Properties

Label 3808.2.a.p.1.3
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3808,2,Mod(1,3808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.109859312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 15x^{3} + 13x^{2} - 9x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.55174\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.531974 q^{3} +0.110568 q^{5} +1.00000 q^{7} -2.71700 q^{9} -3.70563 q^{11} -0.433088 q^{13} +0.0588193 q^{15} -1.00000 q^{17} -0.814115 q^{19} +0.531974 q^{21} +1.18589 q^{23} -4.98777 q^{25} -3.04130 q^{27} +7.33386 q^{29} +2.31917 q^{31} -1.97130 q^{33} +0.110568 q^{35} +3.22541 q^{37} -0.230392 q^{39} +9.96934 q^{41} +12.2989 q^{43} -0.300414 q^{45} +4.33389 q^{47} +1.00000 q^{49} -0.531974 q^{51} +0.931587 q^{53} -0.409725 q^{55} -0.433088 q^{57} +10.4980 q^{59} -5.63209 q^{61} -2.71700 q^{63} -0.0478857 q^{65} +11.3973 q^{67} +0.630861 q^{69} -4.54584 q^{71} +8.09723 q^{73} -2.65337 q^{75} -3.70563 q^{77} +6.73861 q^{79} +6.53312 q^{81} +4.28183 q^{83} -0.110568 q^{85} +3.90143 q^{87} -8.11693 q^{89} -0.433088 q^{91} +1.23374 q^{93} -0.0900150 q^{95} +0.418365 q^{97} +10.0682 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} + 4 q^{5} + 6 q^{7} + 8 q^{9} + 8 q^{11} + 8 q^{13} - 6 q^{17} + 6 q^{19} + 4 q^{21} + 18 q^{23} + 12 q^{25} + 22 q^{27} - 8 q^{29} - 4 q^{31} - 6 q^{33} + 4 q^{35} - 8 q^{37} + 14 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.531974 0.307135 0.153568 0.988138i \(-0.450924\pi\)
0.153568 + 0.988138i \(0.450924\pi\)
\(4\) 0 0
\(5\) 0.110568 0.0494475 0.0247238 0.999694i \(-0.492129\pi\)
0.0247238 + 0.999694i \(0.492129\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.71700 −0.905668
\(10\) 0 0
\(11\) −3.70563 −1.11729 −0.558645 0.829407i \(-0.688679\pi\)
−0.558645 + 0.829407i \(0.688679\pi\)
\(12\) 0 0
\(13\) −0.433088 −0.120117 −0.0600585 0.998195i \(-0.519129\pi\)
−0.0600585 + 0.998195i \(0.519129\pi\)
\(14\) 0 0
\(15\) 0.0588193 0.0151871
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −0.814115 −0.186771 −0.0933853 0.995630i \(-0.529769\pi\)
−0.0933853 + 0.995630i \(0.529769\pi\)
\(20\) 0 0
\(21\) 0.531974 0.116086
\(22\) 0 0
\(23\) 1.18589 0.247274 0.123637 0.992327i \(-0.460544\pi\)
0.123637 + 0.992327i \(0.460544\pi\)
\(24\) 0 0
\(25\) −4.98777 −0.997555
\(26\) 0 0
\(27\) −3.04130 −0.585298
\(28\) 0 0
\(29\) 7.33386 1.36186 0.680932 0.732347i \(-0.261575\pi\)
0.680932 + 0.732347i \(0.261575\pi\)
\(30\) 0 0
\(31\) 2.31917 0.416535 0.208267 0.978072i \(-0.433218\pi\)
0.208267 + 0.978072i \(0.433218\pi\)
\(32\) 0 0
\(33\) −1.97130 −0.343160
\(34\) 0 0
\(35\) 0.110568 0.0186894
\(36\) 0 0
\(37\) 3.22541 0.530254 0.265127 0.964214i \(-0.414586\pi\)
0.265127 + 0.964214i \(0.414586\pi\)
\(38\) 0 0
\(39\) −0.230392 −0.0368922
\(40\) 0 0
\(41\) 9.96934 1.55695 0.778474 0.627677i \(-0.215994\pi\)
0.778474 + 0.627677i \(0.215994\pi\)
\(42\) 0 0
\(43\) 12.2989 1.87557 0.937784 0.347218i \(-0.112874\pi\)
0.937784 + 0.347218i \(0.112874\pi\)
\(44\) 0 0
\(45\) −0.300414 −0.0447830
\(46\) 0 0
\(47\) 4.33389 0.632163 0.316081 0.948732i \(-0.397633\pi\)
0.316081 + 0.948732i \(0.397633\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.531974 −0.0744913
\(52\) 0 0
\(53\) 0.931587 0.127963 0.0639816 0.997951i \(-0.479620\pi\)
0.0639816 + 0.997951i \(0.479620\pi\)
\(54\) 0 0
\(55\) −0.409725 −0.0552472
\(56\) 0 0
\(57\) −0.433088 −0.0573639
\(58\) 0 0
\(59\) 10.4980 1.36672 0.683359 0.730083i \(-0.260519\pi\)
0.683359 + 0.730083i \(0.260519\pi\)
\(60\) 0 0
\(61\) −5.63209 −0.721115 −0.360558 0.932737i \(-0.617414\pi\)
−0.360558 + 0.932737i \(0.617414\pi\)
\(62\) 0 0
\(63\) −2.71700 −0.342310
\(64\) 0 0
\(65\) −0.0478857 −0.00593949
\(66\) 0 0
\(67\) 11.3973 1.39240 0.696201 0.717847i \(-0.254872\pi\)
0.696201 + 0.717847i \(0.254872\pi\)
\(68\) 0 0
\(69\) 0.630861 0.0759467
\(70\) 0 0
\(71\) −4.54584 −0.539492 −0.269746 0.962932i \(-0.586940\pi\)
−0.269746 + 0.962932i \(0.586940\pi\)
\(72\) 0 0
\(73\) 8.09723 0.947709 0.473855 0.880603i \(-0.342862\pi\)
0.473855 + 0.880603i \(0.342862\pi\)
\(74\) 0 0
\(75\) −2.65337 −0.306385
\(76\) 0 0
\(77\) −3.70563 −0.422296
\(78\) 0 0
\(79\) 6.73861 0.758152 0.379076 0.925365i \(-0.376242\pi\)
0.379076 + 0.925365i \(0.376242\pi\)
\(80\) 0 0
\(81\) 6.53312 0.725902
\(82\) 0 0
\(83\) 4.28183 0.469992 0.234996 0.971996i \(-0.424492\pi\)
0.234996 + 0.971996i \(0.424492\pi\)
\(84\) 0 0
\(85\) −0.110568 −0.0119928
\(86\) 0 0
\(87\) 3.90143 0.418277
\(88\) 0 0
\(89\) −8.11693 −0.860393 −0.430196 0.902735i \(-0.641556\pi\)
−0.430196 + 0.902735i \(0.641556\pi\)
\(90\) 0 0
\(91\) −0.433088 −0.0454000
\(92\) 0 0
\(93\) 1.23374 0.127933
\(94\) 0 0
\(95\) −0.0900150 −0.00923534
\(96\) 0 0
\(97\) 0.418365 0.0424785 0.0212393 0.999774i \(-0.493239\pi\)
0.0212393 + 0.999774i \(0.493239\pi\)
\(98\) 0 0
\(99\) 10.0682 1.01189
\(100\) 0 0
\(101\) 4.20270 0.418184 0.209092 0.977896i \(-0.432949\pi\)
0.209092 + 0.977896i \(0.432949\pi\)
\(102\) 0 0
\(103\) −9.77386 −0.963047 −0.481523 0.876433i \(-0.659916\pi\)
−0.481523 + 0.876433i \(0.659916\pi\)
\(104\) 0 0
\(105\) 0.0588193 0.00574018
\(106\) 0 0
\(107\) −4.44987 −0.430185 −0.215093 0.976594i \(-0.569005\pi\)
−0.215093 + 0.976594i \(0.569005\pi\)
\(108\) 0 0
\(109\) −11.0807 −1.06134 −0.530671 0.847578i \(-0.678060\pi\)
−0.530671 + 0.847578i \(0.678060\pi\)
\(110\) 0 0
\(111\) 1.71583 0.162860
\(112\) 0 0
\(113\) 4.31470 0.405893 0.202946 0.979190i \(-0.434948\pi\)
0.202946 + 0.979190i \(0.434948\pi\)
\(114\) 0 0
\(115\) 0.131121 0.0122271
\(116\) 0 0
\(117\) 1.17670 0.108786
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 2.73173 0.248339
\(122\) 0 0
\(123\) 5.30343 0.478194
\(124\) 0 0
\(125\) −1.10433 −0.0987741
\(126\) 0 0
\(127\) 18.8086 1.66899 0.834495 0.551015i \(-0.185759\pi\)
0.834495 + 0.551015i \(0.185759\pi\)
\(128\) 0 0
\(129\) 6.54271 0.576054
\(130\) 0 0
\(131\) 22.4407 1.96065 0.980326 0.197385i \(-0.0632449\pi\)
0.980326 + 0.197385i \(0.0632449\pi\)
\(132\) 0 0
\(133\) −0.814115 −0.0705927
\(134\) 0 0
\(135\) −0.336270 −0.0289415
\(136\) 0 0
\(137\) −15.4320 −1.31845 −0.659224 0.751947i \(-0.729115\pi\)
−0.659224 + 0.751947i \(0.729115\pi\)
\(138\) 0 0
\(139\) −6.34621 −0.538278 −0.269139 0.963101i \(-0.586739\pi\)
−0.269139 + 0.963101i \(0.586739\pi\)
\(140\) 0 0
\(141\) 2.30552 0.194160
\(142\) 0 0
\(143\) 1.60487 0.134206
\(144\) 0 0
\(145\) 0.810891 0.0673408
\(146\) 0 0
\(147\) 0.531974 0.0438765
\(148\) 0 0
\(149\) 19.3519 1.58537 0.792685 0.609631i \(-0.208683\pi\)
0.792685 + 0.609631i \(0.208683\pi\)
\(150\) 0 0
\(151\) 5.16448 0.420279 0.210140 0.977671i \(-0.432608\pi\)
0.210140 + 0.977671i \(0.432608\pi\)
\(152\) 0 0
\(153\) 2.71700 0.219657
\(154\) 0 0
\(155\) 0.256426 0.0205966
\(156\) 0 0
\(157\) −21.0632 −1.68103 −0.840513 0.541792i \(-0.817746\pi\)
−0.840513 + 0.541792i \(0.817746\pi\)
\(158\) 0 0
\(159\) 0.495580 0.0393021
\(160\) 0 0
\(161\) 1.18589 0.0934609
\(162\) 0 0
\(163\) 5.45751 0.427465 0.213733 0.976892i \(-0.431438\pi\)
0.213733 + 0.976892i \(0.431438\pi\)
\(164\) 0 0
\(165\) −0.217963 −0.0169684
\(166\) 0 0
\(167\) 4.42024 0.342048 0.171024 0.985267i \(-0.445292\pi\)
0.171024 + 0.985267i \(0.445292\pi\)
\(168\) 0 0
\(169\) −12.8124 −0.985572
\(170\) 0 0
\(171\) 2.21195 0.169152
\(172\) 0 0
\(173\) −11.6285 −0.884102 −0.442051 0.896990i \(-0.645749\pi\)
−0.442051 + 0.896990i \(0.645749\pi\)
\(174\) 0 0
\(175\) −4.98777 −0.377040
\(176\) 0 0
\(177\) 5.58464 0.419767
\(178\) 0 0
\(179\) 12.0938 0.903935 0.451967 0.892035i \(-0.350722\pi\)
0.451967 + 0.892035i \(0.350722\pi\)
\(180\) 0 0
\(181\) −2.90925 −0.216243 −0.108121 0.994138i \(-0.534484\pi\)
−0.108121 + 0.994138i \(0.534484\pi\)
\(182\) 0 0
\(183\) −2.99613 −0.221480
\(184\) 0 0
\(185\) 0.356627 0.0262197
\(186\) 0 0
\(187\) 3.70563 0.270983
\(188\) 0 0
\(189\) −3.04130 −0.221222
\(190\) 0 0
\(191\) 0.161060 0.0116539 0.00582693 0.999983i \(-0.498145\pi\)
0.00582693 + 0.999983i \(0.498145\pi\)
\(192\) 0 0
\(193\) −6.90768 −0.497226 −0.248613 0.968603i \(-0.579975\pi\)
−0.248613 + 0.968603i \(0.579975\pi\)
\(194\) 0 0
\(195\) −0.0254739 −0.00182423
\(196\) 0 0
\(197\) −22.9991 −1.63862 −0.819311 0.573350i \(-0.805644\pi\)
−0.819311 + 0.573350i \(0.805644\pi\)
\(198\) 0 0
\(199\) −26.3057 −1.86476 −0.932380 0.361479i \(-0.882272\pi\)
−0.932380 + 0.361479i \(0.882272\pi\)
\(200\) 0 0
\(201\) 6.06307 0.427656
\(202\) 0 0
\(203\) 7.33386 0.514736
\(204\) 0 0
\(205\) 1.10229 0.0769872
\(206\) 0 0
\(207\) −3.22205 −0.223948
\(208\) 0 0
\(209\) 3.01681 0.208677
\(210\) 0 0
\(211\) −3.51712 −0.242128 −0.121064 0.992645i \(-0.538631\pi\)
−0.121064 + 0.992645i \(0.538631\pi\)
\(212\) 0 0
\(213\) −2.41827 −0.165697
\(214\) 0 0
\(215\) 1.35987 0.0927422
\(216\) 0 0
\(217\) 2.31917 0.157435
\(218\) 0 0
\(219\) 4.30752 0.291075
\(220\) 0 0
\(221\) 0.433088 0.0291326
\(222\) 0 0
\(223\) −11.0682 −0.741181 −0.370591 0.928796i \(-0.620845\pi\)
−0.370591 + 0.928796i \(0.620845\pi\)
\(224\) 0 0
\(225\) 13.5518 0.903453
\(226\) 0 0
\(227\) 13.2678 0.880617 0.440308 0.897847i \(-0.354869\pi\)
0.440308 + 0.897847i \(0.354869\pi\)
\(228\) 0 0
\(229\) 21.2079 1.40146 0.700730 0.713427i \(-0.252858\pi\)
0.700730 + 0.713427i \(0.252858\pi\)
\(230\) 0 0
\(231\) −1.97130 −0.129702
\(232\) 0 0
\(233\) 1.48189 0.0970820 0.0485410 0.998821i \(-0.484543\pi\)
0.0485410 + 0.998821i \(0.484543\pi\)
\(234\) 0 0
\(235\) 0.479189 0.0312589
\(236\) 0 0
\(237\) 3.58476 0.232855
\(238\) 0 0
\(239\) 10.8918 0.704534 0.352267 0.935900i \(-0.385411\pi\)
0.352267 + 0.935900i \(0.385411\pi\)
\(240\) 0 0
\(241\) −13.6857 −0.881574 −0.440787 0.897612i \(-0.645301\pi\)
−0.440787 + 0.897612i \(0.645301\pi\)
\(242\) 0 0
\(243\) 12.5993 0.808248
\(244\) 0 0
\(245\) 0.110568 0.00706393
\(246\) 0 0
\(247\) 0.352583 0.0224343
\(248\) 0 0
\(249\) 2.27782 0.144351
\(250\) 0 0
\(251\) 2.02515 0.127826 0.0639131 0.997955i \(-0.479642\pi\)
0.0639131 + 0.997955i \(0.479642\pi\)
\(252\) 0 0
\(253\) −4.39446 −0.276277
\(254\) 0 0
\(255\) −0.0588193 −0.00368341
\(256\) 0 0
\(257\) −11.5374 −0.719682 −0.359841 0.933014i \(-0.617169\pi\)
−0.359841 + 0.933014i \(0.617169\pi\)
\(258\) 0 0
\(259\) 3.22541 0.200417
\(260\) 0 0
\(261\) −19.9261 −1.23340
\(262\) 0 0
\(263\) 3.15719 0.194681 0.0973403 0.995251i \(-0.468966\pi\)
0.0973403 + 0.995251i \(0.468966\pi\)
\(264\) 0 0
\(265\) 0.103004 0.00632747
\(266\) 0 0
\(267\) −4.31800 −0.264257
\(268\) 0 0
\(269\) 8.51645 0.519257 0.259629 0.965709i \(-0.416400\pi\)
0.259629 + 0.965709i \(0.416400\pi\)
\(270\) 0 0
\(271\) −27.2876 −1.65760 −0.828802 0.559541i \(-0.810977\pi\)
−0.828802 + 0.559541i \(0.810977\pi\)
\(272\) 0 0
\(273\) −0.230392 −0.0139439
\(274\) 0 0
\(275\) 18.4829 1.11456
\(276\) 0 0
\(277\) −0.0119126 −0.000715757 0 −0.000357878 1.00000i \(-0.500114\pi\)
−0.000357878 1.00000i \(0.500114\pi\)
\(278\) 0 0
\(279\) −6.30118 −0.377242
\(280\) 0 0
\(281\) 19.2215 1.14666 0.573330 0.819325i \(-0.305651\pi\)
0.573330 + 0.819325i \(0.305651\pi\)
\(282\) 0 0
\(283\) 14.4359 0.858125 0.429063 0.903275i \(-0.358844\pi\)
0.429063 + 0.903275i \(0.358844\pi\)
\(284\) 0 0
\(285\) −0.0478857 −0.00283650
\(286\) 0 0
\(287\) 9.96934 0.588471
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0.222559 0.0130467
\(292\) 0 0
\(293\) 27.4719 1.60492 0.802462 0.596703i \(-0.203523\pi\)
0.802462 + 0.596703i \(0.203523\pi\)
\(294\) 0 0
\(295\) 1.16074 0.0675808
\(296\) 0 0
\(297\) 11.2699 0.653948
\(298\) 0 0
\(299\) −0.513593 −0.0297018
\(300\) 0 0
\(301\) 12.2989 0.708898
\(302\) 0 0
\(303\) 2.23573 0.128439
\(304\) 0 0
\(305\) −0.622729 −0.0356574
\(306\) 0 0
\(307\) 25.1178 1.43355 0.716773 0.697306i \(-0.245618\pi\)
0.716773 + 0.697306i \(0.245618\pi\)
\(308\) 0 0
\(309\) −5.19944 −0.295786
\(310\) 0 0
\(311\) −6.08910 −0.345281 −0.172641 0.984985i \(-0.555230\pi\)
−0.172641 + 0.984985i \(0.555230\pi\)
\(312\) 0 0
\(313\) −16.2319 −0.917480 −0.458740 0.888570i \(-0.651699\pi\)
−0.458740 + 0.888570i \(0.651699\pi\)
\(314\) 0 0
\(315\) −0.300414 −0.0169264
\(316\) 0 0
\(317\) 3.19596 0.179503 0.0897516 0.995964i \(-0.471393\pi\)
0.0897516 + 0.995964i \(0.471393\pi\)
\(318\) 0 0
\(319\) −27.1766 −1.52160
\(320\) 0 0
\(321\) −2.36722 −0.132125
\(322\) 0 0
\(323\) 0.814115 0.0452985
\(324\) 0 0
\(325\) 2.16015 0.119823
\(326\) 0 0
\(327\) −5.89466 −0.325976
\(328\) 0 0
\(329\) 4.33389 0.238935
\(330\) 0 0
\(331\) 6.93043 0.380931 0.190465 0.981694i \(-0.439000\pi\)
0.190465 + 0.981694i \(0.439000\pi\)
\(332\) 0 0
\(333\) −8.76345 −0.480234
\(334\) 0 0
\(335\) 1.26018 0.0688508
\(336\) 0 0
\(337\) 20.6911 1.12712 0.563558 0.826077i \(-0.309432\pi\)
0.563558 + 0.826077i \(0.309432\pi\)
\(338\) 0 0
\(339\) 2.29531 0.124664
\(340\) 0 0
\(341\) −8.59398 −0.465390
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.0697530 0.00375537
\(346\) 0 0
\(347\) −15.4072 −0.827102 −0.413551 0.910481i \(-0.635712\pi\)
−0.413551 + 0.910481i \(0.635712\pi\)
\(348\) 0 0
\(349\) 2.97756 0.159385 0.0796924 0.996819i \(-0.474606\pi\)
0.0796924 + 0.996819i \(0.474606\pi\)
\(350\) 0 0
\(351\) 1.31715 0.0703043
\(352\) 0 0
\(353\) 1.48185 0.0788711 0.0394356 0.999222i \(-0.487444\pi\)
0.0394356 + 0.999222i \(0.487444\pi\)
\(354\) 0 0
\(355\) −0.502624 −0.0266765
\(356\) 0 0
\(357\) −0.531974 −0.0281551
\(358\) 0 0
\(359\) 26.6944 1.40888 0.704439 0.709765i \(-0.251199\pi\)
0.704439 + 0.709765i \(0.251199\pi\)
\(360\) 0 0
\(361\) −18.3372 −0.965117
\(362\) 0 0
\(363\) 1.45321 0.0762736
\(364\) 0 0
\(365\) 0.895295 0.0468619
\(366\) 0 0
\(367\) 32.7540 1.70974 0.854872 0.518839i \(-0.173635\pi\)
0.854872 + 0.518839i \(0.173635\pi\)
\(368\) 0 0
\(369\) −27.0867 −1.41008
\(370\) 0 0
\(371\) 0.931587 0.0483656
\(372\) 0 0
\(373\) −13.3275 −0.690072 −0.345036 0.938589i \(-0.612133\pi\)
−0.345036 + 0.938589i \(0.612133\pi\)
\(374\) 0 0
\(375\) −0.587474 −0.0303370
\(376\) 0 0
\(377\) −3.17621 −0.163583
\(378\) 0 0
\(379\) 27.5592 1.41562 0.707810 0.706403i \(-0.249683\pi\)
0.707810 + 0.706403i \(0.249683\pi\)
\(380\) 0 0
\(381\) 10.0057 0.512606
\(382\) 0 0
\(383\) −1.49711 −0.0764987 −0.0382493 0.999268i \(-0.512178\pi\)
−0.0382493 + 0.999268i \(0.512178\pi\)
\(384\) 0 0
\(385\) −0.409725 −0.0208815
\(386\) 0 0
\(387\) −33.4162 −1.69864
\(388\) 0 0
\(389\) −2.22498 −0.112811 −0.0564054 0.998408i \(-0.517964\pi\)
−0.0564054 + 0.998408i \(0.517964\pi\)
\(390\) 0 0
\(391\) −1.18589 −0.0599728
\(392\) 0 0
\(393\) 11.9379 0.602186
\(394\) 0 0
\(395\) 0.745074 0.0374887
\(396\) 0 0
\(397\) 22.7503 1.14181 0.570904 0.821017i \(-0.306593\pi\)
0.570904 + 0.821017i \(0.306593\pi\)
\(398\) 0 0
\(399\) −0.433088 −0.0216815
\(400\) 0 0
\(401\) −16.7098 −0.834449 −0.417224 0.908804i \(-0.636997\pi\)
−0.417224 + 0.908804i \(0.636997\pi\)
\(402\) 0 0
\(403\) −1.00440 −0.0500329
\(404\) 0 0
\(405\) 0.722354 0.0358940
\(406\) 0 0
\(407\) −11.9522 −0.592448
\(408\) 0 0
\(409\) 11.3246 0.559966 0.279983 0.960005i \(-0.409671\pi\)
0.279983 + 0.960005i \(0.409671\pi\)
\(410\) 0 0
\(411\) −8.20945 −0.404942
\(412\) 0 0
\(413\) 10.4980 0.516571
\(414\) 0 0
\(415\) 0.473433 0.0232399
\(416\) 0 0
\(417\) −3.37602 −0.165324
\(418\) 0 0
\(419\) 10.4513 0.510580 0.255290 0.966865i \(-0.417829\pi\)
0.255290 + 0.966865i \(0.417829\pi\)
\(420\) 0 0
\(421\) 4.82233 0.235026 0.117513 0.993071i \(-0.462508\pi\)
0.117513 + 0.993071i \(0.462508\pi\)
\(422\) 0 0
\(423\) −11.7752 −0.572529
\(424\) 0 0
\(425\) 4.98777 0.241943
\(426\) 0 0
\(427\) −5.63209 −0.272556
\(428\) 0 0
\(429\) 0.853747 0.0412193
\(430\) 0 0
\(431\) 34.0631 1.64076 0.820381 0.571817i \(-0.193761\pi\)
0.820381 + 0.571817i \(0.193761\pi\)
\(432\) 0 0
\(433\) 1.23339 0.0592731 0.0296366 0.999561i \(-0.490565\pi\)
0.0296366 + 0.999561i \(0.490565\pi\)
\(434\) 0 0
\(435\) 0.431373 0.0206827
\(436\) 0 0
\(437\) −0.965447 −0.0461836
\(438\) 0 0
\(439\) 25.4586 1.21507 0.607537 0.794291i \(-0.292157\pi\)
0.607537 + 0.794291i \(0.292157\pi\)
\(440\) 0 0
\(441\) −2.71700 −0.129381
\(442\) 0 0
\(443\) −11.2248 −0.533306 −0.266653 0.963793i \(-0.585918\pi\)
−0.266653 + 0.963793i \(0.585918\pi\)
\(444\) 0 0
\(445\) −0.897472 −0.0425443
\(446\) 0 0
\(447\) 10.2947 0.486923
\(448\) 0 0
\(449\) 4.02603 0.190000 0.0950001 0.995477i \(-0.469715\pi\)
0.0950001 + 0.995477i \(0.469715\pi\)
\(450\) 0 0
\(451\) −36.9427 −1.73956
\(452\) 0 0
\(453\) 2.74737 0.129083
\(454\) 0 0
\(455\) −0.0478857 −0.00224491
\(456\) 0 0
\(457\) −28.0207 −1.31075 −0.655377 0.755302i \(-0.727490\pi\)
−0.655377 + 0.755302i \(0.727490\pi\)
\(458\) 0 0
\(459\) 3.04130 0.141956
\(460\) 0 0
\(461\) 25.4253 1.18418 0.592088 0.805874i \(-0.298304\pi\)
0.592088 + 0.805874i \(0.298304\pi\)
\(462\) 0 0
\(463\) −32.0742 −1.49062 −0.745308 0.666721i \(-0.767697\pi\)
−0.745308 + 0.666721i \(0.767697\pi\)
\(464\) 0 0
\(465\) 0.136412 0.00632594
\(466\) 0 0
\(467\) 38.0364 1.76012 0.880058 0.474867i \(-0.157504\pi\)
0.880058 + 0.474867i \(0.157504\pi\)
\(468\) 0 0
\(469\) 11.3973 0.526278
\(470\) 0 0
\(471\) −11.2051 −0.516303
\(472\) 0 0
\(473\) −45.5753 −2.09556
\(474\) 0 0
\(475\) 4.06062 0.186314
\(476\) 0 0
\(477\) −2.53112 −0.115892
\(478\) 0 0
\(479\) −5.98856 −0.273624 −0.136812 0.990597i \(-0.543686\pi\)
−0.136812 + 0.990597i \(0.543686\pi\)
\(480\) 0 0
\(481\) −1.39689 −0.0636925
\(482\) 0 0
\(483\) 0.630861 0.0287051
\(484\) 0 0
\(485\) 0.0462578 0.00210046
\(486\) 0 0
\(487\) −38.2784 −1.73456 −0.867281 0.497819i \(-0.834134\pi\)
−0.867281 + 0.497819i \(0.834134\pi\)
\(488\) 0 0
\(489\) 2.90326 0.131290
\(490\) 0 0
\(491\) −8.13912 −0.367313 −0.183657 0.982990i \(-0.558793\pi\)
−0.183657 + 0.982990i \(0.558793\pi\)
\(492\) 0 0
\(493\) −7.33386 −0.330301
\(494\) 0 0
\(495\) 1.11322 0.0500357
\(496\) 0 0
\(497\) −4.54584 −0.203909
\(498\) 0 0
\(499\) 31.2580 1.39930 0.699650 0.714486i \(-0.253339\pi\)
0.699650 + 0.714486i \(0.253339\pi\)
\(500\) 0 0
\(501\) 2.35145 0.105055
\(502\) 0 0
\(503\) −38.4641 −1.71503 −0.857515 0.514459i \(-0.827993\pi\)
−0.857515 + 0.514459i \(0.827993\pi\)
\(504\) 0 0
\(505\) 0.464684 0.0206782
\(506\) 0 0
\(507\) −6.81589 −0.302704
\(508\) 0 0
\(509\) −29.5499 −1.30978 −0.654889 0.755725i \(-0.727284\pi\)
−0.654889 + 0.755725i \(0.727284\pi\)
\(510\) 0 0
\(511\) 8.09723 0.358200
\(512\) 0 0
\(513\) 2.47597 0.109317
\(514\) 0 0
\(515\) −1.08068 −0.0476203
\(516\) 0 0
\(517\) −16.0598 −0.706310
\(518\) 0 0
\(519\) −6.18608 −0.271539
\(520\) 0 0
\(521\) 38.6168 1.69183 0.845916 0.533316i \(-0.179054\pi\)
0.845916 + 0.533316i \(0.179054\pi\)
\(522\) 0 0
\(523\) 20.1272 0.880100 0.440050 0.897973i \(-0.354961\pi\)
0.440050 + 0.897973i \(0.354961\pi\)
\(524\) 0 0
\(525\) −2.65337 −0.115802
\(526\) 0 0
\(527\) −2.31917 −0.101024
\(528\) 0 0
\(529\) −21.5937 −0.938855
\(530\) 0 0
\(531\) −28.5230 −1.23779
\(532\) 0 0
\(533\) −4.31760 −0.187016
\(534\) 0 0
\(535\) −0.492014 −0.0212716
\(536\) 0 0
\(537\) 6.43360 0.277630
\(538\) 0 0
\(539\) −3.70563 −0.159613
\(540\) 0 0
\(541\) −10.3210 −0.443733 −0.221867 0.975077i \(-0.571215\pi\)
−0.221867 + 0.975077i \(0.571215\pi\)
\(542\) 0 0
\(543\) −1.54765 −0.0664158
\(544\) 0 0
\(545\) −1.22517 −0.0524807
\(546\) 0 0
\(547\) −18.4053 −0.786955 −0.393477 0.919334i \(-0.628728\pi\)
−0.393477 + 0.919334i \(0.628728\pi\)
\(548\) 0 0
\(549\) 15.3024 0.653091
\(550\) 0 0
\(551\) −5.97060 −0.254356
\(552\) 0 0
\(553\) 6.73861 0.286555
\(554\) 0 0
\(555\) 0.189716 0.00805301
\(556\) 0 0
\(557\) −31.7820 −1.34664 −0.673322 0.739349i \(-0.735133\pi\)
−0.673322 + 0.739349i \(0.735133\pi\)
\(558\) 0 0
\(559\) −5.32652 −0.225288
\(560\) 0 0
\(561\) 1.97130 0.0832284
\(562\) 0 0
\(563\) 18.9686 0.799432 0.399716 0.916639i \(-0.369109\pi\)
0.399716 + 0.916639i \(0.369109\pi\)
\(564\) 0 0
\(565\) 0.477068 0.0200704
\(566\) 0 0
\(567\) 6.53312 0.274365
\(568\) 0 0
\(569\) −37.8743 −1.58777 −0.793886 0.608067i \(-0.791945\pi\)
−0.793886 + 0.608067i \(0.791945\pi\)
\(570\) 0 0
\(571\) 13.6906 0.572932 0.286466 0.958090i \(-0.407519\pi\)
0.286466 + 0.958090i \(0.407519\pi\)
\(572\) 0 0
\(573\) 0.0856796 0.00357932
\(574\) 0 0
\(575\) −5.91493 −0.246670
\(576\) 0 0
\(577\) 36.4870 1.51897 0.759487 0.650522i \(-0.225450\pi\)
0.759487 + 0.650522i \(0.225450\pi\)
\(578\) 0 0
\(579\) −3.67471 −0.152716
\(580\) 0 0
\(581\) 4.28183 0.177640
\(582\) 0 0
\(583\) −3.45212 −0.142972
\(584\) 0 0
\(585\) 0.130106 0.00537920
\(586\) 0 0
\(587\) −14.8540 −0.613088 −0.306544 0.951856i \(-0.599173\pi\)
−0.306544 + 0.951856i \(0.599173\pi\)
\(588\) 0 0
\(589\) −1.88807 −0.0777964
\(590\) 0 0
\(591\) −12.2350 −0.503279
\(592\) 0 0
\(593\) −13.8997 −0.570793 −0.285396 0.958410i \(-0.592125\pi\)
−0.285396 + 0.958410i \(0.592125\pi\)
\(594\) 0 0
\(595\) −0.110568 −0.00453285
\(596\) 0 0
\(597\) −13.9939 −0.572734
\(598\) 0 0
\(599\) 6.42996 0.262721 0.131361 0.991335i \(-0.458065\pi\)
0.131361 + 0.991335i \(0.458065\pi\)
\(600\) 0 0
\(601\) 22.8578 0.932387 0.466194 0.884683i \(-0.345625\pi\)
0.466194 + 0.884683i \(0.345625\pi\)
\(602\) 0 0
\(603\) −30.9665 −1.26105
\(604\) 0 0
\(605\) 0.302041 0.0122797
\(606\) 0 0
\(607\) −17.0491 −0.692003 −0.346002 0.938234i \(-0.612461\pi\)
−0.346002 + 0.938234i \(0.612461\pi\)
\(608\) 0 0
\(609\) 3.90143 0.158094
\(610\) 0 0
\(611\) −1.87696 −0.0759335
\(612\) 0 0
\(613\) −16.5121 −0.666916 −0.333458 0.942765i \(-0.608215\pi\)
−0.333458 + 0.942765i \(0.608215\pi\)
\(614\) 0 0
\(615\) 0.586390 0.0236455
\(616\) 0 0
\(617\) 33.2628 1.33911 0.669555 0.742763i \(-0.266485\pi\)
0.669555 + 0.742763i \(0.266485\pi\)
\(618\) 0 0
\(619\) −22.0540 −0.886423 −0.443212 0.896417i \(-0.646161\pi\)
−0.443212 + 0.896417i \(0.646161\pi\)
\(620\) 0 0
\(621\) −3.60663 −0.144729
\(622\) 0 0
\(623\) −8.11693 −0.325198
\(624\) 0 0
\(625\) 24.8168 0.992671
\(626\) 0 0
\(627\) 1.60487 0.0640922
\(628\) 0 0
\(629\) −3.22541 −0.128605
\(630\) 0 0
\(631\) −43.5593 −1.73407 −0.867035 0.498247i \(-0.833977\pi\)
−0.867035 + 0.498247i \(0.833977\pi\)
\(632\) 0 0
\(633\) −1.87102 −0.0743662
\(634\) 0 0
\(635\) 2.07962 0.0825274
\(636\) 0 0
\(637\) −0.433088 −0.0171596
\(638\) 0 0
\(639\) 12.3511 0.488601
\(640\) 0 0
\(641\) 29.0395 1.14699 0.573495 0.819209i \(-0.305587\pi\)
0.573495 + 0.819209i \(0.305587\pi\)
\(642\) 0 0
\(643\) 0.838572 0.0330701 0.0165350 0.999863i \(-0.494736\pi\)
0.0165350 + 0.999863i \(0.494736\pi\)
\(644\) 0 0
\(645\) 0.723414 0.0284844
\(646\) 0 0
\(647\) −36.4525 −1.43310 −0.716548 0.697538i \(-0.754279\pi\)
−0.716548 + 0.697538i \(0.754279\pi\)
\(648\) 0 0
\(649\) −38.9016 −1.52702
\(650\) 0 0
\(651\) 1.23374 0.0483539
\(652\) 0 0
\(653\) 32.1268 1.25722 0.628610 0.777721i \(-0.283624\pi\)
0.628610 + 0.777721i \(0.283624\pi\)
\(654\) 0 0
\(655\) 2.48122 0.0969494
\(656\) 0 0
\(657\) −22.0002 −0.858310
\(658\) 0 0
\(659\) 13.0272 0.507469 0.253735 0.967274i \(-0.418341\pi\)
0.253735 + 0.967274i \(0.418341\pi\)
\(660\) 0 0
\(661\) 43.9589 1.70980 0.854901 0.518790i \(-0.173618\pi\)
0.854901 + 0.518790i \(0.173618\pi\)
\(662\) 0 0
\(663\) 0.230392 0.00894767
\(664\) 0 0
\(665\) −0.0900150 −0.00349063
\(666\) 0 0
\(667\) 8.69712 0.336754
\(668\) 0 0
\(669\) −5.88800 −0.227643
\(670\) 0 0
\(671\) 20.8705 0.805696
\(672\) 0 0
\(673\) 16.3500 0.630246 0.315123 0.949051i \(-0.397954\pi\)
0.315123 + 0.949051i \(0.397954\pi\)
\(674\) 0 0
\(675\) 15.1693 0.583867
\(676\) 0 0
\(677\) 38.0727 1.46325 0.731627 0.681706i \(-0.238762\pi\)
0.731627 + 0.681706i \(0.238762\pi\)
\(678\) 0 0
\(679\) 0.418365 0.0160554
\(680\) 0 0
\(681\) 7.05814 0.270469
\(682\) 0 0
\(683\) −29.0790 −1.11268 −0.556338 0.830956i \(-0.687794\pi\)
−0.556338 + 0.830956i \(0.687794\pi\)
\(684\) 0 0
\(685\) −1.70629 −0.0651940
\(686\) 0 0
\(687\) 11.2821 0.430438
\(688\) 0 0
\(689\) −0.403459 −0.0153706
\(690\) 0 0
\(691\) 3.42192 0.130176 0.0650881 0.997880i \(-0.479267\pi\)
0.0650881 + 0.997880i \(0.479267\pi\)
\(692\) 0 0
\(693\) 10.0682 0.382460
\(694\) 0 0
\(695\) −0.701688 −0.0266165
\(696\) 0 0
\(697\) −9.96934 −0.377615
\(698\) 0 0
\(699\) 0.788329 0.0298173
\(700\) 0 0
\(701\) 4.34309 0.164036 0.0820182 0.996631i \(-0.473863\pi\)
0.0820182 + 0.996631i \(0.473863\pi\)
\(702\) 0 0
\(703\) −2.62585 −0.0990359
\(704\) 0 0
\(705\) 0.254916 0.00960071
\(706\) 0 0
\(707\) 4.20270 0.158059
\(708\) 0 0
\(709\) 0.879666 0.0330365 0.0165183 0.999864i \(-0.494742\pi\)
0.0165183 + 0.999864i \(0.494742\pi\)
\(710\) 0 0
\(711\) −18.3088 −0.686634
\(712\) 0 0
\(713\) 2.75027 0.102998
\(714\) 0 0
\(715\) 0.177447 0.00663613
\(716\) 0 0
\(717\) 5.79417 0.216387
\(718\) 0 0
\(719\) 23.1460 0.863200 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(720\) 0 0
\(721\) −9.77386 −0.363997
\(722\) 0 0
\(723\) −7.28044 −0.270763
\(724\) 0 0
\(725\) −36.5797 −1.35853
\(726\) 0 0
\(727\) −18.8856 −0.700429 −0.350214 0.936670i \(-0.613891\pi\)
−0.350214 + 0.936670i \(0.613891\pi\)
\(728\) 0 0
\(729\) −12.8968 −0.477660
\(730\) 0 0
\(731\) −12.2989 −0.454892
\(732\) 0 0
\(733\) 8.39104 0.309930 0.154965 0.987920i \(-0.450474\pi\)
0.154965 + 0.987920i \(0.450474\pi\)
\(734\) 0 0
\(735\) 0.0588193 0.00216958
\(736\) 0 0
\(737\) −42.2342 −1.55572
\(738\) 0 0
\(739\) −17.8675 −0.657268 −0.328634 0.944457i \(-0.606588\pi\)
−0.328634 + 0.944457i \(0.606588\pi\)
\(740\) 0 0
\(741\) 0.187565 0.00689038
\(742\) 0 0
\(743\) 1.88839 0.0692784 0.0346392 0.999400i \(-0.488972\pi\)
0.0346392 + 0.999400i \(0.488972\pi\)
\(744\) 0 0
\(745\) 2.13970 0.0783926
\(746\) 0 0
\(747\) −11.6337 −0.425656
\(748\) 0 0
\(749\) −4.44987 −0.162595
\(750\) 0 0
\(751\) −36.1740 −1.32001 −0.660004 0.751262i \(-0.729446\pi\)
−0.660004 + 0.751262i \(0.729446\pi\)
\(752\) 0 0
\(753\) 1.07733 0.0392600
\(754\) 0 0
\(755\) 0.571026 0.0207818
\(756\) 0 0
\(757\) 5.38447 0.195702 0.0978509 0.995201i \(-0.468803\pi\)
0.0978509 + 0.995201i \(0.468803\pi\)
\(758\) 0 0
\(759\) −2.33774 −0.0848545
\(760\) 0 0
\(761\) 0.554315 0.0200939 0.0100470 0.999950i \(-0.496802\pi\)
0.0100470 + 0.999950i \(0.496802\pi\)
\(762\) 0 0
\(763\) −11.0807 −0.401150
\(764\) 0 0
\(765\) 0.300414 0.0108615
\(766\) 0 0
\(767\) −4.54654 −0.164166
\(768\) 0 0
\(769\) 35.0866 1.26525 0.632627 0.774457i \(-0.281977\pi\)
0.632627 + 0.774457i \(0.281977\pi\)
\(770\) 0 0
\(771\) −6.13759 −0.221040
\(772\) 0 0
\(773\) −29.5200 −1.06176 −0.530881 0.847446i \(-0.678139\pi\)
−0.530881 + 0.847446i \(0.678139\pi\)
\(774\) 0 0
\(775\) −11.5675 −0.415516
\(776\) 0 0
\(777\) 1.71583 0.0615552
\(778\) 0 0
\(779\) −8.11618 −0.290792
\(780\) 0 0
\(781\) 16.8452 0.602770
\(782\) 0 0
\(783\) −22.3045 −0.797097
\(784\) 0 0
\(785\) −2.32891 −0.0831225
\(786\) 0 0
\(787\) −25.1018 −0.894783 −0.447392 0.894338i \(-0.647647\pi\)
−0.447392 + 0.894338i \(0.647647\pi\)
\(788\) 0 0
\(789\) 1.67954 0.0597933
\(790\) 0 0
\(791\) 4.31470 0.153413
\(792\) 0 0
\(793\) 2.43919 0.0866182
\(794\) 0 0
\(795\) 0.0547953 0.00194339
\(796\) 0 0
\(797\) 35.4984 1.25742 0.628709 0.777641i \(-0.283584\pi\)
0.628709 + 0.777641i \(0.283584\pi\)
\(798\) 0 0
\(799\) −4.33389 −0.153322
\(800\) 0 0
\(801\) 22.0537 0.779230
\(802\) 0 0
\(803\) −30.0054 −1.05887
\(804\) 0 0
\(805\) 0.131121 0.00462141
\(806\) 0 0
\(807\) 4.53053 0.159482
\(808\) 0 0
\(809\) 24.5309 0.862460 0.431230 0.902242i \(-0.358080\pi\)
0.431230 + 0.902242i \(0.358080\pi\)
\(810\) 0 0
\(811\) −11.4156 −0.400857 −0.200428 0.979708i \(-0.564233\pi\)
−0.200428 + 0.979708i \(0.564233\pi\)
\(812\) 0 0
\(813\) −14.5163 −0.509109
\(814\) 0 0
\(815\) 0.603426 0.0211371
\(816\) 0 0
\(817\) −10.0127 −0.350301
\(818\) 0 0
\(819\) 1.17670 0.0411173
\(820\) 0 0
\(821\) −20.7929 −0.725678 −0.362839 0.931852i \(-0.618193\pi\)
−0.362839 + 0.931852i \(0.618193\pi\)
\(822\) 0 0
\(823\) −29.7346 −1.03648 −0.518241 0.855235i \(-0.673413\pi\)
−0.518241 + 0.855235i \(0.673413\pi\)
\(824\) 0 0
\(825\) 9.83241 0.342321
\(826\) 0 0
\(827\) 27.7393 0.964589 0.482295 0.876009i \(-0.339803\pi\)
0.482295 + 0.876009i \(0.339803\pi\)
\(828\) 0 0
\(829\) 33.8141 1.17441 0.587207 0.809437i \(-0.300228\pi\)
0.587207 + 0.809437i \(0.300228\pi\)
\(830\) 0 0
\(831\) −0.00633718 −0.000219834 0
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 0.488737 0.0169134
\(836\) 0 0
\(837\) −7.05328 −0.243797
\(838\) 0 0
\(839\) 26.0443 0.899150 0.449575 0.893242i \(-0.351575\pi\)
0.449575 + 0.893242i \(0.351575\pi\)
\(840\) 0 0
\(841\) 24.7856 0.854674
\(842\) 0 0
\(843\) 10.2253 0.352180
\(844\) 0 0
\(845\) −1.41665 −0.0487341
\(846\) 0 0
\(847\) 2.73173 0.0938632
\(848\) 0 0
\(849\) 7.67953 0.263561
\(850\) 0 0
\(851\) 3.82497 0.131118
\(852\) 0 0
\(853\) 36.8054 1.26019 0.630096 0.776517i \(-0.283016\pi\)
0.630096 + 0.776517i \(0.283016\pi\)
\(854\) 0 0
\(855\) 0.244571 0.00836415
\(856\) 0 0
\(857\) 0.330681 0.0112959 0.00564793 0.999984i \(-0.498202\pi\)
0.00564793 + 0.999984i \(0.498202\pi\)
\(858\) 0 0
\(859\) −36.0492 −1.22998 −0.614992 0.788533i \(-0.710841\pi\)
−0.614992 + 0.788533i \(0.710841\pi\)
\(860\) 0 0
\(861\) 5.30343 0.180740
\(862\) 0 0
\(863\) −16.3776 −0.557499 −0.278749 0.960364i \(-0.589920\pi\)
−0.278749 + 0.960364i \(0.589920\pi\)
\(864\) 0 0
\(865\) −1.28574 −0.0437166
\(866\) 0 0
\(867\) 0.531974 0.0180668
\(868\) 0 0
\(869\) −24.9708 −0.847077
\(870\) 0 0
\(871\) −4.93603 −0.167251
\(872\) 0 0
\(873\) −1.13670 −0.0384714
\(874\) 0 0
\(875\) −1.10433 −0.0373331
\(876\) 0 0
\(877\) −13.7292 −0.463602 −0.231801 0.972763i \(-0.574462\pi\)
−0.231801 + 0.972763i \(0.574462\pi\)
\(878\) 0 0
\(879\) 14.6143 0.492929
\(880\) 0 0
\(881\) −11.2123 −0.377753 −0.188876 0.982001i \(-0.560485\pi\)
−0.188876 + 0.982001i \(0.560485\pi\)
\(882\) 0 0
\(883\) 36.7643 1.23722 0.618609 0.785699i \(-0.287697\pi\)
0.618609 + 0.785699i \(0.287697\pi\)
\(884\) 0 0
\(885\) 0.617483 0.0207565
\(886\) 0 0
\(887\) −23.8492 −0.800777 −0.400389 0.916345i \(-0.631125\pi\)
−0.400389 + 0.916345i \(0.631125\pi\)
\(888\) 0 0
\(889\) 18.8086 0.630819
\(890\) 0 0
\(891\) −24.2093 −0.811044
\(892\) 0 0
\(893\) −3.52828 −0.118069
\(894\) 0 0
\(895\) 1.33719 0.0446973
\(896\) 0 0
\(897\) −0.273218 −0.00912249
\(898\) 0 0
\(899\) 17.0084 0.567263
\(900\) 0 0
\(901\) −0.931587 −0.0310357
\(902\) 0 0
\(903\) 6.54271 0.217728
\(904\) 0 0
\(905\) −0.321670 −0.0106927
\(906\) 0 0
\(907\) −11.7889 −0.391445 −0.195723 0.980659i \(-0.562705\pi\)
−0.195723 + 0.980659i \(0.562705\pi\)
\(908\) 0 0
\(909\) −11.4187 −0.378736
\(910\) 0 0
\(911\) −16.5982 −0.549923 −0.274962 0.961455i \(-0.588665\pi\)
−0.274962 + 0.961455i \(0.588665\pi\)
\(912\) 0 0
\(913\) −15.8669 −0.525117
\(914\) 0 0
\(915\) −0.331276 −0.0109516
\(916\) 0 0
\(917\) 22.4407 0.741057
\(918\) 0 0
\(919\) −20.0817 −0.662435 −0.331217 0.943554i \(-0.607459\pi\)
−0.331217 + 0.943554i \(0.607459\pi\)
\(920\) 0 0
\(921\) 13.3620 0.440293
\(922\) 0 0
\(923\) 1.96875 0.0648022
\(924\) 0 0
\(925\) −16.0876 −0.528957
\(926\) 0 0
\(927\) 26.5556 0.872200
\(928\) 0 0
\(929\) 27.2037 0.892525 0.446263 0.894902i \(-0.352755\pi\)
0.446263 + 0.894902i \(0.352755\pi\)
\(930\) 0 0
\(931\) −0.814115 −0.0266815
\(932\) 0 0
\(933\) −3.23924 −0.106048
\(934\) 0 0
\(935\) 0.409725 0.0133994
\(936\) 0 0
\(937\) 18.2375 0.595792 0.297896 0.954598i \(-0.403715\pi\)
0.297896 + 0.954598i \(0.403715\pi\)
\(938\) 0 0
\(939\) −8.63495 −0.281791
\(940\) 0 0
\(941\) 2.53544 0.0826530 0.0413265 0.999146i \(-0.486842\pi\)
0.0413265 + 0.999146i \(0.486842\pi\)
\(942\) 0 0
\(943\) 11.8225 0.384993
\(944\) 0 0
\(945\) −0.336270 −0.0109389
\(946\) 0 0
\(947\) 30.5617 0.993123 0.496561 0.868002i \(-0.334596\pi\)
0.496561 + 0.868002i \(0.334596\pi\)
\(948\) 0 0
\(949\) −3.50681 −0.113836
\(950\) 0 0
\(951\) 1.70017 0.0551318
\(952\) 0 0
\(953\) −26.2235 −0.849461 −0.424730 0.905320i \(-0.639631\pi\)
−0.424730 + 0.905320i \(0.639631\pi\)
\(954\) 0 0
\(955\) 0.0178080 0.000576255 0
\(956\) 0 0
\(957\) −14.4573 −0.467337
\(958\) 0 0
\(959\) −15.4320 −0.498327
\(960\) 0 0
\(961\) −25.6215 −0.826499
\(962\) 0 0
\(963\) 12.0903 0.389605
\(964\) 0 0
\(965\) −0.763768 −0.0245866
\(966\) 0 0
\(967\) 40.4833 1.30185 0.650927 0.759140i \(-0.274380\pi\)
0.650927 + 0.759140i \(0.274380\pi\)
\(968\) 0 0
\(969\) 0.433088 0.0139128
\(970\) 0 0
\(971\) −27.1253 −0.870493 −0.435246 0.900311i \(-0.643339\pi\)
−0.435246 + 0.900311i \(0.643339\pi\)
\(972\) 0 0
\(973\) −6.34621 −0.203450
\(974\) 0 0
\(975\) 1.14914 0.0368020
\(976\) 0 0
\(977\) −48.4161 −1.54897 −0.774484 0.632594i \(-0.781990\pi\)
−0.774484 + 0.632594i \(0.781990\pi\)
\(978\) 0 0
\(979\) 30.0784 0.961309
\(980\) 0 0
\(981\) 30.1064 0.961223
\(982\) 0 0
\(983\) 44.0930 1.40635 0.703173 0.711018i \(-0.251766\pi\)
0.703173 + 0.711018i \(0.251766\pi\)
\(984\) 0 0
\(985\) −2.54297 −0.0810257
\(986\) 0 0
\(987\) 2.30552 0.0733854
\(988\) 0 0
\(989\) 14.5851 0.463780
\(990\) 0 0
\(991\) 12.7892 0.406263 0.203131 0.979152i \(-0.434888\pi\)
0.203131 + 0.979152i \(0.434888\pi\)
\(992\) 0 0
\(993\) 3.68681 0.116997
\(994\) 0 0
\(995\) −2.90857 −0.0922078
\(996\) 0 0
\(997\) −23.9339 −0.757995 −0.378998 0.925398i \(-0.623731\pi\)
−0.378998 + 0.925398i \(0.623731\pi\)
\(998\) 0 0
\(999\) −9.80943 −0.310357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.p.1.3 yes 6
4.3 odd 2 3808.2.a.h.1.4 6
8.3 odd 2 7616.2.a.cc.1.3 6
8.5 even 2 7616.2.a.bu.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.h.1.4 6 4.3 odd 2
3808.2.a.p.1.3 yes 6 1.1 even 1 trivial
7616.2.a.bu.1.4 6 8.5 even 2
7616.2.a.cc.1.3 6 8.3 odd 2