Properties

Label 378.3.r.a.305.8
Level $378$
Weight $3$
Character 378.305
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(233,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.233"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.8
Character \(\chi\) \(=\) 378.305
Dual form 378.3.r.a.233.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +(7.41683 + 4.28211i) q^{5} +(-6.97339 - 0.609798i) q^{7} +2.82843i q^{8} +(6.05582 - 10.4890i) q^{10} +(6.10804 - 3.52648i) q^{11} +(7.43588 + 12.8793i) q^{13} +(-0.862384 + 9.86186i) q^{14} +4.00000 q^{16} +(-12.4500 - 7.18802i) q^{17} +(9.66453 + 16.7395i) q^{19} +(-14.8337 - 8.56422i) q^{20} +(-4.98720 - 8.63808i) q^{22} +(34.0962 + 19.6854i) q^{23} +(24.1729 + 41.8687i) q^{25} +(18.2141 - 10.5159i) q^{26} +(13.9468 + 1.21960i) q^{28} +(11.7844 + 6.80374i) q^{29} -24.1029 q^{31} -5.65685i q^{32} +(-10.1654 + 17.6070i) q^{34} +(-49.1092 - 34.3836i) q^{35} +(17.6184 + 30.5159i) q^{37} +(23.6732 - 13.6677i) q^{38} +(-12.1116 + 20.9780i) q^{40} +(-7.79426 + 4.50002i) q^{41} +(32.4531 - 56.2103i) q^{43} +(-12.2161 + 7.05296i) q^{44} +(27.8394 - 48.2192i) q^{46} -33.3805i q^{47} +(48.2563 + 8.50471i) q^{49} +(59.2113 - 34.1857i) q^{50} +(-14.8718 - 25.7586i) q^{52} +(52.4399 + 30.2762i) q^{53} +60.4031 q^{55} +(1.72477 - 19.7237i) q^{56} +(9.62194 - 16.6657i) q^{58} -72.3172i q^{59} -7.98282 q^{61} +34.0867i q^{62} -8.00000 q^{64} +127.365i q^{65} -83.6147 q^{67} +(24.9000 + 14.3760i) q^{68} +(-48.6257 + 69.4509i) q^{70} -61.0012i q^{71} +(-9.83762 + 17.0393i) q^{73} +(43.1560 - 24.9162i) q^{74} +(-19.3291 - 33.4789i) q^{76} +(-44.7442 + 20.8668i) q^{77} -10.1882 q^{79} +(29.6673 + 17.1284i) q^{80} +(6.36399 + 11.0228i) q^{82} +(-15.8646 - 9.15941i) q^{83} +(-61.5598 - 106.625i) q^{85} +(-79.4934 - 45.8955i) q^{86} +(9.97439 + 17.2762i) q^{88} +(-40.0208 + 23.1060i) q^{89} +(-43.9995 - 94.3469i) q^{91} +(-68.1923 - 39.3708i) q^{92} -47.2071 q^{94} +165.538i q^{95} +(-49.1454 + 85.1224i) q^{97} +(12.0275 - 68.2447i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 2 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{14} + 128 q^{16} + 54 q^{17} + 28 q^{19} + 126 q^{23} + 80 q^{25} + 72 q^{26} - 4 q^{28} - 36 q^{29} + 16 q^{31} + 90 q^{35} + 22 q^{37} - 72 q^{41}+ \cdots - 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 7.41683 + 4.28211i 1.48337 + 0.856422i 0.999821 0.0188976i \(-0.00601566\pi\)
0.483545 + 0.875320i \(0.339349\pi\)
\(6\) 0 0
\(7\) −6.97339 0.609798i −0.996198 0.0871140i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 6.05582 10.4890i 0.605582 1.04890i
\(11\) 6.10804 3.52648i 0.555277 0.320589i −0.195971 0.980610i \(-0.562786\pi\)
0.751248 + 0.660021i \(0.229452\pi\)
\(12\) 0 0
\(13\) 7.43588 + 12.8793i 0.571991 + 0.990717i 0.996361 + 0.0852287i \(0.0271621\pi\)
−0.424371 + 0.905489i \(0.639505\pi\)
\(14\) −0.862384 + 9.86186i −0.0615989 + 0.704419i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −12.4500 7.18802i −0.732354 0.422825i 0.0869287 0.996215i \(-0.472295\pi\)
−0.819283 + 0.573390i \(0.805628\pi\)
\(18\) 0 0
\(19\) 9.66453 + 16.7395i 0.508659 + 0.881024i 0.999950 + 0.0100280i \(0.00319207\pi\)
−0.491290 + 0.870996i \(0.663475\pi\)
\(20\) −14.8337 8.56422i −0.741683 0.428211i
\(21\) 0 0
\(22\) −4.98720 8.63808i −0.226691 0.392640i
\(23\) 34.0962 + 19.6854i 1.48244 + 0.855888i 0.999801 0.0199309i \(-0.00634462\pi\)
0.482640 + 0.875819i \(0.339678\pi\)
\(24\) 0 0
\(25\) 24.1729 + 41.8687i 0.966917 + 1.67475i
\(26\) 18.2141 10.5159i 0.700543 0.404459i
\(27\) 0 0
\(28\) 13.9468 + 1.21960i 0.498099 + 0.0435570i
\(29\) 11.7844 + 6.80374i 0.406360 + 0.234612i 0.689224 0.724548i \(-0.257951\pi\)
−0.282865 + 0.959160i \(0.591285\pi\)
\(30\) 0 0
\(31\) −24.1029 −0.777513 −0.388757 0.921341i \(-0.627095\pi\)
−0.388757 + 0.921341i \(0.627095\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −10.1654 + 17.6070i −0.298982 + 0.517853i
\(35\) −49.1092 34.3836i −1.40312 0.982388i
\(36\) 0 0
\(37\) 17.6184 + 30.5159i 0.476172 + 0.824755i 0.999627 0.0272985i \(-0.00869046\pi\)
−0.523455 + 0.852053i \(0.675357\pi\)
\(38\) 23.6732 13.6677i 0.622978 0.359676i
\(39\) 0 0
\(40\) −12.1116 + 20.9780i −0.302791 + 0.524449i
\(41\) −7.79426 + 4.50002i −0.190104 + 0.109757i −0.592031 0.805915i \(-0.701674\pi\)
0.401927 + 0.915672i \(0.368340\pi\)
\(42\) 0 0
\(43\) 32.4531 56.2103i 0.754722 1.30722i −0.190790 0.981631i \(-0.561105\pi\)
0.945512 0.325586i \(-0.105562\pi\)
\(44\) −12.2161 + 7.05296i −0.277638 + 0.160295i
\(45\) 0 0
\(46\) 27.8394 48.2192i 0.605204 1.04824i
\(47\) 33.3805i 0.710223i −0.934824 0.355111i \(-0.884443\pi\)
0.934824 0.355111i \(-0.115557\pi\)
\(48\) 0 0
\(49\) 48.2563 + 8.50471i 0.984822 + 0.173566i
\(50\) 59.2113 34.1857i 1.18423 0.683714i
\(51\) 0 0
\(52\) −14.8718 25.7586i −0.285995 0.495359i
\(53\) 52.4399 + 30.2762i 0.989433 + 0.571249i 0.905105 0.425189i \(-0.139792\pi\)
0.0843280 + 0.996438i \(0.473126\pi\)
\(54\) 0 0
\(55\) 60.4031 1.09824
\(56\) 1.72477 19.7237i 0.0307994 0.352209i
\(57\) 0 0
\(58\) 9.62194 16.6657i 0.165896 0.287340i
\(59\) 72.3172i 1.22572i −0.790193 0.612858i \(-0.790020\pi\)
0.790193 0.612858i \(-0.209980\pi\)
\(60\) 0 0
\(61\) −7.98282 −0.130866 −0.0654329 0.997857i \(-0.520843\pi\)
−0.0654329 + 0.997857i \(0.520843\pi\)
\(62\) 34.0867i 0.549785i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 127.365i 1.95946i
\(66\) 0 0
\(67\) −83.6147 −1.24798 −0.623990 0.781432i \(-0.714489\pi\)
−0.623990 + 0.781432i \(0.714489\pi\)
\(68\) 24.9000 + 14.3760i 0.366177 + 0.211412i
\(69\) 0 0
\(70\) −48.6257 + 69.4509i −0.694653 + 0.992156i
\(71\) 61.0012i 0.859172i −0.903026 0.429586i \(-0.858660\pi\)
0.903026 0.429586i \(-0.141340\pi\)
\(72\) 0 0
\(73\) −9.83762 + 17.0393i −0.134762 + 0.233415i −0.925506 0.378732i \(-0.876360\pi\)
0.790745 + 0.612146i \(0.209694\pi\)
\(74\) 43.1560 24.9162i 0.583190 0.336705i
\(75\) 0 0
\(76\) −19.3291 33.4789i −0.254330 0.440512i
\(77\) −44.7442 + 20.8668i −0.581093 + 0.270998i
\(78\) 0 0
\(79\) −10.1882 −0.128965 −0.0644824 0.997919i \(-0.520540\pi\)
−0.0644824 + 0.997919i \(0.520540\pi\)
\(80\) 29.6673 + 17.1284i 0.370842 + 0.214105i
\(81\) 0 0
\(82\) 6.36399 + 11.0228i 0.0776096 + 0.134424i
\(83\) −15.8646 9.15941i −0.191139 0.110354i 0.401376 0.915913i \(-0.368532\pi\)
−0.592516 + 0.805559i \(0.701865\pi\)
\(84\) 0 0
\(85\) −61.5598 106.625i −0.724233 1.25441i
\(86\) −79.4934 45.8955i −0.924342 0.533669i
\(87\) 0 0
\(88\) 9.97439 + 17.2762i 0.113345 + 0.196320i
\(89\) −40.0208 + 23.1060i −0.449672 + 0.259618i −0.707692 0.706522i \(-0.750263\pi\)
0.258020 + 0.966140i \(0.416930\pi\)
\(90\) 0 0
\(91\) −43.9995 94.3469i −0.483511 1.03678i
\(92\) −68.1923 39.3708i −0.741221 0.427944i
\(93\) 0 0
\(94\) −47.2071 −0.502203
\(95\) 165.538i 1.74251i
\(96\) 0 0
\(97\) −49.1454 + 85.1224i −0.506654 + 0.877550i 0.493316 + 0.869850i \(0.335784\pi\)
−0.999970 + 0.00770043i \(0.997549\pi\)
\(98\) 12.0275 68.2447i 0.122729 0.696375i
\(99\) 0 0
\(100\) −48.3459 83.7375i −0.483459 0.837375i
\(101\) −95.9495 + 55.3965i −0.949995 + 0.548480i −0.893079 0.449899i \(-0.851460\pi\)
−0.0569157 + 0.998379i \(0.518127\pi\)
\(102\) 0 0
\(103\) −43.8080 + 75.8776i −0.425320 + 0.736676i −0.996450 0.0841834i \(-0.973172\pi\)
0.571130 + 0.820860i \(0.306505\pi\)
\(104\) −36.4282 + 21.0318i −0.350271 + 0.202229i
\(105\) 0 0
\(106\) 42.8170 74.1613i 0.403934 0.699635i
\(107\) 22.3256 12.8897i 0.208651 0.120465i −0.392033 0.919951i \(-0.628228\pi\)
0.600684 + 0.799486i \(0.294895\pi\)
\(108\) 0 0
\(109\) 52.7615 91.3856i 0.484050 0.838400i −0.515782 0.856720i \(-0.672498\pi\)
0.999832 + 0.0183201i \(0.00583180\pi\)
\(110\) 85.4229i 0.776572i
\(111\) 0 0
\(112\) −27.8936 2.43919i −0.249050 0.0217785i
\(113\) −12.7398 + 7.35535i −0.112742 + 0.0650916i −0.555311 0.831643i \(-0.687401\pi\)
0.442569 + 0.896735i \(0.354067\pi\)
\(114\) 0 0
\(115\) 168.590 + 292.007i 1.46600 + 2.53919i
\(116\) −23.5689 13.6075i −0.203180 0.117306i
\(117\) 0 0
\(118\) −102.272 −0.866712
\(119\) 82.4356 + 57.7169i 0.692736 + 0.485016i
\(120\) 0 0
\(121\) −35.6279 + 61.7093i −0.294445 + 0.509994i
\(122\) 11.2894i 0.0925361i
\(123\) 0 0
\(124\) 48.2058 0.388757
\(125\) 199.939i 1.59951i
\(126\) 0 0
\(127\) −14.2742 −0.112395 −0.0561976 0.998420i \(-0.517898\pi\)
−0.0561976 + 0.998420i \(0.517898\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 180.121 1.38555
\(131\) −149.602 86.3726i −1.14200 0.659333i −0.195073 0.980789i \(-0.562495\pi\)
−0.946925 + 0.321456i \(0.895828\pi\)
\(132\) 0 0
\(133\) −57.1868 122.624i −0.429976 0.921986i
\(134\) 118.249i 0.882455i
\(135\) 0 0
\(136\) 20.3308 35.2140i 0.149491 0.258926i
\(137\) 140.373 81.0447i 1.02462 0.591567i 0.109184 0.994022i \(-0.465176\pi\)
0.915440 + 0.402455i \(0.131843\pi\)
\(138\) 0 0
\(139\) −78.4637 135.903i −0.564487 0.977720i −0.997097 0.0761389i \(-0.975741\pi\)
0.432610 0.901581i \(-0.357593\pi\)
\(140\) 98.2185 + 68.7672i 0.701560 + 0.491194i
\(141\) 0 0
\(142\) −86.2687 −0.607526
\(143\) 90.8374 + 52.4450i 0.635226 + 0.366748i
\(144\) 0 0
\(145\) 58.2687 + 100.924i 0.401853 + 0.696030i
\(146\) 24.0972 + 13.9125i 0.165049 + 0.0952911i
\(147\) 0 0
\(148\) −35.2368 61.0319i −0.238086 0.412377i
\(149\) −214.914 124.081i −1.44237 0.832755i −0.444367 0.895845i \(-0.646571\pi\)
−0.998008 + 0.0630898i \(0.979905\pi\)
\(150\) 0 0
\(151\) 47.2013 + 81.7551i 0.312592 + 0.541424i 0.978923 0.204232i \(-0.0654696\pi\)
−0.666331 + 0.745656i \(0.732136\pi\)
\(152\) −47.3463 + 27.3354i −0.311489 + 0.179838i
\(153\) 0 0
\(154\) 29.5102 + 63.2779i 0.191625 + 0.410895i
\(155\) −178.767 103.211i −1.15334 0.665879i
\(156\) 0 0
\(157\) 205.055 1.30608 0.653042 0.757322i \(-0.273493\pi\)
0.653042 + 0.757322i \(0.273493\pi\)
\(158\) 14.4083i 0.0911919i
\(159\) 0 0
\(160\) 24.2233 41.9559i 0.151395 0.262225i
\(161\) −225.762 158.066i −1.40225 0.981775i
\(162\) 0 0
\(163\) −130.276 225.645i −0.799241 1.38433i −0.920111 0.391657i \(-0.871902\pi\)
0.120870 0.992668i \(-0.461431\pi\)
\(164\) 15.5885 9.00004i 0.0950520 0.0548783i
\(165\) 0 0
\(166\) −12.9534 + 22.4359i −0.0780323 + 0.135156i
\(167\) 110.267 63.6624i 0.660279 0.381212i −0.132105 0.991236i \(-0.542173\pi\)
0.792383 + 0.610024i \(0.208840\pi\)
\(168\) 0 0
\(169\) −26.0847 + 45.1800i −0.154347 + 0.267337i
\(170\) −150.790 + 87.0587i −0.887001 + 0.512110i
\(171\) 0 0
\(172\) −64.9061 + 112.421i −0.377361 + 0.653609i
\(173\) 6.54440i 0.0378289i −0.999821 0.0189145i \(-0.993979\pi\)
0.999821 0.0189145i \(-0.00602102\pi\)
\(174\) 0 0
\(175\) −143.036 306.708i −0.817347 1.75261i
\(176\) 24.4322 14.1059i 0.138819 0.0801473i
\(177\) 0 0
\(178\) 32.6768 + 56.5979i 0.183578 + 0.317966i
\(179\) −3.77964 2.18217i −0.0211153 0.0121909i 0.489405 0.872057i \(-0.337214\pi\)
−0.510520 + 0.859866i \(0.670547\pi\)
\(180\) 0 0
\(181\) 71.3386 0.394136 0.197068 0.980390i \(-0.436858\pi\)
0.197068 + 0.980390i \(0.436858\pi\)
\(182\) −133.427 + 62.2247i −0.733114 + 0.341894i
\(183\) 0 0
\(184\) −55.6788 + 96.4385i −0.302602 + 0.524122i
\(185\) 301.775i 1.63122i
\(186\) 0 0
\(187\) −101.394 −0.542212
\(188\) 66.7609i 0.355111i
\(189\) 0 0
\(190\) 234.106 1.23214
\(191\) 118.465i 0.620236i 0.950698 + 0.310118i \(0.100369\pi\)
−0.950698 + 0.310118i \(0.899631\pi\)
\(192\) 0 0
\(193\) −192.291 −0.996326 −0.498163 0.867083i \(-0.665992\pi\)
−0.498163 + 0.867083i \(0.665992\pi\)
\(194\) 120.381 + 69.5021i 0.620522 + 0.358258i
\(195\) 0 0
\(196\) −96.5126 17.0094i −0.492411 0.0867828i
\(197\) 278.566i 1.41404i −0.707193 0.707021i \(-0.750039\pi\)
0.707193 0.707021i \(-0.249961\pi\)
\(198\) 0 0
\(199\) −121.675 + 210.747i −0.611431 + 1.05903i 0.379568 + 0.925164i \(0.376073\pi\)
−0.990999 + 0.133866i \(0.957261\pi\)
\(200\) −118.423 + 68.3714i −0.592113 + 0.341857i
\(201\) 0 0
\(202\) 78.3424 + 135.693i 0.387834 + 0.671748i
\(203\) −78.0285 54.6312i −0.384377 0.269119i
\(204\) 0 0
\(205\) −77.0783 −0.375992
\(206\) 107.307 + 61.9538i 0.520909 + 0.300747i
\(207\) 0 0
\(208\) 29.7435 + 51.5173i 0.142998 + 0.247679i
\(209\) 118.063 + 68.1635i 0.564893 + 0.326141i
\(210\) 0 0
\(211\) 65.3669 + 113.219i 0.309796 + 0.536582i 0.978318 0.207110i \(-0.0664060\pi\)
−0.668522 + 0.743693i \(0.733073\pi\)
\(212\) −104.880 60.5524i −0.494716 0.285625i
\(213\) 0 0
\(214\) −18.2288 31.5732i −0.0851814 0.147538i
\(215\) 481.398 277.935i 2.23906 1.29272i
\(216\) 0 0
\(217\) 168.079 + 14.6979i 0.774557 + 0.0677322i
\(218\) −129.239 74.6160i −0.592838 0.342275i
\(219\) 0 0
\(220\) −120.806 −0.549119
\(221\) 213.797i 0.967408i
\(222\) 0 0
\(223\) −25.5565 + 44.2652i −0.114603 + 0.198498i −0.917621 0.397456i \(-0.869893\pi\)
0.803018 + 0.595955i \(0.203226\pi\)
\(224\) −3.44954 + 39.4474i −0.0153997 + 0.176105i
\(225\) 0 0
\(226\) 10.4020 + 18.0169i 0.0460267 + 0.0797206i
\(227\) 300.441 173.459i 1.32353 0.764139i 0.339237 0.940701i \(-0.389831\pi\)
0.984289 + 0.176562i \(0.0564977\pi\)
\(228\) 0 0
\(229\) 83.6131 144.822i 0.365123 0.632411i −0.623673 0.781685i \(-0.714360\pi\)
0.988796 + 0.149274i \(0.0476937\pi\)
\(230\) 412.960 238.423i 1.79548 1.03662i
\(231\) 0 0
\(232\) −19.2439 + 33.3314i −0.0829478 + 0.143670i
\(233\) 171.970 99.2867i 0.738067 0.426123i −0.0832991 0.996525i \(-0.526546\pi\)
0.821366 + 0.570401i \(0.193212\pi\)
\(234\) 0 0
\(235\) 142.939 247.577i 0.608250 1.05352i
\(236\) 144.634i 0.612858i
\(237\) 0 0
\(238\) 81.6240 116.582i 0.342958 0.489838i
\(239\) 248.637 143.551i 1.04032 0.600631i 0.120398 0.992726i \(-0.461583\pi\)
0.919925 + 0.392095i \(0.128249\pi\)
\(240\) 0 0
\(241\) −189.297 327.872i −0.785464 1.36046i −0.928721 0.370778i \(-0.879091\pi\)
0.143257 0.989685i \(-0.454242\pi\)
\(242\) 87.2701 + 50.3854i 0.360620 + 0.208204i
\(243\) 0 0
\(244\) 15.9656 0.0654329
\(245\) 321.491 + 269.717i 1.31221 + 1.10088i
\(246\) 0 0
\(247\) −143.729 + 248.945i −0.581897 + 1.00788i
\(248\) 68.1733i 0.274892i
\(249\) 0 0
\(250\) 282.756 1.13103
\(251\) 98.4672i 0.392300i 0.980574 + 0.196150i \(0.0628439\pi\)
−0.980574 + 0.196150i \(0.937156\pi\)
\(252\) 0 0
\(253\) 277.681 1.09755
\(254\) 20.1868i 0.0794755i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −186.439 107.641i −0.725443 0.418835i 0.0913097 0.995823i \(-0.470895\pi\)
−0.816753 + 0.576988i \(0.804228\pi\)
\(258\) 0 0
\(259\) −104.251 223.543i −0.402515 0.863101i
\(260\) 254.730i 0.979731i
\(261\) 0 0
\(262\) −122.149 + 211.569i −0.466219 + 0.807515i
\(263\) −10.8390 + 6.25790i −0.0412130 + 0.0237943i −0.520465 0.853883i \(-0.674241\pi\)
0.479252 + 0.877677i \(0.340908\pi\)
\(264\) 0 0
\(265\) 259.292 + 449.107i 0.978461 + 1.69474i
\(266\) −173.417 + 80.8744i −0.651942 + 0.304039i
\(267\) 0 0
\(268\) 167.229 0.623990
\(269\) 150.771 + 87.0476i 0.560487 + 0.323597i 0.753341 0.657630i \(-0.228441\pi\)
−0.192854 + 0.981227i \(0.561774\pi\)
\(270\) 0 0
\(271\) −17.5923 30.4707i −0.0649161 0.112438i 0.831741 0.555164i \(-0.187345\pi\)
−0.896657 + 0.442726i \(0.854011\pi\)
\(272\) −49.8001 28.7521i −0.183089 0.105706i
\(273\) 0 0
\(274\) −114.614 198.518i −0.418301 0.724519i
\(275\) 295.299 + 170.491i 1.07381 + 0.619966i
\(276\) 0 0
\(277\) 26.2551 + 45.4752i 0.0947839 + 0.164171i 0.909518 0.415664i \(-0.136451\pi\)
−0.814735 + 0.579834i \(0.803117\pi\)
\(278\) −192.196 + 110.964i −0.691352 + 0.399152i
\(279\) 0 0
\(280\) 97.2515 138.902i 0.347327 0.496078i
\(281\) −327.425 189.039i −1.16521 0.672737i −0.212666 0.977125i \(-0.568215\pi\)
−0.952548 + 0.304388i \(0.901548\pi\)
\(282\) 0 0
\(283\) 551.762 1.94969 0.974844 0.222888i \(-0.0715483\pi\)
0.974844 + 0.222888i \(0.0715483\pi\)
\(284\) 122.002i 0.429586i
\(285\) 0 0
\(286\) 74.1684 128.463i 0.259330 0.449173i
\(287\) 57.0965 26.6275i 0.198943 0.0927786i
\(288\) 0 0
\(289\) −41.1647 71.2993i −0.142438 0.246710i
\(290\) 142.729 82.4044i 0.492168 0.284153i
\(291\) 0 0
\(292\) 19.6752 34.0785i 0.0673810 0.116707i
\(293\) −344.440 + 198.863i −1.17556 + 0.678712i −0.954984 0.296657i \(-0.904128\pi\)
−0.220579 + 0.975369i \(0.570795\pi\)
\(294\) 0 0
\(295\) 309.670 536.365i 1.04973 1.81819i
\(296\) −86.3121 + 49.8323i −0.291595 + 0.168352i
\(297\) 0 0
\(298\) −175.476 + 303.934i −0.588847 + 1.01991i
\(299\) 585.514i 1.95824i
\(300\) 0 0
\(301\) −260.585 + 372.187i −0.865730 + 1.23650i
\(302\) 115.619 66.7528i 0.382845 0.221036i
\(303\) 0 0
\(304\) 38.6581 + 66.9578i 0.127165 + 0.220256i
\(305\) −59.2072 34.1833i −0.194122 0.112076i
\(306\) 0 0
\(307\) −295.323 −0.961964 −0.480982 0.876731i \(-0.659720\pi\)
−0.480982 + 0.876731i \(0.659720\pi\)
\(308\) 89.4884 41.7337i 0.290547 0.135499i
\(309\) 0 0
\(310\) −145.963 + 252.815i −0.470848 + 0.815532i
\(311\) 278.718i 0.896200i −0.893983 0.448100i \(-0.852101\pi\)
0.893983 0.448100i \(-0.147899\pi\)
\(312\) 0 0
\(313\) 199.467 0.637276 0.318638 0.947876i \(-0.396775\pi\)
0.318638 + 0.947876i \(0.396775\pi\)
\(314\) 289.992i 0.923541i
\(315\) 0 0
\(316\) 20.3764 0.0644824
\(317\) 18.7055i 0.0590080i −0.999565 0.0295040i \(-0.990607\pi\)
0.999565 0.0295040i \(-0.00939278\pi\)
\(318\) 0 0
\(319\) 95.9730 0.300856
\(320\) −59.3347 34.2569i −0.185421 0.107053i
\(321\) 0 0
\(322\) −223.539 + 319.275i −0.694220 + 0.991538i
\(323\) 277.875i 0.860295i
\(324\) 0 0
\(325\) −359.494 + 622.662i −1.10614 + 1.91588i
\(326\) −319.110 + 184.238i −0.978866 + 0.565149i
\(327\) 0 0
\(328\) −12.7280 22.0455i −0.0388048 0.0672119i
\(329\) −20.3553 + 232.775i −0.0618703 + 0.707523i
\(330\) 0 0
\(331\) 211.382 0.638616 0.319308 0.947651i \(-0.396550\pi\)
0.319308 + 0.947651i \(0.396550\pi\)
\(332\) 31.7291 + 18.3188i 0.0955697 + 0.0551772i
\(333\) 0 0
\(334\) −90.0322 155.940i −0.269558 0.466887i
\(335\) −620.156 358.047i −1.85121 1.06880i
\(336\) 0 0
\(337\) 271.681 + 470.566i 0.806175 + 1.39634i 0.915495 + 0.402330i \(0.131800\pi\)
−0.109319 + 0.994007i \(0.534867\pi\)
\(338\) 63.8941 + 36.8893i 0.189036 + 0.109140i
\(339\) 0 0
\(340\) 123.120 + 213.249i 0.362116 + 0.627204i
\(341\) −147.222 + 84.9984i −0.431735 + 0.249262i
\(342\) 0 0
\(343\) −331.324 88.7332i −0.965958 0.258698i
\(344\) 158.987 + 91.7911i 0.462171 + 0.266835i
\(345\) 0 0
\(346\) −9.25519 −0.0267491
\(347\) 148.921i 0.429167i −0.976706 0.214584i \(-0.931161\pi\)
0.976706 0.214584i \(-0.0688394\pi\)
\(348\) 0 0
\(349\) −229.407 + 397.344i −0.657325 + 1.13852i 0.323980 + 0.946064i \(0.394979\pi\)
−0.981305 + 0.192457i \(0.938354\pi\)
\(350\) −433.750 + 202.283i −1.23929 + 0.577952i
\(351\) 0 0
\(352\) −19.9488 34.5523i −0.0566727 0.0981600i
\(353\) 419.426 242.156i 1.18817 0.685993i 0.230283 0.973124i \(-0.426035\pi\)
0.957891 + 0.287130i \(0.0927013\pi\)
\(354\) 0 0
\(355\) 261.214 452.436i 0.735813 1.27447i
\(356\) 80.0415 46.2120i 0.224836 0.129809i
\(357\) 0 0
\(358\) −3.08606 + 5.34521i −0.00862028 + 0.0149308i
\(359\) −321.625 + 185.690i −0.895892 + 0.517244i −0.875865 0.482556i \(-0.839709\pi\)
−0.0200269 + 0.999799i \(0.506375\pi\)
\(360\) 0 0
\(361\) −6.30620 + 10.9227i −0.0174687 + 0.0302567i
\(362\) 100.888i 0.278696i
\(363\) 0 0
\(364\) 87.9990 + 188.694i 0.241756 + 0.518390i
\(365\) −145.928 + 84.2516i −0.399803 + 0.230826i
\(366\) 0 0
\(367\) −122.345 211.909i −0.333366 0.577407i 0.649803 0.760102i \(-0.274851\pi\)
−0.983170 + 0.182695i \(0.941518\pi\)
\(368\) 136.385 + 78.7417i 0.370610 + 0.213972i
\(369\) 0 0
\(370\) 426.775 1.15345
\(371\) −347.222 243.106i −0.935907 0.655271i
\(372\) 0 0
\(373\) 324.653 562.316i 0.870385 1.50755i 0.00878512 0.999961i \(-0.497204\pi\)
0.861599 0.507589i \(-0.169463\pi\)
\(374\) 143.392i 0.383402i
\(375\) 0 0
\(376\) 94.4142 0.251102
\(377\) 202.367i 0.536783i
\(378\) 0 0
\(379\) −118.934 −0.313809 −0.156905 0.987614i \(-0.550152\pi\)
−0.156905 + 0.987614i \(0.550152\pi\)
\(380\) 331.077i 0.871254i
\(381\) 0 0
\(382\) 167.535 0.438573
\(383\) 309.658 + 178.781i 0.808506 + 0.466791i 0.846437 0.532489i \(-0.178743\pi\)
−0.0379309 + 0.999280i \(0.512077\pi\)
\(384\) 0 0
\(385\) −421.214 36.8337i −1.09406 0.0956719i
\(386\) 271.940i 0.704509i
\(387\) 0 0
\(388\) 98.2909 170.245i 0.253327 0.438775i
\(389\) 303.765 175.379i 0.780887 0.450845i −0.0558576 0.998439i \(-0.517789\pi\)
0.836745 + 0.547593i \(0.184456\pi\)
\(390\) 0 0
\(391\) −282.999 490.168i −0.723781 1.25363i
\(392\) −24.0550 + 136.489i −0.0613647 + 0.348187i
\(393\) 0 0
\(394\) −393.952 −0.999878
\(395\) −75.5643 43.6271i −0.191302 0.110448i
\(396\) 0 0
\(397\) 126.600 + 219.278i 0.318893 + 0.552338i 0.980257 0.197726i \(-0.0633557\pi\)
−0.661365 + 0.750065i \(0.730022\pi\)
\(398\) 298.041 + 172.074i 0.748847 + 0.432347i
\(399\) 0 0
\(400\) 96.6917 + 167.475i 0.241729 + 0.418687i
\(401\) 415.228 + 239.732i 1.03548 + 0.597835i 0.918550 0.395305i \(-0.129361\pi\)
0.116931 + 0.993140i \(0.462694\pi\)
\(402\) 0 0
\(403\) −179.226 310.429i −0.444730 0.770296i
\(404\) 191.899 110.793i 0.474998 0.274240i
\(405\) 0 0
\(406\) −77.2603 + 110.349i −0.190296 + 0.271795i
\(407\) 215.228 + 124.262i 0.528815 + 0.305311i
\(408\) 0 0
\(409\) 10.5978 0.0259115 0.0129558 0.999916i \(-0.495876\pi\)
0.0129558 + 0.999916i \(0.495876\pi\)
\(410\) 109.005i 0.265866i
\(411\) 0 0
\(412\) 87.6160 151.755i 0.212660 0.368338i
\(413\) −44.0989 + 504.296i −0.106777 + 1.22106i
\(414\) 0 0
\(415\) −78.4432 135.868i −0.189020 0.327392i
\(416\) 72.8565 42.0637i 0.175136 0.101115i
\(417\) 0 0
\(418\) 96.3978 166.966i 0.230617 0.399440i
\(419\) −611.154 + 352.850i −1.45860 + 0.842124i −0.998943 0.0459710i \(-0.985362\pi\)
−0.459659 + 0.888095i \(0.652028\pi\)
\(420\) 0 0
\(421\) 212.170 367.490i 0.503968 0.872897i −0.496022 0.868310i \(-0.665206\pi\)
0.999989 0.00458746i \(-0.00146024\pi\)
\(422\) 160.116 92.4428i 0.379421 0.219059i
\(423\) 0 0
\(424\) −85.6341 + 148.323i −0.201967 + 0.349817i
\(425\) 695.022i 1.63535i
\(426\) 0 0
\(427\) 55.6673 + 4.86790i 0.130368 + 0.0114002i
\(428\) −44.6513 + 25.7794i −0.104325 + 0.0602323i
\(429\) 0 0
\(430\) −393.060 680.799i −0.914092 1.58325i
\(431\) −360.974 208.408i −0.837526 0.483546i 0.0188965 0.999821i \(-0.493985\pi\)
−0.856423 + 0.516276i \(0.827318\pi\)
\(432\) 0 0
\(433\) −457.197 −1.05588 −0.527941 0.849281i \(-0.677036\pi\)
−0.527941 + 0.849281i \(0.677036\pi\)
\(434\) 20.7860 237.699i 0.0478939 0.547695i
\(435\) 0 0
\(436\) −105.523 + 182.771i −0.242025 + 0.419200i
\(437\) 761.001i 1.74142i
\(438\) 0 0
\(439\) −122.763 −0.279642 −0.139821 0.990177i \(-0.544653\pi\)
−0.139821 + 0.990177i \(0.544653\pi\)
\(440\) 170.846i 0.388286i
\(441\) 0 0
\(442\) −302.355 −0.684061
\(443\) 313.476i 0.707621i 0.935317 + 0.353811i \(0.115114\pi\)
−0.935317 + 0.353811i \(0.884886\pi\)
\(444\) 0 0
\(445\) −395.770 −0.889370
\(446\) 62.6004 + 36.1423i 0.140360 + 0.0810367i
\(447\) 0 0
\(448\) 55.7871 + 4.87838i 0.124525 + 0.0108892i
\(449\) 216.459i 0.482092i 0.970514 + 0.241046i \(0.0774904\pi\)
−0.970514 + 0.241046i \(0.922510\pi\)
\(450\) 0 0
\(451\) −31.7385 + 54.9726i −0.0703735 + 0.121891i
\(452\) 25.4797 14.7107i 0.0563710 0.0325458i
\(453\) 0 0
\(454\) −245.309 424.887i −0.540328 0.935875i
\(455\) 77.6669 888.166i 0.170697 1.95201i
\(456\) 0 0
\(457\) 564.973 1.23627 0.618133 0.786074i \(-0.287889\pi\)
0.618133 + 0.786074i \(0.287889\pi\)
\(458\) −204.810 118.247i −0.447182 0.258181i
\(459\) 0 0
\(460\) −337.181 584.014i −0.733001 1.26960i
\(461\) 504.476 + 291.259i 1.09431 + 0.631799i 0.934720 0.355385i \(-0.115650\pi\)
0.159588 + 0.987184i \(0.448983\pi\)
\(462\) 0 0
\(463\) 128.093 + 221.863i 0.276658 + 0.479186i 0.970552 0.240891i \(-0.0774397\pi\)
−0.693894 + 0.720077i \(0.744106\pi\)
\(464\) 47.1377 + 27.2150i 0.101590 + 0.0586529i
\(465\) 0 0
\(466\) −140.413 243.202i −0.301315 0.521892i
\(467\) 300.844 173.693i 0.644206 0.371933i −0.142027 0.989863i \(-0.545362\pi\)
0.786233 + 0.617930i \(0.212029\pi\)
\(468\) 0 0
\(469\) 583.078 + 50.9880i 1.24324 + 0.108716i
\(470\) −350.127 202.146i −0.744952 0.430098i
\(471\) 0 0
\(472\) 204.544 0.433356
\(473\) 457.780i 0.967823i
\(474\) 0 0
\(475\) −467.240 + 809.283i −0.983663 + 1.70375i
\(476\) −164.871 115.434i −0.346368 0.242508i
\(477\) 0 0
\(478\) −203.011 351.626i −0.424710 0.735620i
\(479\) −58.7577 + 33.9238i −0.122667 + 0.0708220i −0.560078 0.828440i \(-0.689229\pi\)
0.437411 + 0.899262i \(0.355896\pi\)
\(480\) 0 0
\(481\) −262.016 + 453.826i −0.544733 + 0.943505i
\(482\) −463.681 + 267.706i −0.961993 + 0.555407i
\(483\) 0 0
\(484\) 71.2557 123.419i 0.147223 0.254997i
\(485\) −729.007 + 420.892i −1.50311 + 0.867819i
\(486\) 0 0
\(487\) −231.777 + 401.449i −0.475927 + 0.824330i −0.999620 0.0275774i \(-0.991221\pi\)
0.523693 + 0.851907i \(0.324554\pi\)
\(488\) 22.5788i 0.0462681i
\(489\) 0 0
\(490\) 381.437 454.656i 0.778443 0.927870i
\(491\) −93.7518 + 54.1276i −0.190941 + 0.110240i −0.592423 0.805627i \(-0.701828\pi\)
0.401482 + 0.915867i \(0.368495\pi\)
\(492\) 0 0
\(493\) −97.8109 169.413i −0.198399 0.343638i
\(494\) 352.062 + 203.263i 0.712675 + 0.411463i
\(495\) 0 0
\(496\) −96.4116 −0.194378
\(497\) −37.1984 + 425.385i −0.0748458 + 0.855905i
\(498\) 0 0
\(499\) 3.76956 6.52906i 0.00755422 0.0130843i −0.862224 0.506528i \(-0.830929\pi\)
0.869778 + 0.493444i \(0.164262\pi\)
\(500\) 399.878i 0.799756i
\(501\) 0 0
\(502\) 139.254 0.277398
\(503\) 402.034i 0.799272i −0.916674 0.399636i \(-0.869137\pi\)
0.916674 0.399636i \(-0.130863\pi\)
\(504\) 0 0
\(505\) −948.855 −1.87892
\(506\) 392.700i 0.776088i
\(507\) 0 0
\(508\) 28.5484 0.0561976
\(509\) −637.847 368.261i −1.25314 0.723499i −0.281406 0.959589i \(-0.590801\pi\)
−0.971731 + 0.236090i \(0.924134\pi\)
\(510\) 0 0
\(511\) 78.9921 112.822i 0.154583 0.220788i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −152.227 + 263.664i −0.296161 + 0.512966i
\(515\) −649.833 + 375.181i −1.26181 + 0.728507i
\(516\) 0 0
\(517\) −117.716 203.889i −0.227690 0.394370i
\(518\) −316.138 + 147.434i −0.610304 + 0.284621i
\(519\) 0 0
\(520\) −360.243 −0.692775
\(521\) −455.192 262.805i −0.873690 0.504425i −0.00511719 0.999987i \(-0.501629\pi\)
−0.868573 + 0.495562i \(0.834962\pi\)
\(522\) 0 0
\(523\) 46.2741 + 80.1490i 0.0884781 + 0.153249i 0.906868 0.421415i \(-0.138466\pi\)
−0.818390 + 0.574663i \(0.805133\pi\)
\(524\) 299.203 + 172.745i 0.570999 + 0.329666i
\(525\) 0 0
\(526\) 8.85001 + 15.3287i 0.0168251 + 0.0291420i
\(527\) 300.082 + 173.252i 0.569415 + 0.328752i
\(528\) 0 0
\(529\) 510.532 + 884.267i 0.965088 + 1.67158i
\(530\) 635.133 366.694i 1.19836 0.691876i
\(531\) 0 0
\(532\) 114.374 + 245.248i 0.214988 + 0.460993i
\(533\) −115.914 66.9232i −0.217475 0.125560i
\(534\) 0 0
\(535\) 220.781 0.412674
\(536\) 236.498i 0.441228i
\(537\) 0 0
\(538\) 123.104 213.222i 0.228818 0.396324i
\(539\) 324.743 118.228i 0.602492 0.219346i
\(540\) 0 0
\(541\) −66.8426 115.775i −0.123554 0.214001i 0.797613 0.603170i \(-0.206096\pi\)
−0.921167 + 0.389168i \(0.872762\pi\)
\(542\) −43.0921 + 24.8792i −0.0795056 + 0.0459026i
\(543\) 0 0
\(544\) −40.6616 + 70.4279i −0.0747456 + 0.129463i
\(545\) 782.646 451.861i 1.43605 0.829103i
\(546\) 0 0
\(547\) 28.0279 48.5457i 0.0512393 0.0887490i −0.839268 0.543718i \(-0.817016\pi\)
0.890507 + 0.454969i \(0.150350\pi\)
\(548\) −280.747 + 162.089i −0.512312 + 0.295783i
\(549\) 0 0
\(550\) 241.110 417.615i 0.438382 0.759300i
\(551\) 263.020i 0.477350i
\(552\) 0 0
\(553\) 71.0464 + 6.21276i 0.128475 + 0.0112346i
\(554\) 64.3117 37.1304i 0.116086 0.0670223i
\(555\) 0 0
\(556\) 156.927 + 271.806i 0.282243 + 0.488860i
\(557\) −173.289 100.048i −0.311111 0.179620i 0.336313 0.941750i \(-0.390820\pi\)
−0.647423 + 0.762130i \(0.724153\pi\)
\(558\) 0 0
\(559\) 965.268 1.72678
\(560\) −196.437 137.534i −0.350780 0.245597i
\(561\) 0 0
\(562\) −267.342 + 463.049i −0.475697 + 0.823931i
\(563\) 603.474i 1.07189i 0.844253 + 0.535945i \(0.180044\pi\)
−0.844253 + 0.535945i \(0.819956\pi\)
\(564\) 0 0
\(565\) −125.986 −0.222984
\(566\) 780.309i 1.37864i
\(567\) 0 0
\(568\) 172.537 0.303763
\(569\) 4.01413i 0.00705472i −0.999994 0.00352736i \(-0.998877\pi\)
0.999994 0.00352736i \(-0.00112280\pi\)
\(570\) 0 0
\(571\) −606.712 −1.06254 −0.531271 0.847202i \(-0.678285\pi\)
−0.531271 + 0.847202i \(0.678285\pi\)
\(572\) −181.675 104.890i −0.317613 0.183374i
\(573\) 0 0
\(574\) −37.6569 80.7467i −0.0656044 0.140674i
\(575\) 1903.42i 3.31029i
\(576\) 0 0
\(577\) 290.727 503.553i 0.503859 0.872709i −0.496131 0.868248i \(-0.665247\pi\)
0.999990 0.00446157i \(-0.00142017\pi\)
\(578\) −100.832 + 58.2156i −0.174451 + 0.100719i
\(579\) 0 0
\(580\) −116.537 201.849i −0.200927 0.348015i
\(581\) 105.044 + 73.5463i 0.180799 + 0.126586i
\(582\) 0 0
\(583\) 427.074 0.732545
\(584\) −48.1943 27.8250i −0.0825245 0.0476455i
\(585\) 0 0
\(586\) 281.234 + 487.112i 0.479922 + 0.831249i
\(587\) −119.284 68.8684i −0.203209 0.117323i 0.394943 0.918706i \(-0.370764\pi\)
−0.598151 + 0.801383i \(0.704098\pi\)
\(588\) 0 0
\(589\) −232.943 403.469i −0.395489 0.685008i
\(590\) −758.534 437.940i −1.28565 0.742271i
\(591\) 0 0
\(592\) 70.4735 + 122.064i 0.119043 + 0.206189i
\(593\) 491.375 283.696i 0.828626 0.478407i −0.0247561 0.999694i \(-0.507881\pi\)
0.853382 + 0.521286i \(0.174548\pi\)
\(594\) 0 0
\(595\) 364.261 + 781.075i 0.612203 + 1.31273i
\(596\) 429.828 + 248.161i 0.721187 + 0.416378i
\(597\) 0 0
\(598\) 828.042 1.38469
\(599\) 812.389i 1.35624i −0.734950 0.678121i \(-0.762794\pi\)
0.734950 0.678121i \(-0.237206\pi\)
\(600\) 0 0
\(601\) 370.313 641.402i 0.616162 1.06722i −0.374017 0.927422i \(-0.622020\pi\)
0.990179 0.139802i \(-0.0446467\pi\)
\(602\) 526.352 + 368.522i 0.874338 + 0.612163i
\(603\) 0 0
\(604\) −94.4026 163.510i −0.156296 0.270712i
\(605\) −528.492 + 305.125i −0.873540 + 0.504339i
\(606\) 0 0
\(607\) −93.4601 + 161.878i −0.153971 + 0.266685i −0.932684 0.360695i \(-0.882539\pi\)
0.778713 + 0.627380i \(0.215873\pi\)
\(608\) 94.6926 54.6708i 0.155744 0.0899191i
\(609\) 0 0
\(610\) −48.3425 + 83.7316i −0.0792500 + 0.137265i
\(611\) 429.918 248.213i 0.703630 0.406241i
\(612\) 0 0
\(613\) 435.744 754.731i 0.710839 1.23121i −0.253704 0.967282i \(-0.581649\pi\)
0.964543 0.263927i \(-0.0850178\pi\)
\(614\) 417.650i 0.680211i
\(615\) 0 0
\(616\) −59.0204 126.556i −0.0958123 0.205448i
\(617\) −441.505 + 254.903i −0.715567 + 0.413133i −0.813119 0.582098i \(-0.802232\pi\)
0.0975522 + 0.995230i \(0.468899\pi\)
\(618\) 0 0
\(619\) 532.400 + 922.144i 0.860097 + 1.48973i 0.871835 + 0.489801i \(0.162930\pi\)
−0.0117376 + 0.999931i \(0.503736\pi\)
\(620\) 357.534 + 206.423i 0.576668 + 0.332940i
\(621\) 0 0
\(622\) −394.167 −0.633709
\(623\) 293.170 136.723i 0.470578 0.219458i
\(624\) 0 0
\(625\) −251.838 + 436.196i −0.402940 + 0.697913i
\(626\) 282.090i 0.450622i
\(627\) 0 0
\(628\) −410.110 −0.653042
\(629\) 506.565i 0.805350i
\(630\) 0 0
\(631\) 479.402 0.759750 0.379875 0.925038i \(-0.375967\pi\)
0.379875 + 0.925038i \(0.375967\pi\)
\(632\) 28.8167i 0.0455960i
\(633\) 0 0
\(634\) −26.4536 −0.0417250
\(635\) −105.869 61.1237i −0.166723 0.0962578i
\(636\) 0 0
\(637\) 249.293 + 684.749i 0.391355 + 1.07496i
\(638\) 135.726i 0.212737i
\(639\) 0 0
\(640\) −48.4465 + 83.9119i −0.0756977 + 0.131112i
\(641\) −181.333 + 104.693i −0.282891 + 0.163327i −0.634732 0.772733i \(-0.718889\pi\)
0.351840 + 0.936060i \(0.385556\pi\)
\(642\) 0 0
\(643\) −184.919 320.289i −0.287588 0.498117i 0.685645 0.727936i \(-0.259520\pi\)
−0.973234 + 0.229818i \(0.926187\pi\)
\(644\) 451.523 + 316.132i 0.701123 + 0.490888i
\(645\) 0 0
\(646\) −392.975 −0.608321
\(647\) 227.896 + 131.576i 0.352235 + 0.203363i 0.665669 0.746247i \(-0.268146\pi\)
−0.313434 + 0.949610i \(0.601479\pi\)
\(648\) 0 0
\(649\) −255.025 441.717i −0.392951 0.680611i
\(650\) 880.577 + 508.401i 1.35473 + 0.782156i
\(651\) 0 0
\(652\) 260.553 + 451.290i 0.399620 + 0.692163i
\(653\) 702.567 + 405.628i 1.07591 + 0.621175i 0.929789 0.368092i \(-0.119989\pi\)
0.146118 + 0.989267i \(0.453322\pi\)
\(654\) 0 0
\(655\) −739.714 1281.22i −1.12933 1.95606i
\(656\) −31.1771 + 18.0001i −0.0475260 + 0.0274391i
\(657\) 0 0
\(658\) 329.194 + 28.7868i 0.500294 + 0.0437489i
\(659\) −31.0199 17.9093i −0.0470711 0.0271765i 0.476280 0.879294i \(-0.341985\pi\)
−0.523351 + 0.852117i \(0.675318\pi\)
\(660\) 0 0
\(661\) 389.167 0.588756 0.294378 0.955689i \(-0.404888\pi\)
0.294378 + 0.955689i \(0.404888\pi\)
\(662\) 298.939i 0.451570i
\(663\) 0 0
\(664\) 25.9067 44.8718i 0.0390162 0.0675780i
\(665\) 100.945 1154.36i 0.151797 1.73588i
\(666\) 0 0
\(667\) 267.869 + 463.963i 0.401603 + 0.695596i
\(668\) −220.533 + 127.325i −0.330139 + 0.190606i
\(669\) 0 0
\(670\) −506.355 + 877.033i −0.755754 + 1.30900i
\(671\) −48.7594 + 28.1512i −0.0726668 + 0.0419542i
\(672\) 0 0
\(673\) −399.256 + 691.532i −0.593248 + 1.02754i 0.400543 + 0.916278i \(0.368821\pi\)
−0.993792 + 0.111258i \(0.964512\pi\)
\(674\) 665.480 384.215i 0.987359 0.570052i
\(675\) 0 0
\(676\) 52.1693 90.3600i 0.0771736 0.133669i
\(677\) 512.442i 0.756930i 0.925616 + 0.378465i \(0.123548\pi\)
−0.925616 + 0.378465i \(0.876452\pi\)
\(678\) 0 0
\(679\) 394.618 563.623i 0.581175 0.830078i
\(680\) 301.580 174.117i 0.443500 0.256055i
\(681\) 0 0
\(682\) 120.206 + 208.203i 0.176255 + 0.305283i
\(683\) 1041.76 + 601.463i 1.52528 + 0.880619i 0.999551 + 0.0299649i \(0.00953956\pi\)
0.525726 + 0.850654i \(0.323794\pi\)
\(684\) 0 0
\(685\) 1388.17 2.02652
\(686\) −125.488 + 468.563i −0.182927 + 0.683036i
\(687\) 0 0
\(688\) 129.812 224.841i 0.188681 0.326804i
\(689\) 900.521i 1.30700i
\(690\) 0 0
\(691\) −541.984 −0.784347 −0.392174 0.919891i \(-0.628277\pi\)
−0.392174 + 0.919891i \(0.628277\pi\)
\(692\) 13.0888i 0.0189145i
\(693\) 0 0
\(694\) −210.606 −0.303467
\(695\) 1343.96i 1.93376i
\(696\) 0 0
\(697\) 129.385 0.185631
\(698\) 561.929 + 324.430i 0.805056 + 0.464799i
\(699\) 0 0
\(700\) 286.072 + 613.415i 0.408674 + 0.876307i
\(701\) 1106.17i 1.57800i −0.614396 0.788998i \(-0.710600\pi\)
0.614396 0.788998i \(-0.289400\pi\)
\(702\) 0 0
\(703\) −340.547 + 589.844i −0.484419 + 0.839039i
\(704\) −48.8643 + 28.2118i −0.0694096 + 0.0400736i
\(705\) 0 0
\(706\) −342.460 593.158i −0.485070 0.840167i
\(707\) 702.874 327.791i 0.994164 0.463637i
\(708\) 0 0
\(709\) 1359.73 1.91781 0.958907 0.283721i \(-0.0915690\pi\)
0.958907 + 0.283721i \(0.0915690\pi\)
\(710\) −639.840 369.412i −0.901184 0.520299i
\(711\) 0 0
\(712\) −65.3537 113.196i −0.0917888 0.158983i
\(713\) −821.816 474.476i −1.15262 0.665464i
\(714\) 0 0
\(715\) 449.150 + 777.951i 0.628182 + 1.08804i
\(716\) 7.55927 + 4.36435i 0.0105576 + 0.00609546i
\(717\) 0 0
\(718\) 262.606 + 454.847i 0.365746 + 0.633491i
\(719\) −669.276 + 386.407i −0.930843 + 0.537422i −0.887078 0.461620i \(-0.847269\pi\)
−0.0437647 + 0.999042i \(0.513935\pi\)
\(720\) 0 0
\(721\) 351.760 502.410i 0.487878 0.696824i
\(722\) 15.4470 + 8.91832i 0.0213947 + 0.0123522i
\(723\) 0 0
\(724\) −142.677 −0.197068
\(725\) 657.865i 0.907401i
\(726\) 0 0
\(727\) −332.257 + 575.485i −0.457024 + 0.791589i −0.998802 0.0489326i \(-0.984418\pi\)
0.541778 + 0.840522i \(0.317751\pi\)
\(728\) 266.853 124.449i 0.366557 0.170947i
\(729\) 0 0
\(730\) 119.150 + 206.373i 0.163219 + 0.282703i
\(731\) −808.082 + 466.547i −1.10545 + 0.638231i
\(732\) 0 0
\(733\) −491.449 + 851.214i −0.670462 + 1.16127i 0.307311 + 0.951609i \(0.400571\pi\)
−0.977773 + 0.209666i \(0.932762\pi\)
\(734\) −299.684 + 173.023i −0.408289 + 0.235726i
\(735\) 0 0
\(736\) 111.358 192.877i 0.151301 0.262061i
\(737\) −510.722 + 294.865i −0.692974 + 0.400089i
\(738\) 0 0
\(739\) −451.664 + 782.306i −0.611183 + 1.05860i 0.379858 + 0.925045i \(0.375973\pi\)
−0.991041 + 0.133556i \(0.957360\pi\)
\(740\) 603.551i 0.815609i
\(741\) 0 0
\(742\) −343.803 + 491.046i −0.463347 + 0.661787i
\(743\) 662.703 382.612i 0.891928 0.514955i 0.0173557 0.999849i \(-0.494475\pi\)
0.874573 + 0.484894i \(0.161142\pi\)
\(744\) 0 0
\(745\) −1062.65 1840.57i −1.42638 2.47056i
\(746\) −795.235 459.129i −1.06600 0.615455i
\(747\) 0 0
\(748\) 202.787 0.271106
\(749\) −163.545 + 76.2709i −0.218352 + 0.101830i
\(750\) 0 0
\(751\) −224.037 + 388.044i −0.298319 + 0.516703i −0.975751 0.218881i \(-0.929759\pi\)
0.677433 + 0.735585i \(0.263093\pi\)
\(752\) 133.522i 0.177556i
\(753\) 0 0
\(754\) 286.191 0.379563
\(755\) 808.485i 1.07084i
\(756\) 0 0
\(757\) −1350.52 −1.78404 −0.892020 0.451995i \(-0.850712\pi\)
−0.892020 + 0.451995i \(0.850712\pi\)
\(758\) 168.198i 0.221897i
\(759\) 0 0
\(760\) −468.213 −0.616070
\(761\) −184.282 106.395i −0.242158 0.139810i 0.374010 0.927425i \(-0.377983\pi\)
−0.616168 + 0.787615i \(0.711316\pi\)
\(762\) 0 0
\(763\) −423.653 + 605.093i −0.555247 + 0.793045i
\(764\) 236.930i 0.310118i
\(765\) 0 0
\(766\) 252.834 437.922i 0.330071 0.571700i
\(767\) 931.397 537.742i 1.21434 0.701098i
\(768\) 0 0
\(769\) 349.195 + 604.823i 0.454090 + 0.786506i 0.998635 0.0522249i \(-0.0166313\pi\)
−0.544546 + 0.838731i \(0.683298\pi\)
\(770\) −52.0907 + 595.687i −0.0676502 + 0.773619i
\(771\) 0 0
\(772\) 384.582 0.498163
\(773\) −156.237 90.2037i −0.202118 0.116693i 0.395525 0.918455i \(-0.370563\pi\)
−0.597643 + 0.801762i \(0.703896\pi\)
\(774\) 0 0
\(775\) −582.638 1009.16i −0.751791 1.30214i
\(776\) −240.762 139.004i −0.310261 0.179129i
\(777\) 0 0
\(778\) −248.023 429.589i −0.318796 0.552170i
\(779\) −150.656 86.9811i −0.193396 0.111657i
\(780\) 0 0
\(781\) −215.119 372.598i −0.275441 0.477078i
\(782\) −693.202 + 400.220i −0.886448 + 0.511791i
\(783\) 0 0
\(784\) 193.025 + 34.0189i 0.246206 + 0.0433914i
\(785\) 1520.86 + 878.069i 1.93740 + 1.11856i
\(786\) 0 0
\(787\) 160.454 0.203880 0.101940 0.994791i \(-0.467495\pi\)
0.101940 + 0.994791i \(0.467495\pi\)
\(788\) 557.132i 0.707021i
\(789\) 0 0
\(790\) −61.6980 + 106.864i −0.0780988 + 0.135271i
\(791\) 93.3252 43.5230i 0.117984 0.0550228i
\(792\) 0 0
\(793\) −59.3593 102.813i −0.0748541 0.129651i
\(794\) 310.106 179.040i 0.390562 0.225491i
\(795\) 0 0
\(796\) 243.350 421.494i 0.305716 0.529515i
\(797\) 969.679 559.844i 1.21666 0.702439i 0.252459 0.967608i \(-0.418761\pi\)
0.964202 + 0.265168i \(0.0854275\pi\)
\(798\) 0 0
\(799\) −239.940 + 415.588i −0.300300 + 0.520135i
\(800\) 236.845 136.743i 0.296057 0.170928i
\(801\) 0 0
\(802\) 339.032 587.221i 0.422733 0.732196i
\(803\) 138.769i 0.172813i
\(804\) 0 0
\(805\) −997.580 2139.08i −1.23923 2.65725i
\(806\) −439.013 + 253.464i −0.544681 + 0.314472i
\(807\) 0 0
\(808\) −156.685 271.386i −0.193917 0.335874i
\(809\) −262.167 151.362i −0.324063 0.187098i 0.329139 0.944282i \(-0.393242\pi\)
−0.653202 + 0.757183i \(0.726575\pi\)
\(810\) 0 0
\(811\) 1037.56 1.27936 0.639680 0.768641i \(-0.279067\pi\)
0.639680 + 0.768641i \(0.279067\pi\)
\(812\) 156.057 + 109.262i 0.192188 + 0.134560i
\(813\) 0 0
\(814\) 175.733 304.378i 0.215888 0.373929i
\(815\) 2231.43i 2.73795i
\(816\) 0 0
\(817\) 1254.57 1.53559
\(818\) 14.9876i 0.0183222i
\(819\) 0 0
\(820\) 154.157 0.187996
\(821\) 603.941i 0.735617i −0.929902 0.367808i \(-0.880108\pi\)
0.929902 0.367808i \(-0.119892\pi\)
\(822\) 0 0
\(823\) −28.4475 −0.0345657 −0.0172828 0.999851i \(-0.505502\pi\)
−0.0172828 + 0.999851i \(0.505502\pi\)
\(824\) −214.614 123.908i −0.260454 0.150373i
\(825\) 0 0
\(826\) 713.183 + 62.3652i 0.863417 + 0.0755027i
\(827\) 798.699i 0.965778i 0.875681 + 0.482889i \(0.160413\pi\)
−0.875681 + 0.482889i \(0.839587\pi\)
\(828\) 0 0
\(829\) 216.869 375.628i 0.261603 0.453110i −0.705065 0.709143i \(-0.749082\pi\)
0.966668 + 0.256033i \(0.0824154\pi\)
\(830\) −192.146 + 110.935i −0.231501 + 0.133657i
\(831\) 0 0
\(832\) −59.4871 103.035i −0.0714989 0.123840i
\(833\) −539.660 452.751i −0.647851 0.543519i
\(834\) 0 0
\(835\) 1090.44 1.30591
\(836\) −236.125 136.327i −0.282447 0.163071i
\(837\) 0 0
\(838\) 499.005 + 864.303i 0.595472 + 1.03139i
\(839\) −338.993 195.718i −0.404044 0.233275i 0.284183 0.958770i \(-0.408278\pi\)
−0.688227 + 0.725495i \(0.741611\pi\)
\(840\) 0 0
\(841\) −327.918 567.971i −0.389915 0.675352i
\(842\) −519.709 300.054i −0.617232 0.356359i
\(843\) 0 0
\(844\) −130.734 226.438i −0.154898 0.268291i
\(845\) −386.931 + 223.395i −0.457907 + 0.264373i
\(846\) 0 0
\(847\) 286.077 408.597i 0.337753 0.482405i
\(848\) 209.760 + 121.105i 0.247358 + 0.142812i
\(849\) 0 0
\(850\) −982.910 −1.15636
\(851\) 1387.30i 1.63020i
\(852\) 0 0
\(853\) −517.801 + 896.857i −0.607035 + 1.05141i 0.384692 + 0.923045i \(0.374308\pi\)
−0.991726 + 0.128370i \(0.959026\pi\)
\(854\) 6.88426 78.7254i 0.00806119 0.0921843i
\(855\) 0 0
\(856\) 36.4576 + 63.1464i 0.0425907 + 0.0737692i
\(857\) 735.819 424.825i 0.858599 0.495712i −0.00494405 0.999988i \(-0.501574\pi\)
0.863543 + 0.504276i \(0.168240\pi\)
\(858\) 0 0
\(859\) −610.792 + 1057.92i −0.711050 + 1.23157i 0.253414 + 0.967358i \(0.418447\pi\)
−0.964464 + 0.264216i \(0.914887\pi\)
\(860\) −962.795 + 555.870i −1.11953 + 0.646361i
\(861\) 0 0
\(862\) −294.734 + 510.494i −0.341919 + 0.592220i
\(863\) 232.708 134.354i 0.269650 0.155682i −0.359079 0.933307i \(-0.616909\pi\)
0.628728 + 0.777625i \(0.283576\pi\)
\(864\) 0 0
\(865\) 28.0239 48.5387i 0.0323975 0.0561142i
\(866\) 646.574i 0.746621i
\(867\) 0 0
\(868\) −336.158 29.3958i −0.387279 0.0338661i
\(869\) −62.2301 + 35.9286i −0.0716112 + 0.0413447i
\(870\) 0 0
\(871\) −621.749 1076.90i −0.713833 1.23640i
\(872\) 258.477 + 149.232i 0.296419 + 0.171138i
\(873\) 0 0
\(874\) 1076.22 1.23137
\(875\) 121.922 1394.25i 0.139340 1.59343i
\(876\) 0 0
\(877\) 502.028 869.538i 0.572438 0.991491i −0.423877 0.905720i \(-0.639331\pi\)
0.996315 0.0857714i \(-0.0273355\pi\)
\(878\) 173.613i 0.197737i
\(879\) 0 0
\(880\) 241.612 0.274560
\(881\) 370.961i 0.421068i 0.977587 + 0.210534i \(0.0675203\pi\)
−0.977587 + 0.210534i \(0.932480\pi\)
\(882\) 0 0
\(883\) 694.091 0.786060 0.393030 0.919526i \(-0.371427\pi\)
0.393030 + 0.919526i \(0.371427\pi\)
\(884\) 427.594i 0.483704i
\(885\) 0 0
\(886\) 443.322 0.500364
\(887\) −252.024 145.506i −0.284131 0.164043i 0.351161 0.936315i \(-0.385787\pi\)
−0.635292 + 0.772272i \(0.719120\pi\)
\(888\) 0 0
\(889\) 99.5396 + 8.70438i 0.111968 + 0.00979120i
\(890\) 559.703i 0.628880i
\(891\) 0 0
\(892\) 51.1130 88.5303i 0.0573016 0.0992492i
\(893\) 558.771 322.607i 0.625723 0.361261i
\(894\) 0 0
\(895\) −18.6886 32.3696i −0.0208811 0.0361672i
\(896\) 6.89907 78.8949i 0.00769986 0.0880523i
\(897\) 0 0
\(898\) 306.120 0.340890
\(899\) −284.039 163.990i −0.315950 0.182414i
\(900\) 0 0
\(901\) −435.252 753.879i −0.483077 0.836713i
\(902\) 77.7430 + 44.8850i 0.0861896 + 0.0497616i
\(903\) 0 0
\(904\) −20.8041 36.0337i −0.0230134 0.0398603i
\(905\) 529.107 + 305.480i 0.584648 + 0.337547i
\(906\) 0 0
\(907\) 727.823 + 1260.63i 0.802451 + 1.38989i 0.917999 + 0.396583i \(0.129804\pi\)
−0.115548 + 0.993302i \(0.536862\pi\)
\(908\) −600.881 + 346.919i −0.661763 + 0.382069i
\(909\) 0 0
\(910\) −1256.06 109.838i −1.38028 0.120701i
\(911\) −310.858 179.474i −0.341228 0.197008i 0.319587 0.947557i \(-0.396456\pi\)
−0.660815 + 0.750549i \(0.729789\pi\)
\(912\) 0 0
\(913\) −129.202 −0.141514
\(914\) 798.993i 0.874172i
\(915\) 0 0
\(916\) −167.226 + 289.644i −0.182561 + 0.316206i
\(917\) 990.561 + 693.537i 1.08022 + 0.756310i
\(918\) 0 0
\(919\) −739.927 1281.59i −0.805144 1.39455i −0.916194 0.400735i \(-0.868755\pi\)
0.111050 0.993815i \(-0.464579\pi\)
\(920\) −825.920 + 476.845i −0.897739 + 0.518310i
\(921\) 0 0
\(922\) 411.903 713.437i 0.446749 0.773793i
\(923\) 785.654 453.598i 0.851196 0.491438i
\(924\) 0 0
\(925\) −851.776 + 1475.32i −0.920839 + 1.59494i
\(926\) 313.762 181.150i 0.338835 0.195627i
\(927\) 0 0
\(928\) 38.4878 66.6628i 0.0414739 0.0718349i
\(929\) 494.398i 0.532183i −0.963948 0.266092i \(-0.914268\pi\)
0.963948 0.266092i \(-0.0857324\pi\)
\(930\) 0 0
\(931\) 324.010 + 889.978i 0.348024 + 0.955938i
\(932\) −343.939 + 198.573i −0.369033 + 0.213062i
\(933\) 0 0
\(934\) −245.638 425.458i −0.262996 0.455523i
\(935\) −752.020 434.179i −0.804299 0.464362i
\(936\) 0 0
\(937\) −1460.33 −1.55852 −0.779258 0.626704i \(-0.784404\pi\)
−0.779258 + 0.626704i \(0.784404\pi\)
\(938\) 72.1080 824.596i 0.0768742 0.879100i
\(939\) 0 0
\(940\) −285.878 + 495.155i −0.304125 + 0.526760i
\(941\) 1320.00i 1.40276i −0.712786 0.701381i \(-0.752567\pi\)
0.712786 0.701381i \(-0.247433\pi\)
\(942\) 0 0
\(943\) −354.339 −0.375757
\(944\) 289.269i 0.306429i
\(945\) 0 0
\(946\) −647.399 −0.684354
\(947\) 529.269i 0.558890i 0.960162 + 0.279445i \(0.0901505\pi\)
−0.960162 + 0.279445i \(0.909849\pi\)
\(948\) 0 0
\(949\) −292.606 −0.308330
\(950\) 1144.50 + 660.777i 1.20474 + 0.695555i
\(951\) 0 0
\(952\) −163.248 + 233.163i −0.171479 + 0.244919i
\(953\) 193.203i 0.202731i 0.994849 + 0.101366i \(0.0323212\pi\)
−0.994849 + 0.101366i \(0.967679\pi\)
\(954\) 0 0
\(955\) −507.281 + 878.636i −0.531184 + 0.920038i
\(956\) −497.275 + 287.102i −0.520162 + 0.300315i
\(957\) 0 0
\(958\) 47.9754 + 83.0959i 0.0500787 + 0.0867389i
\(959\) −1028.30 + 479.557i −1.07226 + 0.500059i
\(960\) 0 0
\(961\) −380.050 −0.395473
\(962\) 641.806 + 370.547i 0.667159 + 0.385184i
\(963\) 0 0
\(964\) 378.594 + 655.743i 0.392732 + 0.680232i
\(965\) −1426.19 823.411i −1.47792 0.853275i
\(966\) 0 0
\(967\) −802.035 1389.17i −0.829405 1.43657i −0.898505 0.438962i \(-0.855346\pi\)
0.0691002 0.997610i \(-0.477987\pi\)
\(968\) −174.540 100.771i −0.180310 0.104102i
\(969\) 0 0
\(970\) 595.232 + 1030.97i 0.613641 + 1.06286i
\(971\) −1197.47 + 691.361i −1.23324 + 0.712010i −0.967703 0.252092i \(-0.918881\pi\)
−0.265534 + 0.964102i \(0.585548\pi\)
\(972\) 0 0
\(973\) 464.284 + 995.552i 0.477168 + 1.02318i
\(974\) 567.734 + 327.781i 0.582889 + 0.336531i
\(975\) 0 0
\(976\) −31.9313 −0.0327165
\(977\) 1293.34i 1.32379i 0.749597 + 0.661894i \(0.230247\pi\)
−0.749597 + 0.661894i \(0.769753\pi\)
\(978\) 0 0
\(979\) −162.966 + 282.265i −0.166461 + 0.288320i
\(980\) −642.981 539.434i −0.656103 0.550442i
\(981\) 0 0
\(982\) 76.5481 + 132.585i 0.0779512 + 0.135015i
\(983\) −1217.90 + 703.156i −1.23896 + 0.715317i −0.968883 0.247520i \(-0.920384\pi\)
−0.270082 + 0.962837i \(0.587051\pi\)
\(984\) 0 0
\(985\) 1192.85 2066.08i 1.21102 2.09754i
\(986\) −239.587 + 138.325i −0.242989 + 0.140290i
\(987\) 0 0
\(988\) 287.457 497.890i 0.290949 0.503938i
\(989\) 2213.05 1277.70i 2.23766 1.29192i
\(990\) 0 0
\(991\) 929.154 1609.34i 0.937593 1.62396i 0.167649 0.985847i \(-0.446383\pi\)
0.769944 0.638111i \(-0.220284\pi\)
\(992\) 136.347i 0.137446i
\(993\) 0 0
\(994\) 601.585 + 52.6065i 0.605216 + 0.0529240i
\(995\) −1804.88 + 1042.05i −1.81395 + 1.04729i
\(996\) 0 0
\(997\) −321.374 556.637i −0.322341 0.558312i 0.658629 0.752468i \(-0.271137\pi\)
−0.980971 + 0.194156i \(0.937803\pi\)
\(998\) −9.23349 5.33096i −0.00925200 0.00534164i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.r.a.305.8 32
3.2 odd 2 126.3.r.a.11.13 yes 32
7.2 even 3 378.3.i.a.359.1 32
9.4 even 3 126.3.i.a.95.9 yes 32
9.5 odd 6 378.3.i.a.179.8 32
21.2 odd 6 126.3.i.a.65.9 32
63.23 odd 6 inner 378.3.r.a.233.16 32
63.58 even 3 126.3.r.a.23.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.9 32 21.2 odd 6
126.3.i.a.95.9 yes 32 9.4 even 3
126.3.r.a.11.13 yes 32 3.2 odd 2
126.3.r.a.23.5 yes 32 63.58 even 3
378.3.i.a.179.8 32 9.5 odd 6
378.3.i.a.359.1 32 7.2 even 3
378.3.r.a.233.16 32 63.23 odd 6 inner
378.3.r.a.305.8 32 1.1 even 1 trivial