 7.61610 4.39716i 0.271485 0.156742i −0.358078 0.933692i \(-0.616568\pi\)
0.629562 + 0.776950i \(0.283234\pi\)
\(788\) −15.4196 + 8.90252i −0.549301 + 0.317139i
\(789\) 0 0
\(790\) −17.5375 −0.623955
\(791\) 29.6530 + 43.4419i 1.05434 + 1.54461i
\(792\) 0 0
\(793\) −7.85268 + 12.2527i −0.278857 + 0.435105i
\(794\) 2.72151 + 4.71379i 0.0965828 + 0.167286i
\(795\) 0 0
\(796\) −13.5545 + 23.4770i −0.480425 + 0.832120i
\(797\) 6.25039 0.221400 0.110700 0.993854i \(-0.464691\pi\)
0.110700 + 0.993854i \(0.464691\pi\)
\(798\) 0 0
\(799\) 27.5952i 0.976249i
\(800\) −1.53177 0.884367i −0.0541562 0.0312671i
\(801\) 0 0
\(802\) 8.78805 + 15.2214i 0.310317 + 0.537485i
\(803\) 20.6573 35.7795i 0.728980 1.26263i
\(804\) 0 0
\(805\) 18.2118 + 8.75805i 0.641880 + 0.308681i
\(806\) 14.4067 + 0.668221i 0.507455 + 0.0235371i
\(807\) 0 0
\(808\) −3.08771 + 1.78269i −0.108625 + 0.0627147i
\(809\) −22.9260 39.7091i −0.806036 1.39610i −0.915589 0.402115i \(-0.868275\pi\)
0.109553 0.993981i \(-0.465058\pi\)
\(810\) 0 0
\(811\) 29.5096i 1.03622i −0.855314 0.518110i \(-0.826636\pi\)
0.855314 0.518110i \(-0.173364\pi\)
\(812\) 10.2878 21.3928i 0.361031 0.750739i
\(813\) 0 0
\(814\) 0.521069 + 0.300840i 0.0182635 + 0.0105444i
\(815\) 1.33714 + 2.31600i 0.0468381 + 0.0811259i
\(816\) 0 0
\(817\) 2.69677 + 1.55698i 0.0943480 + 0.0544718i
\(818\) 19.0084 0.664613
\(819\) 0 0
\(820\) 7.89949 0.275862
\(821\) 20.9197 + 12.0780i 0.730101 + 0.421524i 0.818459 0.574565i \(-0.194829\pi\)
−0.0883581 + 0.996089i \(0.528162\pi\)
\(822\) 0 0
\(823\) 15.3511 + 26.5889i 0.535106 + 0.926830i 0.999158 + 0.0410224i \(0.0130615\pi\)
−0.464053 + 0.885808i \(0.653605\pi\)
\(824\) −16.5194 9.53747i −0.575480 0.332253i
\(825\) 0 0
\(826\) −17.2634 25.2911i −0.600672 0.879989i
\(827\) 3.32338i 0.115565i −0.998329 0.0577827i \(-0.981597\pi\)
0.998329 0.0577827i \(-0.0184031\pi\)
\(828\) 0 0
\(829\) 14.8232 + 25.6745i 0.514831 + 0.891713i 0.999852 + 0.0172105i \(0.00547853\pi\)
−0.485021 + 0.874502i \(0.661188\pi\)
\(830\) 18.2514 10.5375i 0.633516 0.365761i
\(831\) 0 0
\(832\) −3.60168 0.167055i −0.124866 0.00579160i
\(833\) 19.6059 2.97705i 0.679303 0.103149i
\(834\) 0 0
\(835\) 7.76570 13.4506i 0.268743 0.465477i
\(836\) 2.40252 + 4.16128i 0.0830928 + 0.143921i
\(837\) 0 0
\(838\) −4.74725 2.74083i −0.163991 0.0946803i
\(839\) 5.51189i 0.190292i 0.995463 + 0.0951458i \(0.0303317\pi\)
−0.995463 + 0.0951458i \(0.969668\pi\)
\(840\) 0 0
\(841\) 51.4984 1.77581
\(842\) −1.58236 + 2.74073i −0.0545318 + 0.0944518i
\(843\) 0 0
\(844\) 11.3371 + 19.6365i 0.390241 + 0.675916i
\(845\) 27.5994 + 19.5496i 0.949449 + 0.672527i
\(846\) 0 0
\(847\) 5.20286 0.392763i 0.178772 0.0134955i
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) 4.33942 2.50536i 0.148841 0.0859333i
\(851\) 0.424732 0.245219i 0.0145596 0.00840601i
\(852\) 0 0
\(853\) 34.2611i 1.17308i 0.809921 + 0.586539i \(0.199510\pi\)
−0.809921 + 0.586539i \(0.800490\pi\)
\(854\) −9.62403 4.62820i −0.329327 0.158374i
\(855\) 0 0
\(856\) −6.99108 4.03630i −0.238950 0.137958i
\(857\) 18.2299 + 31.5751i 0.622722 + 1.07859i 0.988977 + 0.148071i \(0.0473065\pi\)
−0.366255 + 0.930515i \(0.619360\pi\)
\(858\) 0 0
\(859\) −21.6743 + 37.5410i −0.739517 + 1.28088i 0.213196 + 0.977009i \(0.431613\pi\)
−0.952713 + 0.303872i \(0.901721\pi\)
\(860\) 6.07261i 0.207074i
\(861\) 0 0
\(862\) −15.4370 −0.525785
\(863\) −11.7907 6.80737i −0.401360 0.231726i 0.285710 0.958316i \(-0.407770\pi\)
−0.687071 + 0.726590i \(0.741104\pi\)
\(864\) 0 0
\(865\) −37.3616 + 21.5707i −1.27033 + 0.733427i
\(866\) 12.0740 + 6.97093i 0.410291 + 0.236882i
\(867\) 0 0
\(868\) 0.796642 + 10.5530i 0.0270398 + 0.358191i
\(869\) 24.2783i 0.823585i
\(870\) 0 0
\(871\) −37.6020 + 19.4448i −1.27410 + 0.658860i
\(872\) 6.43462 + 11.1451i 0.217904 + 0.377421i
\(873\) 0 0
\(874\) 3.91667 0.132483
\(875\) 18.3704 12.5395i 0.621033 0.423911i
\(876\) 0 0
\(877\) 23.8292 + 13.7578i 0.804656 + 0.464568i 0.845097 0.534614i \(-0.179543\pi\)
−0.0404407 + 0.999182i \(0.512876\pi\)
\(878\) 23.7180 13.6936i 0.800444 0.462137i
\(879\) 0 0
\(880\) −4.68521 + 8.11502i −0.157938 + 0.273557i
\(881\) 22.3341 0.752455 0.376228 0.926527i \(-0.377221\pi\)
0.376228 + 0.926527i \(0.377221\pi\)
\(882\) 0 0
\(883\) 9.28669 0.312522 0.156261 0.987716i \(-0.450056\pi\)
0.156261 + 0.987716i \(0.450056\pi\)
\(884\) 5.51153 8.59974i 0.185373 0.289241i
\(885\) 0 0
\(886\) 20.8809 12.0556i 0.701509 0.405016i
\(887\) −6.97209 + 12.0760i −0.234100 + 0.405473i −0.959011 0.283370i \(-0.908548\pi\)
0.724911 + 0.688843i \(0.241881\pi\)
\(888\) 0 0
\(889\) −14.9736 21.9365i −0.502199 0.735726i
\(890\) 21.2481i 0.712236i
\(891\) 0 0
\(892\) 7.96307 4.59748i 0.266623 0.153935i
\(893\) −6.49767 11.2543i −0.217436 0.376611i
\(894\) 0 0
\(895\) 48.7576i 1.62979i
\(896\) −0.199160 2.63824i −0.00665348 0.0881376i
\(897\) 0 0
\(898\) −1.29548 + 2.24383i −0.0432306 + 0.0748776i
\(899\) −31.0802 + 17.9442i −1.03658 + 0.598472i
\(900\) 0 0
\(901\) 4.24942 7.36021i 0.141569 0.245204i
\(902\) 10.9358i 0.364122i
\(903\) 0 0
\(904\) 19.8800i 0.661198i
\(905\) −0.960344 0.554455i −0.0319229 0.0184307i
\(906\) 0 0
\(907\) −2.06957 3.58461i −0.0687191 0.119025i 0.829619 0.558330i \(-0.188558\pi\)
−0.898338 + 0.439306i \(0.855225\pi\)
\(908\) −11.7238 6.76873i −0.389068 0.224628i
\(909\) 0 0
\(910\) −11.7808 + 21.8441i −0.390531 + 0.724126i
\(911\) −18.5566 −0.614807 −0.307404 0.951579i \(-0.599460\pi\)
−0.307404 + 0.951579i \(0.599460\pi\)
\(912\) 0 0
\(913\) −14.5877 25.2667i −0.482783 0.836205i
\(914\) 5.23430 + 9.06607i 0.173135 + 0.299879i
\(915\) 0 0
\(916\) 18.4067i 0.608175i
\(917\) 21.3994 1.61544i 0.706672 0.0533465i
\(918\) 0 0
\(919\) −25.6743 + 44.4692i −0.846917 + 1.46690i 0.0370298 + 0.999314i \(0.488210\pi\)
−0.883946 + 0.467588i \(0.845123\pi\)
\(920\) 3.81899 + 6.61469i 0.125908 + 0.218080i
\(921\) 0 0
\(922\) −15.0084 + 25.9953i −0.494275 + 0.856110i
\(923\) 0.963697 20.7771i 0.0317205 0.683888i
\(924\) 0 0
\(925\) 0.295476i 0.00971520i
\(926\) −9.73243 + 16.8571i −0.319828 + 0.553958i
\(927\) 0 0
\(928\) 7.77006 4.48605i 0.255065 0.147262i
\(929\) 6.01182 + 3.47093i 0.197241 + 0.113877i 0.595368 0.803453i \(-0.297006\pi\)
−0.398127 + 0.917330i \(0.630340\pi\)
\(930\) 0 0
\(931\) −7.29497 + 5.83061i −0.239083 + 0.191091i
\(932\) −11.7301 −0.384232
\(933\) 0 0
\(934\) −0.259927 + 0.150069i −0.00850508 + 0.00491041i
\(935\) −13.2729 22.9894i −0.434071 0.751834i
\(936\) 0 0
\(937\) 37.1005 1.21202 0.606010 0.795457i \(-0.292769\pi\)
0.606010 + 0.795457i \(0.292769\pi\)
\(938\) −17.5126 25.6561i −0.571807 0.837702i
\(939\) 0 0
\(940\) 12.6713 21.9473i 0.413291 0.715840i
\(941\) 7.28447 4.20569i 0.237467 0.137102i −0.376545 0.926398i \(-0.622888\pi\)
0.614012 + 0.789297i \(0.289555\pi\)
\(942\) 0 0
\(943\) −7.71970 4.45697i −0.251388 0.145139i
\(944\) 11.5738i 0.376694i
\(945\) 0 0
\(946\) 8.40672 0.273326
\(947\) 21.7953 + 12.5835i 0.708252 + 0.408910i 0.810414 0.585858i \(-0.199242\pi\)
−0.102161 + 0.994768i \(0.532576\pi\)
\(948\) 0 0
\(949\) 36.7376 18.9978i 1.19255 0.616693i
\(950\) −1.17984 + 2.04355i −0.0382792 + 0.0663015i
\(951\) 0 0
\(952\) 6.75478 + 3.24838i 0.218924 + 0.105281i
\(953\) −35.3681 −1.14568 −0.572842 0.819666i \(-0.694159\pi\)
−0.572842 + 0.819666i \(0.694159\pi\)
\(954\) 0 0
\(955\) −19.9835 + 11.5375i −0.646650 + 0.373344i
\(956\) −9.67621 + 5.58656i −0.312951 + 0.180682i
\(957\) 0 0
\(958\) 23.5845 0.761981
\(959\) 11.0386 + 5.30849i 0.356456 + 0.171420i
\(960\) 0 0
\(961\) −7.50000 + 12.9904i −0.241935 + 0.419045i
\(962\) 0.276671 + 0.535023i 0.00892023 + 0.0172498i
\(963\) 0 0
\(964\) 12.7659 + 7.37041i 0.411163 + 0.237385i
\(965\) 18.2336 0.586960
\(966\) 0 0
\(967\) 17.3123i 0.556725i −0.960476 0.278362i \(-0.910208\pi\)
0.960476 0.278362i \(-0.0897917\pi\)
\(968\) 1.70788 + 0.986046i 0.0548934 + 0.0316927i
\(969\) 0 0
\(970\) 0.313517 0.181009i 0.0100664 0.00581185i
\(971\) −26.6959 + 46.2387i −0.856713 + 1.48387i 0.0183332 + 0.999832i \(0.494164\pi\)
−0.875046 + 0.484039i \(0.839169\pi\)
\(972\) 0 0
\(973\) −1.39582 2.04489i −0.0447481 0.0655563i
\(974\) −34.2420 −1.09718
\(975\) 0 0
\(976\) −2.01815 3.49554i −0.0645995 0.111890i
\(977\) −28.4656 + 16.4346i −0.910695 + 0.525790i −0.880655 0.473758i \(-0.842897\pi\)
−0.0300405 + 0.999549i \(0.509564\pi\)
\(978\) 0 0
\(979\) −29.4151 −0.940111
\(980\) −16.9601 6.63495i −0.541771 0.211946i
\(981\) 0 0
\(982\) 34.4291 + 19.8776i 1.09868 + 0.634321i
\(983\) 8.42126 4.86202i 0.268597 0.155074i −0.359653 0.933086i \(-0.617105\pi\)
0.628250 + 0.778012i \(0.283772\pi\)
\(984\) 0 0
\(985\) −23.1615 + 40.1169i −0.737987 + 1.27823i
\(986\) 25.4174i 0.809456i
\(987\) 0 0
\(988\) −0.222870 + 4.80504i −0.00709044 + 0.152869i
\(989\) 3.42623 5.93440i 0.108948 0.188703i
\(990\) 0 0
\(991\) −16.2057 28.0691i −0.514791 0.891644i −0.999853 0.0171639i \(-0.994536\pi\)
0.485062 0.874480i \(-0.338797\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 15.2193 1.14890i 0.482728 0.0364410i
\(995\) 70.5287i 2.23591i
\(996\) 0 0
\(997\) 22.8395 + 39.5591i 0.723333 + 1.25285i 0.959656 + 0.281176i \(0.0907243\pi\)
−0.236323 + 0.971675i \(0.575942\pi\)
\(998\) −6.12519 10.6091i −0.193890 0.335827i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dm.c.415.6 12
3.2 odd 2 546.2.bk.b.415.1 yes 12
7.4 even 3 inner 1638.2.dm.c.1117.1 12
13.12 even 2 inner 1638.2.dm.c.415.1 12
21.2 odd 6 3822.2.c.k.883.6 6
21.5 even 6 3822.2.c.j.883.4 6
21.11 odd 6 546.2.bk.b.25.6 yes 12
39.38 odd 2 546.2.bk.b.415.6 yes 12
91.25 even 6 inner 1638.2.dm.c.1117.6 12
273.116 odd 6 546.2.bk.b.25.1 12
273.194 even 6 3822.2.c.j.883.3 6
273.233 odd 6 3822.2.c.k.883.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.1 12 273.116 odd 6
546.2.bk.b.25.6 yes 12 21.11 odd 6
546.2.bk.b.415.1 yes 12 3.2 odd 2
546.2.bk.b.415.6 yes 12 39.38 odd 2
1638.2.dm.c.415.1 12 13.12 even 2 inner
1638.2.dm.c.415.6 12 1.1 even 1 trivial
1638.2.dm.c.1117.1 12 7.4 even 3 inner
1638.2.dm.c.1117.6 12 91.25 even 6 inner
3822.2.c.j.883.3 6 273.194 even 6
3822.2.c.j.883.4 6 21.5 even 6
3822.2.c.k.883.1 6 273.233 odd 6
3822.2.c.k.883.6 6 21.2 odd 6