Properties

Label 3808.2.a
Level $3808$
Weight $2$
Character orbit 3808.a
Rep. character $\chi_{3808}(1,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $18$
Sturm bound $1152$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(1152\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3808))\).

Total New Old
Modular forms 592 96 496
Cusp forms 561 96 465
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(65\)\(12\)\(53\)\(62\)\(12\)\(50\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(83\)\(14\)\(69\)\(79\)\(14\)\(65\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(79\)\(12\)\(67\)\(75\)\(12\)\(63\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(69\)\(10\)\(59\)\(65\)\(10\)\(55\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(73\)\(12\)\(61\)\(69\)\(12\)\(57\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(75\)\(10\)\(65\)\(71\)\(10\)\(61\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(79\)\(12\)\(67\)\(75\)\(12\)\(63\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(69\)\(14\)\(55\)\(65\)\(14\)\(51\)\(4\)\(0\)\(4\)
Plus space\(+\)\(288\)\(44\)\(244\)\(273\)\(44\)\(229\)\(15\)\(0\)\(15\)
Minus space\(-\)\(304\)\(52\)\(252\)\(288\)\(52\)\(236\)\(16\)\(0\)\(16\)

Trace form

\( 96 q + 96 q^{9} + 96 q^{25} + 96 q^{45} + 96 q^{49} + 96 q^{53} - 32 q^{57} - 32 q^{65} + 96 q^{69} + 64 q^{81} - 32 q^{89} + 96 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3808))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 17
3808.2.a.a 3808.a 1.a $1$ $30.407$ \(\Q\) None 3808.2.a.a \(0\) \(-2\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{7}+q^{9}-6q^{11}+6q^{13}+\cdots\)
3808.2.a.b 3808.a 1.a $1$ $30.407$ \(\Q\) None 3808.2.a.a \(0\) \(2\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{7}+q^{9}+6q^{11}+6q^{13}+\cdots\)
3808.2.a.c 3808.a 1.a $4$ $30.407$ \(\Q(\zeta_{20})^+\) None 3808.2.a.c \(0\) \(0\) \(-4\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1+\beta _{1})q^{5}-q^{7}+\beta _{2}q^{9}+\cdots\)
3808.2.a.d 3808.a 1.a $4$ $30.407$ \(\Q(\zeta_{20})^+\) None 3808.2.a.c \(0\) \(0\) \(-4\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1-\beta _{1})q^{5}+q^{7}+\beta _{2}q^{9}+\cdots\)
3808.2.a.e 3808.a 1.a $5$ $30.407$ 5.5.804272.1 None 3808.2.a.e \(0\) \(0\) \(-2\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
3808.2.a.f 3808.a 1.a $5$ $30.407$ 5.5.804272.1 None 3808.2.a.e \(0\) \(0\) \(-2\) \(5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
3808.2.a.g 3808.a 1.a $6$ $30.407$ 6.6.147697840.1 None 3808.2.a.g \(0\) \(-4\) \(-4\) \(6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-1-\beta _{5})q^{5}+q^{7}+\cdots\)
3808.2.a.h 3808.a 1.a $6$ $30.407$ 6.6.109859312.1 None 3808.2.a.h \(0\) \(-4\) \(4\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{5})q^{3}+(1-\beta _{1})q^{5}-q^{7}+\cdots\)
3808.2.a.i 3808.a 1.a $6$ $30.407$ 6.6.80686992.1 None 3808.2.a.i \(0\) \(-2\) \(-6\) \(6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1+\beta _{4})q^{5}+q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\)
3808.2.a.j 3808.a 1.a $6$ $30.407$ 6.6.4022000.1 None 3808.2.a.j \(0\) \(-2\) \(2\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}-\beta _{1}q^{5}-q^{7}+(1-\beta _{5})q^{9}+\cdots\)
3808.2.a.k 3808.a 1.a $6$ $30.407$ 6.6.93059344.1 None 3808.2.a.k \(0\) \(0\) \(4\) \(-6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(1-\beta _{5})q^{5}-q^{7}+(2-\beta _{2}+\cdots)q^{9}+\cdots\)
3808.2.a.l 3808.a 1.a $6$ $30.407$ 6.6.93059344.1 None 3808.2.a.k \(0\) \(0\) \(4\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(1-\beta _{5})q^{5}+q^{7}+(2-\beta _{2}+\cdots)q^{9}+\cdots\)
3808.2.a.m 3808.a 1.a $6$ $30.407$ 6.6.80686992.1 None 3808.2.a.i \(0\) \(2\) \(-6\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1+\beta _{4})q^{5}-q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\)
3808.2.a.n 3808.a 1.a $6$ $30.407$ 6.6.4022000.1 None 3808.2.a.j \(0\) \(2\) \(2\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{3}-\beta _{1}q^{5}+q^{7}+(1-\beta _{5})q^{9}+\cdots\)
3808.2.a.o 3808.a 1.a $6$ $30.407$ 6.6.147697840.1 None 3808.2.a.g \(0\) \(4\) \(-4\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(-1-\beta _{5})q^{5}-q^{7}+\cdots\)
3808.2.a.p 3808.a 1.a $6$ $30.407$ 6.6.109859312.1 None 3808.2.a.h \(0\) \(4\) \(4\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{5})q^{3}+(1-\beta _{1})q^{5}+q^{7}+(2+\cdots)q^{9}+\cdots\)
3808.2.a.q 3808.a 1.a $8$ $30.407$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 3808.2.a.q \(0\) \(-2\) \(6\) \(-8\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{3}+(1+\beta _{5})q^{5}-q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\)
3808.2.a.r 3808.a 1.a $8$ $30.407$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 3808.2.a.q \(0\) \(2\) \(6\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{3}+(1+\beta _{5})q^{5}+q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3808))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3808)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(544))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(952))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1904))\)\(^{\oplus 2}\)