Properties

Label 3808.2
Level 3808
Weight 2
Dimension 235308
Nonzero newspaces 88
Sturm bound 1769472
Trace bound 61

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 88 \)
Sturm bound: \(1769472\)
Trace bound: \(61\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3808))\).

Total New Old
Modular forms 448512 238308 210204
Cusp forms 436225 235308 200917
Eisenstein series 12287 3000 9287

Trace form

\( 235308 q - 224 q^{2} - 172 q^{3} - 224 q^{4} - 232 q^{5} - 224 q^{6} - 212 q^{7} - 560 q^{8} - 340 q^{9} - 192 q^{10} - 172 q^{11} - 160 q^{12} - 200 q^{13} - 248 q^{14} - 408 q^{15} - 144 q^{16} - 112 q^{17}+ \cdots - 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3808))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3808.2.a \(\chi_{3808}(1, \cdot)\) 3808.2.a.a 1 1
3808.2.a.b 1
3808.2.a.c 4
3808.2.a.d 4
3808.2.a.e 5
3808.2.a.f 5
3808.2.a.g 6
3808.2.a.h 6
3808.2.a.i 6
3808.2.a.j 6
3808.2.a.k 6
3808.2.a.l 6
3808.2.a.m 6
3808.2.a.n 6
3808.2.a.o 6
3808.2.a.p 6
3808.2.a.q 8
3808.2.a.r 8
3808.2.b \(\chi_{3808}(1905, \cdot)\) 3808.2.b.a 2 1
3808.2.b.b 2
3808.2.b.c 2
3808.2.b.d 16
3808.2.b.e 16
3808.2.b.f 28
3808.2.b.g 30
3808.2.c \(\chi_{3808}(1121, \cdot)\) n/a 108 1
3808.2.h \(\chi_{3808}(3807, \cdot)\) n/a 144 1
3808.2.i \(\chi_{3808}(783, \cdot)\) n/a 128 1
3808.2.j \(\chi_{3808}(2687, \cdot)\) n/a 128 1
3808.2.k \(\chi_{3808}(1903, \cdot)\) n/a 140 1
3808.2.p \(\chi_{3808}(3025, \cdot)\) n/a 108 1
3808.2.q \(\chi_{3808}(1089, \cdot)\) n/a 256 2
3808.2.s \(\chi_{3808}(727, \cdot)\) None 0 2
3808.2.t \(\chi_{3808}(1177, \cdot)\) None 0 2
3808.2.w \(\chi_{3808}(2129, \cdot)\) n/a 216 2
3808.2.x \(\chi_{3808}(2911, \cdot)\) n/a 288 2
3808.2.z \(\chi_{3808}(951, \cdot)\) None 0 2
3808.2.bc \(\chi_{3808}(1735, \cdot)\) None 0 2
3808.2.be \(\chi_{3808}(953, \cdot)\) None 0 2
3808.2.bf \(\chi_{3808}(169, \cdot)\) None 0 2
3808.2.bi \(\chi_{3808}(225, \cdot)\) n/a 216 2
3808.2.bj \(\chi_{3808}(1007, \cdot)\) n/a 280 2
3808.2.bm \(\chi_{3808}(1849, \cdot)\) None 0 2
3808.2.bn \(\chi_{3808}(55, \cdot)\) None 0 2
3808.2.bp \(\chi_{3808}(305, \cdot)\) n/a 280 2
3808.2.bu \(\chi_{3808}(1055, \cdot)\) n/a 256 2
3808.2.bv \(\chi_{3808}(271, \cdot)\) n/a 280 2
3808.2.bw \(\chi_{3808}(2175, \cdot)\) n/a 288 2
3808.2.bx \(\chi_{3808}(2959, \cdot)\) n/a 256 2
3808.2.cc \(\chi_{3808}(2993, \cdot)\) n/a 256 2
3808.2.cd \(\chi_{3808}(2209, \cdot)\) n/a 288 2
3808.2.cf \(\chi_{3808}(253, \cdot)\) n/a 1728 4
3808.2.ch \(\chi_{3808}(1651, \cdot)\) n/a 2288 4
3808.2.cj \(\chi_{3808}(1539, \cdot)\) n/a 2288 4
3808.2.cl \(\chi_{3808}(869, \cdot)\) n/a 1728 4
3808.2.cm \(\chi_{3808}(111, \cdot)\) n/a 560 4
3808.2.co \(\chi_{3808}(1345, \cdot)\) n/a 432 4
3808.2.cq \(\chi_{3808}(1203, \cdot)\) n/a 2288 4
3808.2.ct \(\chi_{3808}(645, \cdot)\) n/a 1728 4
3808.2.cv \(\chi_{3808}(477, \cdot)\) n/a 1536 4
3808.2.cw \(\chi_{3808}(251, \cdot)\) n/a 2288 4
3808.2.cy \(\chi_{3808}(1063, \cdot)\) None 0 4
3808.2.da \(\chi_{3808}(281, \cdot)\) None 0 4
3808.2.dc \(\chi_{3808}(1511, \cdot)\) None 0 4
3808.2.de \(\chi_{3808}(729, \cdot)\) None 0 4
3808.2.dh \(\chi_{3808}(421, \cdot)\) n/a 1728 4
3808.2.di \(\chi_{3808}(475, \cdot)\) n/a 2288 4
3808.2.dk \(\chi_{3808}(307, \cdot)\) n/a 2048 4
3808.2.dn \(\chi_{3808}(1373, \cdot)\) n/a 1728 4
3808.2.do \(\chi_{3808}(223, \cdot)\) n/a 576 4
3808.2.dq \(\chi_{3808}(1233, \cdot)\) n/a 432 4
3808.2.dt \(\chi_{3808}(195, \cdot)\) n/a 2288 4
3808.2.dv \(\chi_{3808}(365, \cdot)\) n/a 1728 4
3808.2.dw \(\chi_{3808}(83, \cdot)\) n/a 2288 4
3808.2.dy \(\chi_{3808}(757, \cdot)\) n/a 1728 4
3808.2.eb \(\chi_{3808}(999, \cdot)\) None 0 4
3808.2.ec \(\chi_{3808}(361, \cdot)\) None 0 4
3808.2.ee \(\chi_{3808}(81, \cdot)\) n/a 560 4
3808.2.eh \(\chi_{3808}(1279, \cdot)\) n/a 576 4
3808.2.ei \(\chi_{3808}(103, \cdot)\) None 0 4
3808.2.el \(\chi_{3808}(1223, \cdot)\) None 0 4
3808.2.en \(\chi_{3808}(1257, \cdot)\) None 0 4
3808.2.eo \(\chi_{3808}(137, \cdot)\) None 0 4
3808.2.eq \(\chi_{3808}(1313, \cdot)\) n/a 576 4
3808.2.et \(\chi_{3808}(47, \cdot)\) n/a 560 4
3808.2.ev \(\chi_{3808}(1033, \cdot)\) None 0 4
3808.2.ew \(\chi_{3808}(327, \cdot)\) None 0 4
3808.2.ez \(\chi_{3808}(295, \cdot)\) None 0 8
3808.2.fb \(\chi_{3808}(41, \cdot)\) None 0 8
3808.2.fc \(\chi_{3808}(827, \cdot)\) n/a 3456 8
3808.2.fe \(\chi_{3808}(573, \cdot)\) n/a 4576 8
3808.2.fh \(\chi_{3808}(267, \cdot)\) n/a 3456 8
3808.2.fi \(\chi_{3808}(687, \cdot)\) n/a 864 8
3808.2.fl \(\chi_{3808}(351, \cdot)\) n/a 864 8
3808.2.fn \(\chi_{3808}(211, \cdot)\) n/a 3456 8
3808.2.fp \(\chi_{3808}(1133, \cdot)\) n/a 4576 8
3808.2.fq \(\chi_{3808}(97, \cdot)\) n/a 1152 8
3808.2.ft \(\chi_{3808}(209, \cdot)\) n/a 1120 8
3808.2.fv \(\chi_{3808}(125, \cdot)\) n/a 4576 8
3808.2.fw \(\chi_{3808}(99, \cdot)\) n/a 3456 8
3808.2.fy \(\chi_{3808}(181, \cdot)\) n/a 4576 8
3808.2.gb \(\chi_{3808}(71, \cdot)\) None 0 8
3808.2.gd \(\chi_{3808}(601, \cdot)\) None 0 8
3808.2.ge \(\chi_{3808}(1845, \cdot)\) n/a 4576 8
3808.2.gg \(\chi_{3808}(59, \cdot)\) n/a 4576 8
3808.2.gi \(\chi_{3808}(53, \cdot)\) n/a 4576 8
3808.2.gk \(\chi_{3808}(1811, \cdot)\) n/a 4576 8
3808.2.gn \(\chi_{3808}(417, \cdot)\) n/a 1152 8
3808.2.gp \(\chi_{3808}(495, \cdot)\) n/a 1120 8
3808.2.gr \(\chi_{3808}(523, \cdot)\) n/a 4576 8
3808.2.gs \(\chi_{3808}(205, \cdot)\) n/a 4096 8
3808.2.gu \(\chi_{3808}(373, \cdot)\) n/a 4576 8
3808.2.gx \(\chi_{3808}(115, \cdot)\) n/a 4576 8
3808.2.gz \(\chi_{3808}(9, \cdot)\) None 0 8
3808.2.hb \(\chi_{3808}(423, \cdot)\) None 0 8
3808.2.hd \(\chi_{3808}(25, \cdot)\) None 0 8
3808.2.hf \(\chi_{3808}(87, \cdot)\) None 0 8
3808.2.hg \(\chi_{3808}(557, \cdot)\) n/a 4576 8
3808.2.hj \(\chi_{3808}(171, \cdot)\) n/a 4096 8
3808.2.hl \(\chi_{3808}(339, \cdot)\) n/a 4576 8
3808.2.hm \(\chi_{3808}(149, \cdot)\) n/a 4576 8
3808.2.hp \(\chi_{3808}(529, \cdot)\) n/a 1120 8
3808.2.hr \(\chi_{3808}(383, \cdot)\) n/a 1152 8
3808.2.hs \(\chi_{3808}(93, \cdot)\) n/a 4576 8
3808.2.hu \(\chi_{3808}(451, \cdot)\) n/a 4576 8
3808.2.hx \(\chi_{3808}(19, \cdot)\) n/a 4576 8
3808.2.hz \(\chi_{3808}(485, \cdot)\) n/a 4576 8
3808.2.ia \(\chi_{3808}(521, \cdot)\) None 0 16
3808.2.ic \(\chi_{3808}(471, \cdot)\) None 0 16
3808.2.ie \(\chi_{3808}(845, \cdot)\) n/a 9152 16
3808.2.ig \(\chi_{3808}(11, \cdot)\) n/a 9152 16
3808.2.ij \(\chi_{3808}(5, \cdot)\) n/a 9152 16
3808.2.il \(\chi_{3808}(241, \cdot)\) n/a 2240 16
3808.2.im \(\chi_{3808}(129, \cdot)\) n/a 2304 16
3808.2.ip \(\chi_{3808}(45, \cdot)\) n/a 9152 16
3808.2.ir \(\chi_{3808}(235, \cdot)\) n/a 9152 16
3808.2.it \(\chi_{3808}(95, \cdot)\) n/a 2304 16
3808.2.iu \(\chi_{3808}(79, \cdot)\) n/a 2240 16
3808.2.ix \(\chi_{3808}(107, \cdot)\) n/a 9152 16
3808.2.iy \(\chi_{3808}(173, \cdot)\) n/a 9152 16
3808.2.ja \(\chi_{3808}(275, \cdot)\) n/a 9152 16
3808.2.jc \(\chi_{3808}(73, \cdot)\) None 0 16
3808.2.je \(\chi_{3808}(23, \cdot)\) None 0 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3808))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3808)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(272))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(476))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(544))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(952))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1904))\)\(^{\oplus 2}\)